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e-mail: ewa.rafajlowicz@pwr.wroc.pl

The dimensionality and the amount of data that need to be processed when intensive data streams are observed grow rapidly
together with the development of sensors arrays, CCD and CMOS cameras and other devices. The aim of this paper is to
propose an approach to dimensionality reduction as a first stage of training RBF nets. As a vehicle for presenting the ideas,
the problem of estimating multivariate probability densities is chosen. The linear projection method is briefly surveyed.
Using random projections as the first (additional) layer, we are able to reduce the dimensionality of input data. Bounds
on the accuracy of RBF nets equipped with a random projection layer in comparison to RBF nets without dimensionality
reduction are established. Finally, the results of simulations concerning multidimensional density estimation are briefly
reported.
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1. Introduction

Radial Basis Function (RBF) nets have proved their flexi-
bility in a large number of tasks. By trying to apply them
for processing multivariate data, which form an intensive
stream, we are faced with the well-known curse of dimen-
sionality, which is magnified by the fact that multivariate
data must be processed on-line. The aim of this paper is
to propose an extension of the RBF net architecture which
is intended to be more efficient than the classical RBF net
architectures. The idea is to add a new dimensionality re-
duction layer. In opposition to multi-layer RBF nets, in
which all layers are nonlinear, the proposed layer is linear
in input variables. Furthermore, weights of this layer are
chosen in a random way, instead of using a kind of training
process. At first glance, this can be surprising, but recent
results on random projections (see the bibliography cited
in Section 3) provide tools for dimensionality reduction,
which retain (with prescribed accuracy and probability)
the Euclidean distances between pairs of projected points.
Using random projections as the first layer, we are able to
reduce the dimensionality of the input data, deteriorating
their metric relationships only slightly. As a consequence,
the RBF layer has also a reduced dimensionality and it
requires fewer observations in the trainig phase, while in

the operating stage the net works much faster. The above
ideas are shown in greater detail for the task of estimating
multivariate probability densities. This task was selected
for several reasons, which are explained below:

1. RBF nets are well suited for density estimation prob-
lems and their applications in this area have a rel-
atively long history. The dimensionality reduction
allows extending possible applications.

2. Multivariate density estimation is part of many im-
portant tasks, including pattern recognition, non-
parametric regression estimation and novelty detec-
tion (see the fundamental monographs (Devroye and
Györfi, 1985; Devroye et al., 1996).

3. We put emphasis on novelty detection tasks, since—
jointly with RBF nets—random projections are ex-
pected to allow on-line monitoring of intensive data
streams, arising, e.g., in quality control by industrial
cameras.

1.1. Introductory remarks on novelty detection. In
many industrial applications, it has become more and
more important to monitor the behaviour of complex sys-
tems using multivariate measurements. The dimensional-
ity and the amount of data that need to be processed when
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intensive data streams are observed grow rapidly together
with the development of sensors arrays, CCD and CMOS
cameras and other devices.

Many approaches which have been proposed for
fault detection in complex systems (Willsky, 1976; Pat-
ton, 1994; Gertler, 1998; Patton et al., 2000; Korbicz et
al., 2004) require the availability of a precise model of
the system under diagnosis. Unfortunately, it is com-
monly recognized that the model-based approach is often
very sensitive to modelling errors and disturbances acting
on the system under consideration. Moreover, the time
needed to validate a reliable plant model is often too long
for practical applications.

Feature-based or pattern recognition approaches
need no physical process model. System knowledge is
assumed to be contained in a training set composed of
measurement vectors and associated operating conditions.
This approach can be regarded as a data modelling ap-
proach. Large data sets (multidimensional time-series) are
obtained during process monitoring and they are used for
non-parametric probability data density estimation.

In a model-based approach the overall data obtained
are used to build the precise predictive model of the
process under consideration. Non-parametric and semi-
parametric approaches, as well as neural network and
fuzzy modelling methods, can be used for reducing our
need for a physical process model. Nevertheless, these
approaches need very careful model tuning and some kind
of regularization is necessary to avoid the overfitting phe-
nomenon.

We concentrate on using an RBF neural network for
non-parametric density estimation directed to data anal-
ysis. In this approach the overall data co-occurrence in
a chosen time interval is modelled. Unusual data (with
low probability density) indicate that some changes in the
process occurred. The process, which is often called nov-
elty detection (Bishop, 1994; Roberts, 2000), can be ex-
ploited in two different situations. One of them appears
when it is required not only to classify known ‘normal’
and ‘fault’ input vectors, but also to recognize that a par-
ticular input is neither ‘normal’ nor a member of one of
the existing fault categories (Li et al., 2002). This ap-
proach leads to pattern recognition methods (Leonard and
Kramer, 1991; Leonard and Kramer, 1990).

The second one is based only on positive (normal)
data examples. In such a case, “novelty”, i.e., abnormal
behaviour, indicates that a process is under the influence
of special causes, and possibly a faulty situation occurs.
Thus, a model of normality is learnt by including only nor-
mal examples in the training data; abnormalities are then
identified by testing for a novelty against this description.
The number of input variables, as well as a long horizon
of the observation, which are taken into account during
the diagnosis process result in large and very large data
dimensionalities.

1.2. Novelty detection in process diagnosis and statis-
tical process control. Novelty detection is a data-based
approach that can achieve an anomalous detection while
only requiring nominal (no-fault) conditions for learning.

The interpretation of novelty detection, understood
as the recognition of abnormal patterns, is well established
in Statistical Process Control (SPC). Novelty detection is
the task of observing changes in the state in a process.
For novelty detection, a description of normality is learnt
which fits a model to the set of normal examples. Previ-
ously unseen patterns are then tested by comparing their
novelty scores (as defined by the model) against some
threshold. Statistical control charts are designed in order
to detect abnormalities (out-of-control states) in the pro-
cess under consideration. The most common abnormali-
ties are mean shifts, variance changes and trends.

Suppose that X1,X2, . . . are independent random
vectors observed sequentially and X1 to Xq−1 have a
distribution function with a probability density f0 while
Xq,Xq+1, . . . have a distribution function with a prob-
ability density f1 �= f0. Here q is unknown and some
action should be taken after an undesirable change in the
process.

Given observations Xt = (xt1, . . . , xtd), one has to
decide whether Xt is a random variable q with pdf f0 ,
i.e., the process is normal, i.e. “in-control”, or if Xt is an-
other random variable, the process is “out-of-control”, i.e.,
changes in the process occurred. We assume that proba-
bility densities f0 and f1 exist but are unknown.

In other words, the unconditional probability density
of an input vector decides whether Xt is novel. All data
recognized as “out-of-control” must indicate that their
probability density values are below a novelty threshold.

It should be emphasized that most of the known
neural network models designed for detecting changes
in (mostly univariate) statistical processes work in pat-
tern recognition settings, i.e., they rely on the assumption
that also abnormal observations (out-of control states) are
available and their class-memberships (in-control and out-
of-control labels) are known (Guh, 2005).

A neural network-based approach used when only in-
control data are available has been considered in a few
papers only (Skubalska-Rafajłowicz, 2006a; Skubalska-
Rafajłowicz, 2000; Zorriassatine et al., 2003). This ap-
proach consists of two stages. Namely, the density es-
timation from a training sequence and the selection of a
novelty threshold. If a current observation is below this
threshold, then it is highly probable that the observation
comes from a probability distribution, which is different
from that describing a typical (in-control) state. In this
paper we concentrate on the density estimation, which is
the main stage.

The paper is organized as follows: RBF nets for den-
sity estimation are briefly introduced in the next section.
Then, we provide basic facts concerning random projec-
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tions, which are used for stating a result on the accuracy of
RBF nets equipped with a random projection layer in com-
parison with RBF nets without dimensionality reduction.
Finally, the results of simulations are briefly reported.

2. RBF neural network models

Radial basis function networks originated from the multi-
dimensional interpolation model (Broomhead, 1988; Buh-
man, 2003; Powell, 1987). A radial basis function net-
work can be described as a parameterized model used to
approximate an arbitrary function by means of a linear
combination of basis functions. RBF networks belong to
the class of kernel function networks where the inputs to
the model are passed through kernel functions which limit
the response of the network to a local region in the input
space for each kernel or basis function.

Radial basis function neural networks (Bishop, 1995;
Haykin, 1999; Krzyżak and Niemann, 2001; Yee and
Haykin, 2001) have been widely used in classification
problems such as speech recognition, medical diagnosis,
handwriting recognition, image processing, and fault di-
agnosis.

The basic radial basis function network consists of
three layers having entirely different roles: an input layer,
a hidden layer, which applies a nonlinear transformation
from the input space to the hidden space, and a linear out-
put layer. Hence

fN (x) =
N∑

i=1

wiG(‖x − ci‖) , (1)

where x ∈ R
d and ci ∈ R

d are tunable vectors, wi are
tunable weights, and N is the number of neurons.

Usually ‖x‖ is the Euclidean norm. However, also
a generalized weighted norm ‖x|_Qi, defined by the
quadratic form ‖x‖2

Qi
= xT QT

i Qix, can be used, where
the Qis are (usually tunable) d × d matrices.

The most popular choice for the non-linearity G is
the Gaussian one. Typically, RBF networks use memory-
based learning for their design. Specifically, learning is
viewed as a curve-fitting problem in a high-dimensional
space (Broomhead, 1988; Poggio and Girosi, 1990). RBF
networks can be used to provide an effective and compu-
tationally efficient solution to the interpolation and to the
approximation problems.

RBF networks are related to Parzen window (Parzen,
1962) estimators of a probability density (Specht,
1990; Schlorer and Hartman, 1992; Rafajłowicz, 2006;
Skubalska-Rafajłowicz, 2006a) or to Nadaraya-Watson
regression estimators (Bishop, 1994; Xu et al., 1994;
Krzyżak, 1996; Krzyżak and Skubalska-Rafajłowicz,
2004; Yee and Haykin, 2001). Similarities between the
RBF network structure and kernel regression estimators

lead to RBF networks with the centres chosen to be a sub-
set of the training input vectors and associated weights
which directly correspond to the responses at the centres
(Krzyżak, 2001).

Generally speaking, training an RBF network con-
sists in determining the number of basis functions (hidden
units), centres and widths of each basis function, and out-
put layer weights. For some algorithms, these steps are
carried out separately, while in others, all parameters are
found simultaneously. Furthermore, different techniques
can be mixed and matched for training different parame-
ters.

The existing training strategies for RBF neural net-
works include the following: strategies selecting ra-
dial basis function centres randomly from the training
data (Broomhead, 1988), strategies employing unsuper-
vised procedures for selecting radial basis function cen-
tres (Chen et al., 1991; Holmström and Hamalainen, 1993;
Moody and Darken, 1989), strategies employing super-
vised selection of centres for selecting radial basis func-
tion centres (Karayiannis, 1999; Poggio and Girosi, 1990;
Wettschereck and Dietterich, 1992) and regularized inter-
polation exploiting the connection between an RBF net-
work and the Watson-Nadaraya regression kernel (Yee
and Haykin, 2001).

Chen, Cowan, and Grant (1991) derived a systematic
method of training radial basis functions in a one-stage ap-
proach. They proposed that choosing the RBF centres can
be likened to subset model selection where the aim is to
choose a subset of centres from a larger set of candidates.
More specifically, they suggested that an orthogonal least
squares method can be employed as a forward regression
procedure by treating the centres as the regressors. The
initial set may be the total set of data points or some larger
set of centres obtained by some means.

One of the simplest procedures for selecting the cen-
tres for radial basis functions is based on the notion of
using one centre for each data point to be approximated.
For small data sets, this method is reasonable, but clearly
it is not suitable for larger data sets.

A relatively simple method for choosing the centres
is to randomly sample the data and use the sampled data
as centres. By sufficiently over-sampling the input space,
good performance may be obtained.

To determine the centres, Moody and Darken pro-
posed the k-means clustering algorithm (Moody and
Darken, 1989). In this case, the data is clustered into k
regions and the centers are determined as the Euclidean
centers of each cluster of data. The widths of each basis
function can be determined by using a k-nearest-neighbor
algorithm. Poggio and Girosi (1990) also proposed that
Kohonen’s self-organizing feature map (Holmström and
Hamalainen, 1993) can be used for initializing the radial
basis function centres before gradient descent is used to
adjust all of the free parameters of the network. Rafa-
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jłowicz and Skubalska-Rafajłowicz (2003) suggest that
the centres should be selected in a data driven way from
equidistributed (or quasi-random) points, which are de-
terministic sequences having properties of uniformly dis-
tributed random variables.

2.1. RBF neural network models for density estima-
tion and novelty detection. The Parzen density estima-
tor (2) cannot be directly applied to intensive data streams,
since the number of summands would be prohibitively
large. Therefore, as a vehicle for presenting RBF nets with
random projections we shall use nets with reduced num-
bers of centers, which are trained in a relatively simple
way, well suited for intensive data streams (Skubalska-
Rafajłowicz, 2006a). In Section 4 we investigate the
estimation accuracy for this class of RBF nets. Be-
low, we summarize the way of their learning (Skubalska-
Rafajłowicz, 2006a; Skubalska-Rafajłowicz, 2006b).

The architecture of RBF networks related to Parzen
window estimators of the probability density is simple and
consists of one hidden layer with kernel units and an out-
put layer. The kernel functions of the hidden units are
usually taken as Gaussian functions:

G(r) = exp
(
− r2

2σ2

)
for some σ > 0 and r ∈ R .

These neural networks estimate the multidimensional
probability density function as a sum of kernel functions.
The number of units in the hidden layer is equal to the
sample size. The parameters of the network (1) are ob-
tained from an n-sample observation data set (training se-
quence) Ln = ((X1, Y1), . . . , (Xn, Yn). As regards the
probability density estimation, labels Yi, i = 1, . . . , n are
all set as 1 and do not carry any additional information.
In the context of the pattern recognition problems, we can
treat the whole learning sequence as belonging to the same
class. When density estimation is applied for novelty de-
tection, then the case that all Yi = 1 corresponds to the
lack of novel observations in the training sequence.

Thus, the network with Gaussian kernel functions
takes the following form:

1
n(2πσ2)d/2

n∑

i=1

exp
(
−||X − Xi||2

2σ2

)
, (2)

where (n(2πσ2)d/2)−1 is the normalizing factor. For the
sake of simplicity, this factor will be neglected in the rest
of the paper.

Let N be the number of centres. Assuming that the
centres should be distributed according to the same prob-
ability distribution as the training data, the centres are
simply a subset of the training input vectors. One can
take, e.g., first N elements from the training sequence
(X1, . . . , Xn).

Note that if Xi is close to a centre C, then

G(||X − Xi||) − G(||X − C||) ≈ 0.

So, we can replace each Xj in the sum (2) by its near-
est neighbour among a set of centres {C1, C2, . . . , CN}
breaking ties at random. Note that the same Ci can be the
nearest neighbour for several Xjs and that each Ci has at
least one point from the training sequence (namely, itself)
as a neighbour, since every centre is taken from the train-
ing set.

Let nj stand for the number of points closest to the
centre Cj , i.e.,

nj = card[{Xi : ||Xi − Cj || < ||Xi − Ck||}].
Thus, we obtain the approximate version of (2):

y(X) =
1

n(2πσ2)d/2

N∑

j=1

nj exp
(
−||X − Cj ||2

2σ2

)
.

(3)
One can choose any known method, e.g., the cross-

validation, for selecting σ. Having selected centres and
using (3), one can considerably reduce the computational
burden needed for selecting σ in a data-driven way using
the least squares cross-validation (Bowman, 1984; Jones
et al., 1996). The method is based on representing the
Integrated Squared Error (ISE) as

ISE(σ)

=
∫

(y(X,σ) − f(X))2

=
∫

(y(X,σ))2 − 2
∫

y(X,σ)f(X) +
∫

(f(X))2,

(4)

where f(X) is the unknown probability density function.
The minimizer of the ISE is the same as the minimizer
of the first two terms of the final form. The second term
is estimated by −2/n

∑n
i=1 yi(Xi, σ), where yi(Xi, σ) is

the “leave-one-out” kernel density estimator defined using
the data with Xi removed. The minimizer is taken as a
width parameter σ of the RBF network. The simplified
form of the cross-validation procedure can be performed
on selected centres only, leaving the weights unchanged.

Clearly, one can use other classes of neural networks,
(Chen et al., 2004; Magdon-Ismail and Atiya, 2002; Yin
and Allinson, 2001) or other training algorithms of RBF
nets for the problem considered in this paper, but—to the
best of the author’s knowledge—they would require much
greater computational efforts.

3. Linear random projections

Here we focus our attention on the high dimensionality of
the probability density estimation problem. Reducing the



Random projection RBF nets for multidimensional density estimation 459

dimension of the feature vectors using linear random pro-
jection to enhance the performance of the proposed den-
sity estimation method is examined as a remedy to the
large data dimensionality.

In normal random projections (Vempala, 2004),
we can estimate the original pairwise Euclidean dis-
tances directly using the corresponding Euclidean dis-
tances in a smaller dimension. Furthermore, the Johnson-
Lindenstrauss lemma (Johnson and Lindenstrauss, 1984;
Dasgupta and Gupta, 2003) provides the performance
guarantee.

We give a review of normal linear random projec-
tions (Achlioptas, 2001; Ailon and Chazelle, 2006; Ar-
riaga and Vempala, 1999; Dasgupta and Gupta, 2003;
Frankl and Maehara, 1987; Indyk and Motwani, 1998;
Johnson and Lindenstrauss, 1984).

Let ui ∈ R
d, i = 1, . . . , n be the original data. Let

S ∈ R
k×d be a random matrix whose entries are i.i.d.

samples of some random variable. The projected data are

vi = Sui ∈ R
k, i = 1, . . . , n.

Note that for m, l ∈ {1, . . . , n} we have

vmj − vlj =
d∑

i=1

sji(umi − uli), j = 1, 2, . . . , k.

When sij ∼ N(0, 1) are independent, identically dis-
tributed (i.i.d.), then

vmj −vlj =
d∑

i=1

sji(umi−uli) ∼ N(0,

d∑

i=1

(umi−uli)2),

and

Xj =
vmj − vlj

(
d∑

i=1

(umi − uli)2
)1/2

∼ N(0, 1). (5)

Denote by ‖ · ‖E the Euclidean distance. Then, we
can estimate

d2
E(um, ul) = ||um − ul||2E =

d∑

i=1

(umi − uli)2

from the sample squared distances (obtained after projec-
tions onto k random directions, defined by rows of S) as
follows:

d̂2
E =

1
k

k∑

j=1

(vmj − vlj)2. (6)

We skip displaying the dependence of d̂2
E on m, l for the

sake of brevity. Note that d̂2
E is estimated using the el-

ements of projected vectors. Below, we provide results,

which show to what extent the distances between pro-
jected points are close to distances of their counterparts
in the original space.

It is easy to show that (Dasgupta and Gupta, 2003; Li
et al., 2007; Vempala, 2004):

E{d̂2
E} = d2

E(um, ul). (7)

Thus, d̂2
E is an unbiased estimator of the “true” distance

between points in the higher dimensional space, while its
variance

var(d̂2
E) =

2
k

d4
E(um, ul) (8)

decreases to zero as k → ∞. Furthermore, according to
(5), we have

kd̂2
E

d2
E(um, ul)

=
k∑

i=j

X2
j ∼ χ2

k,

where
∑k

i=j X2
j ∼ χ2

k means that the sum has the chi-
squared distribution with k degrees of freedom. Thus, us-
ing chi-squared tail Chernoff bounds (see (Dasgupta and
Gupta, 2003) for details), we can obtain the bound on the
probability that the relative error exceeds ε (1 > ε > 0):

Pr

{
|d̂2

E − d2
E(um, ul)|

d2
E(um, ul)

≥ ε

}

≤ 2 exp
(
− k

4
ε2 +

k

6
ε3

)
. (9)

In order to provide more explicit bounds, select the
admissible probability of error δ > 0. Since there are in
total n(n − 1)/2 < n2/2 pairs among n data points, by
the union bound inequality, it suffices that

n2

2
Pr

{
|d̂2

E − d2
E(um, ul)| ≥ εd2

E(um, ul)
}
≤ δ.

Using (9), we obtain

n2

2
2 exp(−k

4
ε2 +

k

6
ε3) ≤ δ

and, consequently,

k ≥ 2 log n − log δ

ε2/4 − ε3/6
= c(n, ε, δ)

provides the required upper bound for the probability of
error.

It should be mentioned that one can also sample sij

from other distributions with zero mean and unit variance
(Achlioptas, 2001; Indyk and Naor, 2006; Li et al., 2006).

The above inequalities are bounds for the probabili-
ties of deviations between distances of pairs of points in
the original space and in the projection space, which has a
reduced dimension.
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3.1. Some experiments on distance preservation after
random projections. It is of interest to grasp an experi-
ence on the behaviour of particular distances. To this end,
the following simulations were performed:
(i) Firstly, n = 1001 points ui ∈ R

100 were generated
with independent elements, which were drawn from the
Gaussian distribution. It would be very time consuming
to calculate the distances between all 1000 points. There-
fore, an additional point, numbered as 1001, was drawn
and the distances reported below were calculated between
this point and all remaining 1000 points.
(ii) Then a 49×100 random matrix S were generated with
its entries drawn independently from the Gaussian distri-
bution with zero mean and dispersion 1/7.
(iii) The dimensionality reduction was done as vi = S ui.
(iv) The distances between the first points and the rest

of them were calculated, i.e., Δu(i) def= ||ui − u1|| and

Δv(i) def= ||vi − v1||, i = 2, 3, . . . , 1001.
Pairs (Δu(i)Δv(i)), i = 2, 3, . . . , 1001 are shown

as dots in Fig. 1 (left panel). In an ideal situation, when
projections maintain exactly the distances of their parents,
all dots should be located along the line bisecting the first
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Fig. 1. Departures in distances of pairs of points before and after
dimensionality reduction (see the text for explanations).

and the third quadrant. Departures from that line illustrate
departures in preserving distances. Taking into account
that we simulated a 100-dimensional space, the observed
departures are of a small or moderate size. Note that de-
partures should be considered in the context of the dimen-
sions of the corresponding spaces. This can be achieved
by scaling the axes by the square roots of the dimensions,
i.e., 10 and 7, respectively. Then, the departure for one
component of a vector is of the order of at most 1 − 2.

The right panel of Fig. 1 illustrates the impact of se-
lecting matrix S. Dots in this panel were obtained by re-
peating Steps (ii)–(iv) of the above simulations, i.e., the
same 1001 points were multiplied by another matrix S,
which was independently generated form the same distri-
bution as above. As one can notice, there are no qualitative
changes between positions of points in the left and right
panels. Many other simulations, which are not reported
here, provide qualitatively the same patterns.
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Fig. 2. Frequency histograms (in %) of relative errors in pre-
serving the distances of pairs of points before and after
dimensionality reduction (see the text for explanations).

In addition to the above qualitative deliberations, it is
expedient to outline relative errors, which are understood
as

δi
def=

Δu(i) − Δv(i)
Δu(i)

, i = 2, 3, . . . , 1001. (10)

The basic statistics for the δis are the following:
(a) mean = −0.0416,
(b) median = −0.0426,
(c) dispersion = 0.094,
and these values keep their orders when different random
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matrices are used. More detailed information about the
distribution of the relative errors is presented in Fig. 2, in
which the histograms of δis are shown for two random
matrices S and the same set of multivariate points. The
analysis of these histograms shows that the overall shape
and the range of errors changes only sightly when differ-
ent random matrices are used for dimensionality reduc-
tion. The distribution of δis looks very similar to the den-
sity of the Gaussian distribution, but this aspect is outside
the scope of this paper.

4. RBF with input dimension reduced by
random normal projection

Random projection could be implemented by an addi-
tional network layer with weights establishing some ran-
dom projection S. Thus, we obtain a new Gaussian RBF
neural network:

N∑

i=1

wi exp
(
−||(x − Ci)S||2

2σ2
i

)
, (11)

where the network parameters (wi and Ci, i =
1, . . . , N , σ) have been obtained according to any
chosen training algorithm, see, e.g., (Haykin, 1999;
Krzyżak and Skubalska-Rafajłowicz, 2004; Skubalska-
Rafajłowicz, 2006a).

According to (Arriaga and Vempala, 1999; Li et al.,
2007), if

k ≥ ln(2) − ln(δ)
ε2/4 − ε3/6

,

then with the probability of at least 1 − δ the squared Eu-
clidean distance between a pair of data points can be ap-
proximated with the relative accuracy of at least 1 ± ε,
using the squared Euclidean distance of the projected data
after normal random projections S. These facts allow us
to formulate the following result.

Theorem 1. For an arbitrary but fixed x ∈ R
d, define

Amax = max
1≤i≤n

‖(x − Ci)‖2/(2σ2).

(Amax depends on x, but we skip this for brevity.)

1. Select ε > 0, which is such that εAmax < 1. If

k ≥ ln(2N) − ln(δ)
ε2/4 − ε3/6

,

then, with the probability of at least 1 − δ,

(1 − εAmax)YRBF(x) ≤ Y proj
RBF(x)

and simultaneously

Y proj
RBF(x) ≤

(
1 +

εAmax

1 − εAmax

)
YRBF(x).

2. Select 0 < α < 1. If k is chosen such that

k ≥ (ln(2N) − ln(δ))A2
max(

α
1+α

)2 ,

then, with the probability of at least 1 − δ,

(1 − α) YRBF(x) ≤ Y proj
RBF(x) ≤ (1 + α) YRBF(x).

Outline of the proof. If k ≥ (ln(2N) − ln(δ))(ε2/4 −
ε3/6)−1, then, with the probability of at least 1 − δ, we
have

(1−ε)||x−Ci||2 ≤ ||(x−Ci)S||2 ≤ (1+ε)||x−Ci||2},

for i = 1, 2, . . . , N , where x ∈ R
d is a chosen point. Let

YRBF(x) =
N∑

i=1

wi exp
(
−||(x − Ci)||2

2σ2

)
.

Thus,

Y proj
RBF(x)

=
N∑

i=1

wi exp
(
−‖(x − Ci)S‖2

2σ2

)

≤
N∑

i=1

wi exp
(

(ε − 1)
‖(x − Ci)‖2

2σ2

)

=
N∑

i=1

wi exp
(
−‖(x − Ci)‖2

2σ2
+

ε‖(x − Ci)‖2

2σ2

)

≤ exp(εAmax)
N∑

i=1

wi exp
(
−‖(x − Ci)‖2

2σ2

)

≤
(

1 +
εAmax

1 − εAmax

)
YRBF(x).

On the other hand,

Y proj
RBF(x)

≥
N∑

i=1

wi exp
(
−(1 + ε)

‖(x − Ci)‖2

2σ2

)

=
N∑

i=1

wi exp
(
−‖(x − Ci)‖2

2σ2

)
exp

(
−ε‖(x − Ci)‖2

2σ2

)

≥ (1 − εAmax)YRBF(x).

5. Simulation studies on density estimation
using RBF nets with random projections

The proposed method was tested using 50-D and 100-D
normal distributions with mean (0, 0) and covariance ma-
trix I . We compared the performance of the probabil-
ity density estimation method based on the RBF network
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Table 1. Mean-square error of the probability density estimation by (1) (non-reduced dimension) averaged over 10000 test samples.

MSE d = 50, N = 5 d = 50, N = 20 d = 100, N = 5 d = 100, N = 20

for true
dimension 7.91E−14 4.45E−14 8.48E−30 4.86E−29

Table 2. Mean-squared error of the probability density estimation by (11) (reduced dimension) averaged over 10000 test samples.

MSE for k d = 50, N = 5 d = 50, N = 20 d = 100, N = 5 d = 100, N = 20

2 2.75E−3 1.10E−3 2.44E−3 2.52E−3

9 3.07E−7 3.07E−7 1.36E−10 2.39E−10

16 7.37E−10 1.07E−10 1.59E−14 6.11E−14

36 8.24E−14 4.51E−14 8.48E−30 4.86E−29

49 8.48E−30 4.86E−29

(1) and the learning algorithm proposed in (Skubalska-
Rafajłowicz, 2006a) with results obtained using the RBF
proposed here with the input dimension reduced by ran-
dom the normal projection (11).

The mean-square error of the probability density es-
timation by (1) with two different numbers of centres
(N = 5 and N = 20) averaged over 10000 test samples
are summarized in Table 1 for further comparisons.

One can ask why the estimation error in a 100-
dimensional space is smaller than the one obtained in a
50-dimensional space. An explanation is based on the
well-known fact that observations drawn from a multivari-
ate Gaussian distribution have a tendency to locate in a
ring surrounding the hill, but somewhat below it. As a
result, the vicinity of the hill is almost empty. This phe-
nomenon causes trouble in a precise density estimation
near the hill. However, if a global estimation error, such
as the mean square one, is used, then areas far from the
hill are much larger. In these areas, which contain also
the above-mentioned ring, the variability of the estimated
density is much smaller and the estimation is more accu-
rate. Additionally, the estimation error was averaged over
10, 000 observations, which (for the reasons explained
above) also had a tendency to locate in flatter areas, near
the ring.

The mean-square error of the probability density es-
timation by (11) for two different dimensions, i.e., d =
50 and d = 100 with two different numbers of cen-
tres (N = 5 and N = 20) and a reduced dimension
k = 2, 9, 16, 36, 49 averaged over 10000 test samples are
presented in Table 2.

The proposed method of probability density estima-
tion based on random projections works amazingly well.
It is clear that error bounds (α) formulated in Theorem
1 are, at least on average, not violated. Furthermore, it
should be mentioned that in each examined case only one
random projection was generated and accepted without
any prior performance examinations.

Additional simulations, not reported here in detail,
revealed that 9 from 10 random projections do not essen-
tially change the estimation accuracy, which was evalu-
ated as above, by averaging 10,000 samples. In these sim-
ulation experiments dimensionality reduction was from
d = 100 to 49.

6. Conclusions

The proposed structure of RBF nets equipped with a di-
mensionality reduction layer provides outputs, which are
close to an RBF net without dimensionality reduction with
a high probability (see Theorem 1).

The proposed method of probability density estima-
tion is very easy to implement and promising results are
obtained using simulated data. Nevertheless, it is obvi-
ous that further extensive experiments are needed for the
validation of the RBF with input dimension reduced by
random normal projection as a tool for novelty detection
in multidimensional large data streams.
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