
Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 2, 305–316
DOI: 10.2478/v10006-010-0023-5

NTGSIM: A GRAPHICAL USER INTERFACE AND A 3D SIMULATOR FOR
NONLINEAR TRAJECTORY GENERATION METHODOLOGY

LYALL JONATHAN DI TRAPANI ∗, TAMER INANC ∗∗

∗ Twelfth Air Force
Davis-Monthan Air Force Base, 6901 E Broadway Blvd, Tucson, AZ, USA

e-mail: lyall.ditrapani@dm.af.mil

∗∗Electrical and Computer Engineering Department
University of Louisville, Lutz Hall 447, Louisville, KY, USA

e-mail: t.inanc@louisville.edu

Nonlinear Trajectory Generation (NTG), developed by Mark Milam, is a software algorithm used to generate trajectories
of constrained nonlinear systems in real-time. The goal of this paper is to present an approach to make NTG more user-
friendly. To accomplish this, we have programmed a Graphical User Interface (GUI) in Java, using object oriented design,
which wraps the NTG software and allows the user to quickly and efficiently alter the parameters of NTG. This new
program, called NTGsim, eliminates the need to reprogram the NTG algorithm explicitly each time the user wishes to
change a parameter.

Keywords: trajectory generation, optimal control, Java, GUI.

1. Introduction

Nonlinear Trajectory Generation (NTG) developed by
(Milam, 2003) solves constrained nonlinear optimal con-
trol problems in real-time. This methodology performs a
parameterization of the solution of the system by piece-
wise polynomials, called B-Spline functions (de Boor,
2001). Identifying plant output and/or state variables as
algebraic functions of the control input thus enables trans-
lating the dynamical constraints of the optimal control
problem as algebraic nonlinear constraints posed on poly-
nomial coefficients. NTG then employs a built-in non-
linear programming toolbox to tackle the resulting static
optimization problem (Muezzinoglu and Inanc, 2006).

NTG has been applied to several robotics problems
in the literature. In (K. Misovec and Murray, 2003; Inanc
et al., 2004), NTG is used to generate low-observable tra-
jectories for unmanned aerial vehicles. In (Milam, 2002),
IT is used for a missile intercept problem. In (Lian and
Murray, 2003), NTG is extended to a multi-vehicle prob-
lem with precedence constraints.

Unfortunately, the current state of NTG is somewhat
counterintuitive to use. Each optimal control problem re-
quires the user to write a program which details the prob-
lem parameters, constraints and cost functions. This pro-

gram would make a call to the NTG function. Once writ-
ten, the program must then be compiled and linked with
the NTG library which contains the NTG algorithm. If
the user wishes to make any changes to his or her optimal
control problem, e.g., alter a spline parameter or modify
the cost functions, he or she must open up the source code
of his or her program, make the appropriate changes, re-
compile, and finally link with the NTG library once again.
On top of being hideously time consuming, this process
also increases the chance of introducing bugs to the pro-
gram each time the process is repeated. It is clear that
NTG is not the most user friendly software package. This
is exactly the problem which is addressed here.

In this paper we present NTGsim, the solution we
have developed, with preliminary results presented in
(Trapani and Inanc, 2009). NTGsim is a graphical user
interface for NTG. By creating a GUI around NTG, we
hope to increase ease of use and accessibility, to elimi-
nate unnecessary recompilation and to provide support in
specifying and solving optimization problems with NTG.
Recently, a solution to the problem has been proposed to
facilitate the use of NTG called OPTRAGEN, a MATLAB
toolbox for NTG developed by (Bhattacharya, 2006).
However, OPTRAGEN, being a MATLAB toolbox for

306 L.J. Di Trapani and T. Inanc

NTG, is different from our solution, NTGsim. OPTRA-
GEN obviously requires MATLAB to be used and it does
not provide real-time application of NTG, which was
designed to solve constrained nonlinear optimal control
problems in real-time. On the other hand, our proposed
solution, NTGsim, is based on the Java platform and pro-
vides real-time application and a built-in 3D simulator
(currently being developed) to quickly simulate the de-
signed trajectories without depending on other commer-
cial software tools such as MATLAB.

The structure of this paper is as follows. First, a brief
overview of the NTG algorithm is provided in Section 2.
In the next section, the bulk of the paper, NTGsim will be
broken down into its major components and concepts, and
each one will be discussed. Following that, full installa-
tion instruction for NTGsim will be provided. The final
section will give a brief example on how to use NTGsim
based on the van der Pol optimal control problem.

2. Overview of nonlinear trajectory
generation methodology

The NTG algorithm is the state-of-the-art and it solves
constrained nonlinear optimal control problems in real-
time (Milam, 2003). It is based on a combination of
nonlinear control theory, spline theory, and sequential
quadratic programming. NTG takes the optimal control
problem formulation, the characterization of the trajectory
space in terms of approximation functions and transforms
them into a Non-Linear Programming (NLP) problem. It
is then solved using NPSOL, a popular NLP solver, which
uses sequential quadratic programming to obtain the solu-
tion.

This section gives a brief introduction to the NTG al-
gorithm and the underlying techniques. The general non-
linear optimal control problem is stated first. Then, the
outline of the NTG algorithm is summarized.

2.1. Optimal control problem. Consider a general dy-
namical (control) system

ẋ(t) = f(x(t),u(t)), (1)

where x(t) is the state of the system and u(t) is the control
input. For optimal control, we would like to choose u(t)
such that some cost function is minimized and constraints
are enforced. That is, given a cost function of the form

J = Φ0(x(t0),u(t0), t0) +
∫ tf

t0

L(x(t),u(t), t) dt

+ Φf (x(tf),u(tf), tf),
(2)

we would like to choose u(t) for t ∈ [t0, tf] which mini-
mizes J subject to the constraints of the form

Initial lb0 ≤ Ψ0(x(t0),u(t0), t0) ≤ ub0,
Trajectory lbt ≤ Ψt(x(t),u(t), t) ≤ ubt,
Final lbf ≤ Ψf (x(tf),u(tf), tf) ≤ ubf .

(3)

Note that the cost function J is composed of an initial
condition cost, Φ0(·), an integral cost over the trajectory,
L(·), and a final condition cost, Φf (·). The constraints
are similarly partitioned. Here lb and ub represent lower
and upper bounds, respectively. Equations (2) and (3) are
standard in optimal control and are further explained in
(Milam, 2003; Bryson and Ho, 1975).

In most cases, the dynamics (1) and constraints (3)
are too complicated for the minimization of (2) to be
solved analytically, so numerical algorithms must be used
to obtain the solutions. To solve optimal control prob-
lems numerically, they are often transformed into non-
linear programming problems. The nonlinear trajectory
generation methodology is the state-of-the-art algorithm
for transforming the optimal control problem given in
Eqn. (2) to an NLP problem, and solving it in real-time
(Milam, 2003; Milam et al., 2000).

2.2. Nonlinear trajectory generation methodology.
If the cost and constraints are evaluated at discrete points
in the interval [t0, tn], it is possible to translate the opti-
mization problem, defined by (2) and (3), into the follow-
ing NLP problem in Cj :

min
�C∈R

p
F (�C)

subject to
L ≤ G(�C) ≤ U,

where �C = [C1 · · · Cp]T . F (�C) is our transformed
cost function, and G(�C) is the transformation of the con-
straints, with L and U being the lower and upper bounds,
respectively. The discrete points, Ci, at which the cost and
constraints are evaluated are known as collocation points.

There are three steps in the NTG algorithm:

1. The first step is to exploit any differential flatness
of (1) to find a new set of outputs of the system so
that the system dynamics can be mapped down to a
lower-dimensional space, with the property that all
the states and controls of the original system can be
recovered from the new lower-dimensional represen-
tation. The idea is that it will be easier and computa-
tionally more efficient to solve a lower dimensional
problem by finding an output z = z1, . . . , zq of the
form

z = A
(
x, u, u(1), . . . , u(r)

)
, (4)

where u(i) denotes the i-th derivative of u with re-
spect to time. If Eqn. (1) is differentially flat, then

NTGsim: A graphical user interface and a 3D simulator for nonlinear. . . 307

the states and inputs of the system, (x, u), can be
completely established from (5). If there is no flat
output or one cannot find a flat output, then (x, u)
can still be completely determined from the lowest
dimensional space possible given in Eqn. (6). A nec-
essary condition for the existance of such outputs is
given in (Milam et al., 2000).

(x, u) = B
(
z, z(1), . . . , z(s)

)
, (5)

(x, u) = B1

(
z, z(1), . . . , z(s1)

)
, (6)

0 = B2

(
z, z(1), . . . , z(s2)

)
,

where z(i) denotes the i-th derivative of z with re-
spect to time.

2. The second step in NTG is to further represent these
outputs in terms of the B-spline functions as

zi(t) =
pi∑

j=1

Bj,ri(t)C
i
j , (7)

where Bj and Ci
j represent known B-spline basis

functions and unknown B-spline coefficients, respec-
tively (de Boor, 2001).

3. Finally, to determine the coefficients of the B-spline
functions, Ci

j , with the sequential quadratic program-
ming package NPSOL (Gill et al., n.d.), the cost
function and constraints given in (2) and (3) are
re-formulated in terms of the B-spline coefficients,
yielding a nonlinear programming problem.

2.3. Using NTG. The NTG algorithm generates tra-
jectories of constrained nonlinear systems. In order for
the user to manipulate NTG, he or she must define the
constrained nonlinear optimal control problem of interest
explicitly in the NTG framework (Milam, 2003). For such
a system to be fully qualified, the NTG algorithm has 46
input parameters (Milam, 2003). These parameters can be
broken up into two different types: static parameters and
dynamic functions.

Static parameters define the number of outputs
(splines) and the number of derivatives for each output,
the number of cost and constraint functions, the placement
of knot points, the order and smoothness of the B-splines,
and the collocation points for each output. Basically, any
parameter can be assigned a discrete value. We have la-
beled these parameters as “static” because they do not re-
quire the NTG algorithm to be recompiled each time they
change. The static parameters can be passed to the NTG
algorithm with the use of a well designed GUI without
altering the NTG algorithm.

The second group of parameters, dynamic functions,
comprises the remaining six input parameters. Half of

these are the three cost functions—initial, trajectory, and
final, which describe the objective(s) of the system. The
other half are the three nonlinear constraint functions—
initial, trajectory, and final. These last three aptly named
functions describe the nonlinear constraints of the system.
The reason why the six functions are labeled as “dynamic”
is because they do require the NTG algorithm to be recom-
piled each time they are changed.

The current version of NTG only runs on operating
systems which implement the Portable Operating System
Interface (POSIX). During the preparation of this paper,
it was tested on x86 based computers running various
Ubuntu and Mandriva Linux distributions. The NTG algo-
rithm is dependent on three static libraries: libNPSOL.a,
libpgs.a, and libg2c.a. The NPSOL and PGS libraries
were written in the FORTRAN programming language.
The NPSOL library is needed to do the actual nonlin-
ear problem solving (Gill et al., n.d.). The PGS library
takes care of spline related functions and the G2C library
is needed to understand the FORTRAN symbols used in
NPSOL and PGS. The entire NTG algorithm, along with
the three static libraries, is packaged into a single static li-
brary called libNTG.a. The libNTG.a library does not do
anything by itself. It needs another program to wrap the
library and feed it all 46 of its parameters.

3. Program structure

This section will explain the general flow of data through
NTGsim and the reasons why Java was chosen as the pro-
gramming language. Next, it will break down the appli-
cation into its major components and discuss each one. It
will also explain how modularization and multithreading
were used in developing NTGsim.

3.1. Data flow. The following is a rough overview of
the data flow through the program. Each concept will be
discussed in greater detail further on. The data flow of
the program is shown in Fig. 1. First, the InputGui ob-
ject receives input from the user. For each input received,
InputGui will pass the new data to the InputData object.
InputData will then translate the new data from the prob-
lem domain into the format the NTG algorithm expects.
The transformed data will be stored in the NativeInput-
Data object. Once the user is sets up the desired param-
eters, the Controller object will send NativeInputData to
the native library, libJ2NTG, using the Java Native In-
terface (JNI.) The JNI allows a connection from the Java
program, through the Java Virtual Machine (JVM) to the
native library (Liang, 1999). LibJ2NTG takes the param-
eters from within NativeInputData and feeds them to the
NTG algorithm, which in turn computes the coefficients
of the spline(s) representing the generated trajectory(s.)
The coefficients are written to a text file on the hard drive

308 L.J. Di Trapani and T. Inanc

and then returned across the JVM, using the JNI, to the
Controller.

Fig. 1. NTGsim data flow.

3.1.1. Reasons for Java. As can be seen from Fig. 1,
using Java as opposed to the C programming language
adds an extra layer of complexity to the program flow. If
the C language was used instead to program NTGsim, the
interfacing layer through the JNI would not be necessary.
However, developing the software in Java allowed us to
obtain many of our key objectives while facilitating the
production of more robust software. One of our goals was
to ensure that NTGsim was not tied to a single Operat-
ing System (OS). If NTG were ported to a new operating
system, we would like to have the ability to bring NT-
Gsim along with it to the new OS. Java’s platform inde-
pendent nature (Gosling and McGilton, 1996; Sierra and
Bates, 2005) made the language a natural choice for this
purpose.

Another goal was to create a modular GUI which
could be adapted to the use with various trajectory genera-
tion algorithms in the future. The object oriented nature of
the Java programming language (Sierra and Bates, 2005;
Gosling et al., 2005) allowed us to easily incorporate this
feature. The overall strength of Java class libraries was an-
other win for Java (Sierra and Bates, 2005; Sun Microsys-
tems, 2006).

By taking advantage of these libraries, we had access
to thousands of classes written by professional software
engineers (Sierra and Bates, 2005). Java’s Swing and Re-
mote Method Invocation (RMI) are two examples of Ap-
plication Programming Interfaces (APIs) from the class
library which we will now discuss in greater detail. Since
the overreaching purpose of the work presented here was
to design a GUI, ensuring that the chosen language had a
quality widget toolkit available was top priority.

Java’s Swing and the underlying Abstract Window-
ing Toolkit (AWT) fit the bill nicely. Their power, flex-
ibility and consistent cross-platform presentation were
all wins for Java over other languages. Since NTGsim
was envisioned as a trajectory generation system for au-
tonomous robots, having a way to remotely connect with
the NTGsim program and feed it input data was very ap-
pealing. For instance, being able to connect to a GPS or
an overhead camera system would be very useful. RMI
easily provides this functionality (Sierra and Bates, 2005).

Therefore, future extensions to the program in order to in-
clude an outside data source are very possible with Java’s
RMI.

Also, in the light of the real-time nature of NTG, we
needed to ensure that NTGsim would also be able to run
in real-time. This means that the GUI component would
at least have to be able to keep up with the NTG algo-
rithm. Although, in the past, the Java Runtime Environ-
ment (JRE) has suffered from negative reputation with re-
spect to its performance, today the JRE’s performance is
quite close to that of C++ and certainly up to the task of
running a responsive GUI (Sierra and Bates, 2005). This
is in large part due to the advent of the Hotspot Just in
Time (JIT) compiler (Davison, 2005).

In GUI applications, it is important to prevent GUI
hang-ups where the application appears to be unrespon-
sive. With its built-in multithreading ability, Java is again
a good choice (Davison, 2005). Another important fea-
ture of the Java platform is its ability to automatically
generate program documentation from properly format-
ted comments. This huge time saver also contributed
to our decision to use the Java language (Sun Microsys-
tems, 2006). Because of Java’s lack of pointers and built
in memory management, it is much easier to stay bug free
(Liang, 1999; Gosling and McGilton, 1996; Sierra and
Bates, 2005). Finally, the benefits of developing the soft-
ware with Java far outweighed the negative.

3.2. Overview of the class diagram. Overall, the pro-
gram is broken up into four distinct parts. These four parts
can be seen in Fig. 2.

• InputGui: responsible for retrieving user input
and sending it to InputObject.

• InputData: responsible for translating the user in-
put into the NTG format.

• NativeInputData: a simple data structure which
holds the processed input data. All data in this object
are ready for NTG execution.

• NativeCaller: responsible for connecting to the
native code (in this case, NTG) through JNI and re-
turning the results.

InputData has a reference to NativeInputData.
A fifth object, the Controller, is also shown in Fig. 2.
This object is responsible for controlling the overall
program flow and the communication with the native
library, libJ2NTG. InputGui, InputData, and
NativeCaller are contained within the Controller ob-
ject, which is also composed of the top-level window
(JFrame) and the menu bar (JMenuBar.)1

1JFrame and JMenuBar are standard components in Java’s Swing
GUI toolkit.

NTGsim: A graphical user interface and a 3D simulator for nonlinear. . . 309

Fig. 2. NTGsim simplified class diagram.

3.3. Modularization. As discussed earlier, we wanted
to keep the top-level objects as modular as possible in
order to aid in future extension to the program, such
as swapping out the back end algorithm, NTG, for an-
other trajectory generation algorithm. In order to accom-
plish this, the strategy design pattern was used (Freeman
and Freeman, 2004). The three most important objects,
InputGui, InputData, and NativeCaller, imple-
ment an interface which corresponds to their family. For
instance, NtgInputData implements the InputData
interface; NtgCaller implements the NativeCaller
interface, and so on. The Controller object only references
the interfaces of the classes and not the concrete classes
directly. This allows the creation of families of objects
which all implement the same interface and can be used
interchangeably even though they exhibit different behav-
ior. An example class diagram of this design pattern can
be seen in Fig. 32. For instance, if we wanted to interface
NTGsim with a different trajectory generation algorithm,
we would merely create an object which implements the
NativeCaller interface and calls the new algorithm,
and then provide this new object as NativeCaller for
the Controller object.

Fig. 3. Strategy design pattern class diagram.

Another scenario would be if we needed to accept
input from a sensor instead of a human user. An example
of a sensor system could be a Global Positioning System
(GPS) used for tracking a vehicle. In this case we would
create a new GpsInputGui object that implements the
InputGui interface and communicates with a sensor in-

2The return types and input parameters of the methods were omitted
due to space constraints.

stead of a human user. The rest of the system would not
need to change. By creating modular objects, we have
isolated potential change into separate compartments, pre-
venting the change in one object from affecting another
object.

To further help modularization, the abstract factory
design pattern was used to encapsulate the instantiation
of the main objects (Freeman and Freeman, 2004). A
Factory interface was created which has methods to cre-
ate all three of the main objects. An NtgFactory sub-
class creates objects specifically for the current version
of NTGsim. For instance, when createInputData()
is called on NtgFactory, it instantiates an object of
the class NtgInputData and returns the newly cre-
ated object. Figure 4 shows the class diagram of the
factory design pattern. However, all the methods take
interfaces as input parameters and likewise return inter-
faces. This means the createInputData() method
returns an object which implements the InputData in-
terface; the createInputGui()method returns an ob-
ject which implements the InputGui interface, and so
on. By returning interfaces, the Controller object only
needs to know about the three different interfaces and not
the exact concrete subclass which it will be using. Be-
cause the object creation process is encapsulated, the only
code which needs to be changed when using a different
object, as with the two examples above, is the concrete
factory code. Instead of using NtgFactory, the pro-
grammer would create a new Factory which creates the
appropriate objects.

Fig. 4. Abstract factory design pattern class diagram.

3.4. InputGui. InputGui is the interface be-
tween the human user and the NTGsim program. The
InputGui object gets user input and sends it to
InputObject. It contains all the input widgets3 used
in the GUI as well as the listener objects which respond
to the user-triggered widgets’ events. InputGui regis-
ters the listeners on all the widgets. When the user in-
puts data, the affected widget responds by notifying all

3A widget is a term used to describe a GUI component with which
the user interacts. Some examples of widgets are buttons, menus, and
combo-boxes.

310 L.J. Di Trapani and T. Inanc

the objects listening to it. This system is modeled after
the observer design pattern (Freeman and Freeman, 2004).
The widget objects are the subjects and the listener ob-
jects are the observers. This can be seen in Fig. 5, where
WidgetA classes trigger ActionEvents4, WidgetB
classes trigger ChangeEvents, WidgetC classes trig-
ger ItemEvents, and so on.

NTGsim uses over 40 widgets. With so many wid-
gets, a special system was needed to uniformly handle all
of the widgets’ different events. Four elements were used
to ease this problem:

• All the widgets were extended to implement a cus-
tom interface called DataPointable. This inter-
face has three methods: updateInputData(),
redisplay(), and setDataPointer(). Hav-
ing a common interface allowed the widgets to be
treated polymorphously.

• A listener class, called MultiChangeListener,
as seen in Fig. 5, was created which can listen for any
event triggered by the GUI widgets as long as the reg-
istered widgets implements the DataPointable
interface. With this class, all events are handled in
the same way: by calling updateInputData()
on the event’s source (the DataPointablewidget
which triggered the envent).

• All widgets were placed in HashMap5 immediately
after creation. The HashMap key values were based
on an Enumeration which had one concise, descrip-
tive value for each widget. This allowed the retrieval
of specific widgets from HashMap.

• Each widget contained a reference to
DataPointer, which will be discussed in
greater detail in the InputData section.

The three methods in the DataPointable inter-
face have very simple purposes. updateInputData()
will pass the new user input to the InputData ob-
ject, redisplay() will redisplay the widget with the
current values taken from the InputData object, and
setDataPointer() sets a reference to the supplied
DataPointer.

Putting the widgets in HashMap allowed the wid-
gets to be treated as a collection and also allowed
InputGui to perform operations over the entire col-
lection using a minimal amount of code. This is made
possible by Java implementation of the iterator design
pattern (Freeman and Freeman, 2004). To make things

4Event objects are used messenger objects. They are the input param-
eters to the functions invoked on the observer object when an important
event occurs.

5HashMap is the standard key/value pair collection in the Java lan-
guage.

even easier, the “for each” construct was used (for (Ele-
ment e: Collection<Element>)). This even elimi-
nates the need to explicitly transform the collection into
Iterator. For example, registering all the widgets
with MultiListener was a simple matter of using
the “for each” construct to loop through all the elements
and call element.add(multiChangeListener)
on each element. This system allowed new widgets to be
added to the GUI at any time. As long as the widgets im-
plemented the DataPointable interface, virtually no
code changes were needed except to update the keyset.

Fig. 5. Modified observer design pattern class diagram.

3.5. InputData. As mentioned earlier, the
InputData object takes the user input retrieved
by the InputGui object, translates it into the format
expected by the NTG algorithm, and stores it in the
NativeInputData object. However, as previously
stated, NTGsim has over 40 widgets. That means over
40 different input types. More explicitly, it means that
InputData needs to understand over 40 different input
messages and how to handle and translate each one. To
deal with this problem, a complementary system to the
one used with InputGui was created. In this system, each
key in the keysets created for the widgets’ HashMap has
a corresponding DataPointer object in InputData.

A DataPointer object is an inner-class of to
InputData which implements the DataPointer in-
terface. Having all the inner-classes implementations,
the same interface makes them polymorphic and much
easier to manage. The DataPointer interface, like
the DataPointable one, is very simple. It has
only two methods, setData() and getData(). The
setData() method translates the user input to the
NTG format and places it in the NativeInputData
object. It also updates all dependent parameters in
NativeInputData. The getData() method re-
trieves the pertinent data from NativeInputData,
translates them into a form useful to the user, and returns
the new data.

By using the DataPointer and
DataPointable interfaces, the widgets be-
come loosely coupled with their correspond-

NTGsim: A graphical user interface and a 3D simulator for nonlinear. . . 311

ing DataPointers. This allows widgets and
DataPointers to be changed, added, and removed
without affecting the other objects. It also simplifies
programming the GUI since each widget/DataPointer
combo can be dealt with one at a time without worrying
about breaking the preexisting code.

3.6. NativeInputData. This object contains all the in-
put parameters needed by the NTG algorithm in the for-
mat NTG expects. It has very few methods. It is in-
tended to be used as a “dumb” data structure as opposed
to being a “first class object.” All of the access modi-
fiers of its members are public to allow easy access by
the InputData object. However, InputData keeps
its NativeInputData object marked as private. This
way, InputData is the only object who has access to
NativeInputData and all of its variables.

3.7. NativeCaller. The purpose of NativeCaller
is to connect with the native code and pass it
NativeInputData. NativeCaller uses the Java
native interface to link the program with a dynamic
library, libJ2NTG.so, containing the NTG algorithm.
To accomplish this, NativeCaller defines a native
method—with the “native” qualifier and no body (the
body of the method is implemented in C.) By using the
“native” key word, the Java compiler knows that this
method will be implemented in C or C++ and will not
generate any errors due to its missing body (Liang, 1999).

3.8. Multithreading. NTGsim always invokes the
NativeCaller’s method on a separate thread. This
is to prevent the GUI from becoming unresponsive. To
understand why this is, one must understand how thread-
ing works with Java’s Swing. The Event Dispatch Thread
(EDT) is the thread on which all the GUI related activi-
ties occur such as rendering the GUI and executing Events
(Davison, 2005). By running all GUI activities on a sin-
gle private thread, the GUI can operate consistently and
safely. However, if a method with significant computa-
tional demand is executed on the EDT, the thread will be-
come tied up with the said method and will be unable to
handle user triggered events. If the computation time of
the method is short, the delay will be unnoticeable. How-
ever, if the delay is long, on the order of 100 ms, then the
user will notice the lag in the GUI (Davison, 2005). There-
fore, in order to keep the GUI responsive, computationally
intensive tasks, such as calling the NTG algorithm, should
be executed on a separate thread other than on the EDT.
Whenever the user requests the Controller to run the NTG
algorithm (remember, this occurs on the EDT), the Con-
troller creates special SwingWorker which invokes the
NativeCaller’s method. SwingWorker is an ob-
ject which runs on a separate worker thread apart from

the EDT. With this implementation, the NTGsim GUI re-
mains responsive even though another thread is busy cal-
culating a new trajectory with NTG.

3.9. libJ2NTG. libJ2NTG.so is the dynamic li-
brary which houses the implementation of the native
method as well as the static NTG library and all the
static libraries on which NTG depends. This is illus-
trated in Fig. 6. Also shown in Fig. 6 is the fact that
libJ2NTG.so depends on yet another dynamic library,
libDynamicFunc.so. This secondary dynamic li-
brary contains the implementation of the six user defined
functions that NTG calls (three cost functions and three
nonlinear constraint functoins.) libJ2NTG.so is static
and never needs to be changes. However, the six user
defined functions may change with different constraints
and objectives. By creating a separate dynamic library,
libDynamicFunc.so, for the dynamic parts, we have
effectively encapsulated the changing part of the native
code. Therefore, if the user wants to change the trajec-
tory cost function, he or she need only open and edit
libDynamicFunc.so and then recompile it. He or she
does not need to touch libJ2NTG.so whatsoever. The
end result is a greatly simplified function editing process.

Fig. 6. Native library structure.

As mentioned earlier, libJ2NTG.so imple-
ments the native method in C. The native method,
genSpline(), receives NativeInputData as an in-
put parameter. It starts by retrieving each of the param-
eters to the NTG algorithm from NativeInputData.
In the case when the parameter is a primitive array, the
method must tell the JVM to lay out the array’s elements
contiguously and to pin down the array in its memory.
This guarantees that the JVM will not move around the ar-
ray or any of the array’s elements until the method releases
the array. Doing this allows the native method to perform
pointer arithmetic. Next, the native method passes all the
new parameters to the NTG algorithm. Once the algo-
rithm completes execution, the native method releases the
primitive arrays and returns the NativeOutputData
object.

312 L.J. Di Trapani and T. Inanc

4. Simulator

While the main GUI was created to assist the user in get-
ting input into the NTG algorithm, the Simulator compo-
nent was designed with a complementary goal in mind.
The purpose of the Simulator is to assist the user in un-
derstanding and viewing the output generated by the NTG
algorithm. To accomplish this task, the Simulator actually
draws the trajectories in three dimensions (3D) and ani-
mates them over time. In order to understand how this is
done, one must first understand how NTG generates out-
put and how NTGsim processes this output on the way to
being rendered by the Simulator.

4.1. Output data pipeline. The NTG algorithm pro-
vides as output an array of double precision floating point
numbers which represent the values of the control points
(also called coefficients) of the B-spline trajectories. It is
very difficult to just look at these numbers and understand
exactly what they mean. Instead of leaving the user with
this array of numbers as the final output, NTGsim per-
forms a number of steps to make the output trajectories
more meaningful to the user. These steps form a pipeline
from the NTG algorithm to the simulator as seen in Fig. 7.

Fig. 7. Output data pipeline.

After the NTG algorithm finishes execution, the
libJ2NTG.so library converts the control points pro-
duced by NTG into the actual values of the trajecto-
ries. It relies on the PGS static library to accomplish
this task. Once complete, the output trajectory values
are sent back across the JNI to the Controller ob-
ject. The Controller object then sends the trajectory
values to OuputDataProcessor, which will scale the
time values according to the optimized time if the user
has selected to optimize time. When the user tells NT-
Gsim to simulate the trajectories, the modified trajec-
tory values are passed to the Simulator. The Simula-
tor then takes the modified trajectories and gives them to
SimOptionsPanel, which gathers input related to the
simulation from the user. From this information, it cre-
ates a SimOptionsData object and passes it back to
the Simulator, which then takes the modified trajectories
and the SimOptionsData and hands them over to the
CoordsFormatter object. This object uses the data to
create RendererData, which the Renderer object will
use to draw the trajectories onto the screen.

4.2. Hardware acceleration. As stated earlier, the
Simulator will animate the trajectories in 3D over time.
This means that the 3D coordinates must be transformed
from their 3D model space to the world coordinate system
and then projected onto the 2D monitor screen. Since it
will be animating, this must occur several times per sec-
ond. Doing all these geometric transformations can be
very computationally intensive. If run on a software ren-
derer, the Simulator would consume a great deal of CPU
cycles and system memory. Instead, it was decided to
hardware accelerate the 3D rendering. This means that
the Graphics Processing Unit (GPU) on the machine will
do the rendering instead of the CPU. Today’s GPUs are
highly specialized processors with multiple parallel pro-
cessing units especially designed to do 3D coordinate
transformations and pixel rasterization operations. There-
fore, hardware accelerating the rendering will not only
free up the CPU to do GUI processing activities, giving
the impression of a more responsive application. How-
ever, in order to access the GPU, an API is needed to com-
municate with the GPU’s driver. OpenGL is the industry
standard for cross-platform 3D graphics APIs. However,
NTGsim, and by extension, the Simulator, are written in
Java by utilizing the JOGL API. The JOGL provides Java
with a one to one mapping of OpenGL commands through
the JNI. The results of using the JOGL are impressive.
The Simulator is very responsive and is always able to an-
imate in real-time.

4.3. Interfaces. The Simulator user interface was de-
signed to be as user friendly as possible. All the major
commands were mapped to the mouse buttons. The user
can easily rotate the 3D graph by holding down the right
mouse button and dragging the mouse in the direction he
or she wishes to rotate. Using the middle mouse button,
the user can zoom in and zoom out the graph. The user
can also pan the graph left, right, up, or down by holding
down the middle mouse button and dragging the mouse in
the direction he or she wishes to pan. The simulator also
has key bindings to allow the user to look directly down
the x, y or z-axis. These functions are mapped to the x,
y, and z keyboard keys. Since the Simulator uses parallel
projection, looking down one of these axes will give the
impression of a 2D scene. An additional function has been
mapped to the r key. This is the “Reset” function. When
the r key is pressed, the coordinate system will be reset to
its default values, centering the graph in the middle of the
screen.

A mini-GUI was created to obtain the user’s
desired simulation setup. This GUI, called
SimOptionsPanel, can be seen in Fig. 8. The
first column of check-boxes allows the user to enable or
disable each of the three axes. The second column allows
the user to select which active variable is desired to be
plotted over the corresponding axis. The third column

NTGsim: A graphical user interface and a 3D simulator for nonlinear. . . 313

Fig. 8. SimOptionsPanel used to obtain the desired Simulator
options from the user.

gives the user the option to plot the time values over the
corresponding axis instead of an active variable. The
Enable Axis Labels check-box toggles the labels and
tick mark values on or off. The Simulation Time text
field allows the user to specify a simulation time. The
actual simulation time will be scaled to meet the user
specified simulation time. This option is present for
situations where the optimal control problem dictates
an unreasonable simulation time (such as a time in
microseconds or hours.) The final widget, the “OK”
button, simply closes SimOptionsPanel and launches
the Simulation window with the user specified options.

5. Installation

The following explains how to install NTGsim:

• Download and install Java SE Runtime Envi-
ronment Version 6 (JRE 6) for the i586 archi-
tecture available on http://java.sun.com/
javase/downloads/index.jsp. Instructions
for downloading and installing the JRE can also be
found at the above website.

• Download the NTGsim zip file from the University
of Louisville website (will be available at http://
arcs.louisville.edu).

• Unzip the file in any directory.

• To run NTGsim from the command line, go to
the directory in which you unzipped NTGsim and
type ./<PATH_OF_JRE>/java-jarNTGsim/
dist/NTGsim.jar.

• Replace <PATH_OF_JRE> with the file path of the
JRE java binary. If the path is already set as an envi-

ronment variable, it is not necessary to include it in
the command.

Please ensure that you download and install the
32-bit version (i.e., i586) of the JRE and not the 64-
bit one. NTGsim is built on 32-bit native libraries
and will not work with a 64-bit JRE unless the li-
braries are recompiled from source to 64-bit. Note
that NTG is freely distributed software. However, the
NPSOL library on which NTG depends is commercially
licensed by Stanford Business Software Inc. For more
details, visit http://www.sbsi-sol-optimize.
com/asp/sol_npsol.htm.

6. Operation and an example

This section of the paper will explain how to operate
NTGsim and give an example by working through the van
der Pol oscillator problem with NTGsim. The following
defines the van der Pol oscillator problem:

min
∫ 5

0

(x2
1 + x2

2 + u2) dt

subject to the dynamics

ẋ1 = x2,

ẋ2 = −x1 + (1 − x1)2x2 + u,

and constraints

x1(0) = 1,

x2(0) = 0,

−x1(5) + x2(5) = 1.

The problem can be reduced to that with one un-
known, z(t) = z1(t), and the optimization problem in
terms of z(t) is

min
z(t)

∫ 5

0

[
z2 + ż2 + {z̈ + z − (1 − z2)ż}2

]
dt

subject to the constraints

z(0) = 1,
ż(0) = 0,

−z(5) + ż(5) = 1.

The first step is to define the cost and nonlinear
constraints functions. By default, these functions are
set for the van der Pol example. However, to change
the cost and nonlinear constraints functions, first, nav-
igate to the /DynamicFuncNTG folder in the direc-
tory in which you unzipped NTGsim. Next, open
the DynamicFuncNTG.c file in a text editor and
modify the functions as needed. Then recompile the
DynamicFuncNTG library using the included makefile

314 L.J. Di Trapani and T. Inanc

located in the current directory. If you wish to use
the helper function, save the implementation in the file
DynamicFuncNTG.c and be sure to include its proto-
types in the file DynamicFuncNTG.h.

The next step is to enter the static parameters. The
static parameters are divided into five different categories:
Output Variable Data, Spline Data, Cost Function Data,
Linear Constraints Data, and Nonlinear Constraints Data.
Navigate between these different sections by clicking on
the desired tab to the top of the window pane. In order
to allow the user to enter the parameter values, the NT-
Gsim interface has three different widgets: checkboxes,
combo-boxes, and text-fields. Click on a checkbox to se-
lect it. Click a second time to deselect it. For combo-
boxes, clicking on the box will expose a drop-down menu
of possible choices. Click on the desired selection. Text
fields allow the user to directly enter a value. Click on
the text field and the mouse pointer will transform into a
text cursor inside the text field. Enter the desired value by
typing on the keyboard. Press “Enter” or select a differ-
ent field to commit the value. Note that if you click on the
menu before committing the value in a text field, the value
will not be stored as a parameter because NTGsim has no
way of knowing if you have finished editing the field or
not.

The van der Pol parameters can be directly loaded
into NTGsim by using the “Load Presets” option from
the “File” menu. To use the van der Pol presets in-
stead of manually entering the van der Pol settings, down-
load the vanderpole.ntg file from the University of
Louisville website. Select “Load Presets” from the “File”
menu. A file browser window will open. Navigate to the
directory in which you downloaded the vanderpole.
ntg file and click “Open”. The van der Pol settings will
be automatically loaded into the program. At any point in
time, the current state of all NTGsim parameters can be
printed using the console by selecting “Debug Info” from
the “File” menu.

Finally, select “Run NTG” from the “File” menu.
NTG will run and its output will be displayed in the con-
sole window from which you launched NTGsim. Also,
a text file containing the coefficients of the spline will be
saved in the same directory as the NTGsim folder under
the name coeff1.txt. Selecting “Simulate Trajectory”
from the “Actions” menu will open the Simulator and al-
low the user to view the trajectories in 3D and animate
them over time.

When working on any project, if the user wishes to
save the current settings, he or she can select “Save Pre-
sets” from the “File” menu. A file browser will then pop
up and the user can select the directory and the file name
of the file to save. Click on “Save” when finished. By con-
vention, NTGsim files end with “.ntg”. In order to give the
user ultimate control in naming his or her save files and to
avoid conflicts with other programs, the above convention

is not strictly enforced by NTGsim. When finished us-
ing NTGsim, click on the “×” in the top-right corner of
the GUI. Figure 9 shows a screenshot of the GUI. Fig-
ures 10–12 show the simulated trajectory and some of the
capabilities of the simulator presented in Section 4.

Fig. 10. Simulator showing a rotated view of the trajectory in
3D.

Fig. 11. Zoomed-in view of the 3D simulated trajectory.

7. Conclusion

Through the work presented here, we have greatly sim-
plified the use of NTG. By providing a GUI for the NTG
algorithm, NTGsim has given the end user an intuitive and
efficient way of altering NTG’s static parameters. Also, by

NTGsim: A graphical user interface and a 3D simulator for nonlinear. . . 315

Fig. 9. NTGsim screenshot showing the linear constraints.

Fig. 12. Simulator viewed down the Z-axis showing a 2D plot.

segregating the three cost functions and three nonlinear
constraint functions into a separate dynamic library, we
have made changing the aforementioned functions much
more straightforward since now these functions are not
hidden deep within a mess of code. The Simulator gives
the user access to a 3D visualization of the output and also

animates the trajectories over time. With the inclusion of
the Simulator, the user no longer needs to depend on third
party applications to render the trajectories, such as Mat-
lab or Techplot. The next step in making the NTG al-
gorithm more user-friendly is to incorporate the dynamic
function editing process directly into the GUI and stream-
line the entire process.

References

Bhattacharya, R. (2006). Optragen: A Matlab toolbox for op-
timal trajectory generation, Proceedings of the 45th IEEE
Conference on Decision and Control, San Diego, CA, USA,
pp. 6832–6836.

Bryson, A.E.J. and Ho, Y.C. (1975). Applied Optimal Control:
Optimization, Estimation and Control, Taylor and Francis,
Levittown, PA.

Davison, A. (2005). Killer Game Programming in Java,
O’Reilly Media Inc., Sebastopol, CA.

de Boor, C. (2001). A Practical Guide to Splines, Springer-
Verlag, New York, NY.

Freeman, E. and Freeman, E. (2004). Head First Design Pat-
terns, O’Reilly Media Inc., Sebastopol, CA.

Gill, P.E., Murray, W., Saunders, M. and Wright, M.
(n.d.). NPSOL—Nonlinear Programming Software, Stan-
ford Business Software Inc., Mountain View, CA.

316 L.J. Di Trapani and T. Inanc

Gosling, J., Joy, B., Steele, G. and Bracha, G. (2005). The
Java Language Specification, Prentice Hall PTR, Engle-
wood Cliffs, NJ.

Gosling, J. and McGilton, H. (1996). Original Java whitepa-
per, http://java.sun.com/docs/white/
langenv/.

Inanc, T., Misovec, K. and Murray, R.M. (2004). Nonlinear tra-
jectory generation for unmanned air vehicles with multi-
ple radars, Proceedings of the 43th IEEE Conference on
Decision and Control, Atlantis, Paradise Island, Bahamas,
pp. 3817–3822.

Milam, M. (2002). Missile interception research report,
California Institute of Technology Internal Report,
http://www.cds.caltech.edu/˜milam/
research/res.htm.

Milam, M.B. (2003). Real-Time Optimal Trajectory Generation
for Constrained Dynamical Systems, Ph.D. thesis, Califor-
nia Institute of Technology, Pasadena, CA.

Milam, M., Mushambi, K. and Murray, R. (2000). A new com-
putational approach to real-time trajectory generation for
constrained mechanical systems, Proceedings of the 39th
IEEE Conference on Decision and Control, Sydney, Aus-
tralia, pp. 845–851.

Misovec K., Inanc T., J.W. and Murray, R.M. (2003). Low-
observable nonlinear trajectory generation for unmanned
air vehicles, Proceedings of the 42nd IEEE Conference on
Decision and Control, Maui, HI, USA, pp. 3103–3110.

Muezzinoglu, M. K. and Inanc, T. (2006). Trajectory generation
in guided spaces using artificial neural networks and ntg al-
gorithm, Proceedings of the American Control Conference,
Minneapolis, MN, USA, pp. 5776–5781.

Lian, F.-L. and Murray, R. (2003). Cooperative task planning
of multi-robot systems with temporal constraints, Proceed-
ings of the International Conference on Robotics and Au-
tomation, Taipei, Taiwan, pp. 2504–2509.

Liang, S. (1999). Java Native Interface: Programmer’s Guide
and Specification, Prentice Hall PTR, Englewood Cliffs,
NJ.

Sierra, K. and Bates, B. (2005). Head First Java, O’Reilly Media
Inc., Sebastopol, CA.

Sun Microsystems, I. (2006). Java se 6 api javadocs, http:
//java.sun.com/javase/6/docs/api/.

Trapani, L. J. D. and Inanc, T. (2009). Ntgsim: A graphical
user interface for the nonlinear trajectory generation algo-
rithm, Proceedings of the American Control Conference,
ACC 2009, St. Louis, MO, USA, pp. 402–407.

Lyall Jonathan Di Trapani completed a B.Sc.
and an M.Eng. in electrical engineering at the
University of Louisville in 2006 and 2007, re-
spectively. Both degrees were awarded with the
highest honors. During his time at the Uni-
versity of Louisville, he earned the Air Force
ROTC Distinguished Graduate Award and the
Speed School Distinguished Graduate Award. He
is currently pursuing an M.S. in computer sci-
ence from Southern Methodist University. He has

been serving in the US Air Force as a communications engineer since
2007.

Tamer Inanc received his B.Sc. degree from
Dokuz Eylul University, Izmir, Turkey, in 1991,
and his M.Sc. and Ph.D. degrees from Pennsyl-
vania State University, University Park, USA, in
1996 and 2002, respectively. Between 2002 and
2004, he was a postdoctoral scholar at the Cal-
ifornia Institute of Technology, Pasadena, USA.
He joined the University of Louisville in 2004 as
an assistant professor in the Electrical and Com-
puter Engineering Department. He won a merit

scholarship in 1993 from Turkey, a travel grant award from the IEEE in
1999, the 2006 Kentuckiana Metroversity Award for Instructional De-
velopment and the 2008 Innovations in Technology for Teaching and
Learning Awards, University of Louisville.

Received: 31 July 2009
Revised: 24 October 2009

	Introduction
	Overview of nonlinear trajectory generation methodology
	Optimal control problem
	Nonlinear trajectory generation methodology
	Using NTG

	Program structure
	Data flow
	Reasons for Java

	Overview of the class diagram
	Modularization
	InputGui
	InputData
	NativeInputData
	NativeCaller
	Multithreading
	libJ2NTG

	Simulator
	Output data pipeline
	Hardware acceleration
	Interfaces

	Installation
	Operation and an example
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

