
Int. J. Appl. Math. Comput. Sci., 2014, Vol. 24, No. 4, 917–930
DOI: 10.2478/amcs-2014-0067

A PRIMAL SUB–GRADIENT METHOD FOR STRUCTURED CLASSIFICATION
WITH THE AVERAGED SUM LOSS

DEJAN MANČEV, BRANIMIR TODOROVIĆ

Faculty of Sciences and Mathematics
University of Niš, Višegradska 33, Niš, Serbia

e-mail: dejan.mancev@pmf.edu.rs, branimirtodorovic@yahoo.com

We present a primal sub-gradient method for structured SVM optimization defined with the averaged sum of hinge losses
inside each example. Compared with the mini-batch version of the Pegasos algorithm for the structured case, which deals
with a single structure from each of multiple examples, our algorithm considers multiple structures from a single example
in one update. This approach should increase the amount of information learned from the example. We show that the
proposed version with the averaged sum loss has at least the same guarantees in terms of the prediction loss as the stochastic
version. Experiments are conducted on two sequence labeling problems, shallow parsing and part-of-speech tagging, and
also include a comparison with other popular sequential structured learning algorithms.

Keywords: structured classification, support vector machines, sub-gradient methods, sequence labeling.

1. Introduction

A structured classification problem considers learning
a mapping from the input to the output of structured
objects, where the output structures incorporate different
relationships among their classes. These algorithms,
such as conditional random fields (Lafferty et al., 2001),
the structured perceptron (Collins, 2002) or structured
support vector machines (SSVMs) (Tsochantaridis et al.,
2005), are proved to outperform the standard binary
and multiclass classifiers, but they are usually more
complex to train and require inference during the training
procedure. They are applicable to different domains such
as natural language processing (Daume, 2006), computer
vision (Nowozin and Lampert, 2011), speech recognition
(Sas and Żołnierek, 2013) and bioinformatics (Li et al.,
2007). Besides easy training for the perceptron algorithm,
training the SSVM assumes constrained optimization with
possibly exponentially many constraints.

There are several ways to efficiently deal with
such optimization. For the special case of a linearly
decomposable loss, this problem can be presented with
an equivalent polynomial-size formulation (Taskar et al.,
2004) by introducing marginal variables on which we
can apply sequential minimal optimization (SMO) (Platt,
1999). On the other hand, without the previous
assumption, we can seek a small set of constraints that

is sufficient to approximate a solution by increasing the
working set of constraints through iterations. Joachims
et al. (2009) use the cutting plane method on the
equivalent formulation with one slack variable shared
across all data and build the working set of constraints
with a separation oracle. Even though the algorithm finds
a solution where constraints are violated by no more than
ε after O(1/ε) iterations, each iteration assumes finding
a separation oracle, which can be time consuming for a
larger number of examples.

For large-scale problems there exist more suitable
versions of online algorithms which simply sequentially
perform parameter updates concerning only the most
violated structure at a time, such as a perceptron (Collins,
2002) with a fixed step size, the passive-aggressive (PA)
algorithm (Crammer et al., 2006) with an optimal step
size analytically found in dual by considering only one
constraint corresponding to the ‘best’ structure, the primal
sub-gradient descent method (Ratliff et al., 2006) with
a predefined step size followed by a projection which
transfers the parameter back into the feasible region.

Shalev-Shwartz et al. (2011) proposed the Pegasos
algorithm which takes a sub-gradient step with a
predetermined step size and which can work in the
mini-batch variant by choosing a set of examples and
performing a sub-gradient step on it. Its structured

dejan.mancev@pmf.edu.rs
branimirtodorovic@yahoo.com

918 D. Mančev and B. Todorović

version was successfully applied to various problems:
dependency parsing (Martins et al., 2011), semantic role
labeling (Lim et al., 2013), part-of-speech tagging (Ni
et al., 2010), optical character recognition (Jaggi et al.,
2012), and named entity recognition (Lee et al., 2011).
The empirical performance indicated fast convergence
with the results comparable with those of other structured
algorithms, while Ratliff et al. (2006) show that the
cumulative prediction loss for the structured sub-gradient
method grows only sublinearly in time.

Besides a single best inference which uses all
previous algorithms during the training procedure,
Crammer et al. (2005) introduce the k-best MIRA,
which deals with the k-best structures at a time. The
algorithm minimizes the norm of the parameter change
while satisfying constraints corresponding to k-best
outputs. McDonald et al. (2005) successfully applied
it to dependency parsing, concluding that even small
values of k are sufficient to achieve close to best
performance. Another common feature of all algorithms
is that they can be seen as minimization of a differently
chosen regularized loss function. There are various
loss functions which are used in the structured case,
such as the structured hinge loss or its squared version
(Tsochantaridis et al., 2005), the log loss (Lafferty et al.,
2001), the softmax-margin as a log loss with a cost
function (Gimpel and Smith, 2010), or the structured ramp
loss (Do et al., 2008).

In this paper we shall consider the averaged sum
of hinge losses over the structures inside one example
and an approximate primal objective function on which
the sub-gradient method is applied. Such changes in
the loss function result in the fact that the algorithm can
consider multiple structures inside one example (similar
to the k-best MIRA variant). For this version we provide
the cumulative bound of prediction losses and perform
experiments with other popular sequential structured
learning algorithms.

The paper is organized as follows. In Section 2,
we define basic notations and the problem of max-margin
structured classifiers. After reviewing the existing version
of Pegasos for the structured case, in Section 3 we
introduce the Pegasos algorithm with the averaged sum
loss. Next, we provide a theoretical analysis for
the introduced algorithm, followed by implementation
concerns for sparse updates and the calculation of
averaged parameters. In Section 6, we present
experiments on sequence labeling problems, and conclude
the paper in the last section.

2. Problem definition

Let D = ((xn, yn))N
n=1 be a training set, where each

input xn has the corresponding output structure yn. The
set of all possible structures over xn is denoted by Y (xn)

and Y−n = Y (xn)\yn. In the case of sequence labeling,
for example, xn ∈ X Tn represents an input sequence of
length Tn and Y (xn) = YTn , whereY is a set of possible
labels for an element of the input alphabet X .

The problem of minimizing the regularized empirical
risk over the set D is

min
w

f(w) = min
w

λ

2
‖w‖2 +

1
N

N∑

n=1

�n(w), (1)

where �n(w) represents a loss function on the n-th
example with parameters w. As inside each example
there are many output structures, the loss function can
be defined for each one separately. Let �(w; (xn, y))
represent a loss for the structure y ∈ Y (xn) with
parameters w. We will define the hinge loss for a struc-
ture y as

�(w; (xn, y)) = max
(
0, L(yn, y)−wTΔFn(y)

)
,
(2)

with ΔFn(y) = F(xn, yn) − F(xn, y), where
F(x, y) represents a global feature vector measuring the
compatibility of x and y, while the function L(yn, y)
represents the cost of assigning the output y to observation
xn instead of yn.

Since inside each example there are many output
structures, usually we deal only with those which provide
the maximum loss on the current example. In that case
the loss function, called the max-margin (MM) loss1, is
defined as

� MM
n (w) = max

y∈Y (xn)
�(w; (xn, y)) = �(w; (xn, ỹn)),

(3)
where ỹn is the ‘best’ structure for xn with respect to the
loss function, i.e.,

ỹn = argmax
y∈Y (xn)

�(w; (xn, y)). (4)

For the problem (1) and the previous loss
function (3), the corresponding constrained optimization
is

min
w,ξ

λ

2
‖w‖2 +

1
N

N∑

n=1

ξn (5)

subject to

wTΔFn(y) ≥ L(yn, y)− ξn, ∀n, ∀y ∈ Y (xn).
(6)

According to the constraints, the original structure yn

should produce a greater score wTF(xn, yn) than any

1In the literature this loss is called the structured hinge loss (Taskar
et al., 2004) or the max-margin loss for the structured case (Collins et al.,
2008). Even though the former name is more common, we will prefer
the latter one in this paper to avoid confusion with the hinge loss for a
structure that is already defined in (2).

A primal sub-gradient method for structured classification with the averaged sum loss 919

other structure, at least for the size of the margin for that
structure L(yn, ·), while the introduced N slack variables
ξn should handle the non-separable case.

In this paper we will consider the average sum (AS)
loss � AS

n (w) defined as

� AS
n (w) =

1
|Y−n|

∑

y∈Y−n

�(w; (xn, y)), (7)

which represents the expected hinge loss for structures
inside the n-th example. If the AS loss is used in problem
(1), it leads to the corresponding constrained optimization
problem:

min
w,ξ

λ

2
‖w‖2 +

1
N

N∑

n=1

1
|Y−n|

∑

y∈Y−n

ξn,y (8)

subject to

wTΔFn(y) ≥ L(yn, y)− ξn,y,

ξn,y ≥ 0, ∀n, ∀y ∈ Y−n, (9)

where now one non-negative slack variable is assigned
to each output structure. Using one slack variable per
output structure inside one example can be seen as
a structural generalization of the Weston and Watkins
(1998) multi-class SVM, where slack variables are
assigned to possible classes inside an example.

3. Structured Pegasos algorithms

3.1. Pegasos with the max-margin loss. Pegasos is a
sub-gradient method introduced by Shalev-Shwartz et al.
(2007). At each iteration t the algorithm chooses a set
At ⊆ {1, . . . , N} of cardinality k. Then the objective
function (1) is approximated with

fMM(w, At) =
λ

2
‖w‖2 +

1
k

∑

n∈At

�(w; (xn, ỹn)) (10)

and optimized using the sub-gradient descent wt+1 ←
wt− ηt∇MM

t , with the value of the approximate objective
sub-gradient

∇MM
t = λwt − 1

k

∑

n∈A+
t

ΔFn(ỹn), (11)

A+
t = {n ∈ At : �(wt; (xn, ỹn)) > 0}, where the step

size is set to ηt = 1/(λt).
After each sub-gradient step, the parameters can be

optionally projected on the ball of radius 1/
√

λ with the
update

wt+1 ← min

{
1,

1/
√

λ

‖wt+1‖

}
wt+1. (12)

The pseudocode is presented in Algorithm 1. In the case
of k = 1 the update corresponds to the stochastic version,
for k = N this is the standard (batch) version and for
1 < k < N it is called the mini-batch version.

Algorithm 1: Structured Pegasos with the MM
loss (Shalev-Shwartz et al., 2011).

Input : Training data: D = ((xn, yn))N
n=1,

parameter λ ∈ R
+, k ∈ N

Number of iterations: T
Output: Model parameters: w

w := 0;1

for t := 1 to T do2

Choose At ⊆ {1, . . .N} so that |At| = k;3

foreach n ∈ At do4

Find ỹn = arg maxy �(w; (xn, y));5

/* single best decoding */

A+
t := {n ∈ At : �(w; (xn, ỹn)) > 0};6

ηt := 1/(λt);7

w := (1 − ηtλ)w + ηt

k

∑
n∈A+

t
ΔFn(ỹn);8

[Optional: w := min
{
1, 1/

√
λ

‖w‖
}

w];9

/* projection */

3.2. Pegasos with the averaged sum loss. Let us
consider using the AS loss and approximate the objective
function (1) with

λ

2
‖w‖2 +

1
|At|

∑

n∈At

1
|Bn|

∑

y∈Bn

�(w; (xn, y)), (13)

where Bn ⊆ Y−n and At ⊆ {1, . . . , N} contains the set
of examples on which the approximation is made. Further
on, we will consider the previous approximation restricted
only to the n-th example, i.e., where we choose At = {n}
and define

fAS(w, Bn) =
λ

2
‖w‖2+ 1

|Bn|
∑

y∈Bn

�(w; (xn, y)). (14)

This restriction allows us to obtain an on-line
algorithm through examples with mini-batch optimization
inside each example according to set Bn, while the
selection of Bn allows us to choose which structures we
will consider in the optimization process. We consider a
sub-gradient of the approximate objective (14) given by

∇AS = λw − 1
|Bn|

∑

y∈B+
n

ΔFn(y), (15)

where B+
n = {y ∈ Bn : �(w; (xn, y)) > 0}. Thus

the parameter update for the structured Pegasos with the
AS loss in the t-th iteration on the n-th example is

wt+1 = (1− ηtλ)wt +
ηt

|Bn|
∑

y∈B+
n

ΔFn(y). (16)

Let us define the prediction violation set of struc-
tures, Sn, as

Sn = {y ∈ Y (xn) : �(w; (xn, y)) ≥ �(w; (xn, ŷn))},

920 D. Mančev and B. Todorović

where the prediction structure ŷn is given by

ŷn = arg max
y∈Y (xn)

wTF(xn, y). (17)

In theoretical analysis, we will consider the version
of Pegasos with the AS loss where the selection of the
set Bn is not from all Y−n structures but only from Sn,
and to such a restriction we will refer as the restricted Pe-
gasos algorithm. The way we choose the set Bn from
Sn of size k is not important for further analysis. Note
that by choosing Bn = {ỹn} the algorithm is reduced to
stochastic Pegasos with the MM loss. Also note that it is
possible to select At with a cardinality greater than one,
and the algorithm will operate over multiple structures
inside each of selected examples in one update.

Pegasos with the k-best loss. Let Bestk
n denote the

set of k structures with the highest score on the n-th
example, i.e., the structures which maximize the value of
�(w; (xn, y)). Further, we can define the k-best loss as

�kbest
n (w) =

1
k

∑

y∈Bestk
n

�(w; (xn, y)),

and the corresponding objective function restricted to the
n-th example as

fBestk
n(w) = fAS(w,Bestk

n). (18)

According to (18), we can see the k-best objective as a
special case of the AS objective approximation (14) which
is made on the Bestk

n set. Also we can see that the
k-best loss lies between the MM loss and the AS loss, i.e.,
� AS
n (w) ≤ �kbest

n (w) ≤ � MM
n (w).

The k-best loss is convex (Boyd and Vandenberghe,
2004), and we can apply the Pegasos algorithm for
optimization with the sub-gradient and parameter update
defined with (15) and (16) by setting Bn = Bestk

n. If
we choose Bn to be Bestk

n, not a subset from Sn, such
a version can also be called k-best Pegasos, as it works
in a similar framework as the k-best MIRA by Crammer
et al. (2005) and it will directly optimize the k-best loss.
Moreover, we can use k-best decoding to find structures
from the prediction violation set. Since we need k output
structures (if they exist) with the loss greater than that
for the prediction structure, we do this by finding Bestk

n

and removing structures which do not belong to Sn. The
pseudocode is presented in Algorithm 2.

4. Theoretical analysis

In the structured case we care about the cumulative bound
of prediction losses through the iterations between the
prediction structure ŷn and the true structure yn, i.e.,
the sum over L(yn, ŷn). This bound for the stochastic

Algorithm 2: (Restricted) Structured Pegasos
with the AS loss.

Input : Training data: D = ((xn, yn))N
n=1,

parameter λ ∈ R
+, k ∈ N

Number of iterations: T
Output: Model parameters: w

w := 0;1

for t := 1 to T do2

Choose n from {1, . . .N};3

Select Bn ⊂ Y (xn) of size k4

e.g. Bn := k- arg maxy∈Y (xn) �(w; (xn, y));
/* k-best decoding */
ŷn := argmaxy∈Y (xn) wTF(xn, y) ;5

/* prediction sequence */
Bn := {y ∈ Bn : �(w; (xn, y)) ≥6

�(w; (xn, ŷn))} ; /* for restricted
version */
B+

n := {y ∈ Bn : L(yn, y) > wTΔFn(y)};7

ηt := 1/(λt);8

w := (1− ηtλ)w + ηt

|Bn|
∑

y∈B+
n

ΔFn(y);9

[Optional: w := min
{
1, 1/

√
λ

‖w‖
}

w];10

/* projection */

sub-gradient method with the MM loss is given by Ratliff
et al. (2006), and we will provide a bound for restricted
Pegasos with the AS loss. First we need the following
lemma by Shalev-Shwartz et al. (2011). Recall that a
function f is λ-strongly convex if f(w) − λ

2 ‖w‖2 is a
convex function.

Lemma 1. (Shalev-Shwartz et al., 2011) Let f1, . . . , fT

be a sequence of λ-convex functions and D be a closed
convex set. Define ΠD(w) = arg minw′∈D ‖w −w′‖.
Let w1, . . . ,wT+1 be a sequence of vectors such that
w1 ∈ D and, for t ≥ 1, wt+1 = ΠD(wt − ηt∇t) ,
where ∇t belongs to the sub-gradient set of ft at wt and
ηt = 1/λt. Assume that, for all t, ‖∇t‖ ≤ G. Then, for
all u ∈ D it follows that

1
T

T∑

t=1

ft(wt) ≤ 1
T

T∑

t=1

ft(u) +
G2(1 + lnT)

2λT
.

Theorem 1. Let (x1, y1), . . . , (xN , yN) be a sequence
of examples where ‖ΔFn(y)‖ ≤ R and L(yn, y) ≤
1 for all y ∈ Y (xn), n = 1, . . . , N and w∗ =
arg minw f(w), where f(w) is defined with loss function
� AS
n (w). Then, for the update (16) with the optional pro-

A primal sub-gradient method for structured classification with the averaged sum loss 921

jection step (12) it follows that

1
N

N∑

n=1

fAS(wn, Bn)

≤ 1
N

N∑

n=1

fAS(w∗, Bn) +
c(1+lnN)

2λN

where c = (
√

λ + R)2 if we perform the projection step
and c = 4R2 otherwise.

Proof. We first show that the conditions of Lemma 1
are satisfied. The function fAS(wn, Bn) is a λ-convex
function by definition. Further, if we use the projection
step, then it follows that ‖wn‖ ≤ 1/

√
λ and ‖∇n‖ ≤

λ + R. If we do not use it, with a similar technique
as employed by Shalev-Shwartz et al. (2011), we get
‖wn‖ ≤ R/

√
λ and ‖∇n‖ ≤ 2R.

Next, we want to show that w∗ ∈ D, which is
obvious if we do not use the projection. If we use it, then
for the primal problem (8)–(9) we have the corresponding
dual problem

max
α

N∑

n=1

∑

y∈Y−n

αn,yLn,y

−1
2

∣∣∣
∣∣∣

N∑

n=1

∑

y∈Y−n

αn,yΔFn(y)
∣∣∣
∣∣∣
2

(19)

subject to

0 ≤ αn,y ≤ C

N |Y−n| , ∀n, ∀y ∈ Y−n, (20)

where C = 1/λ, Ln,y is an abbreviation for L(yn, y),
and the connection between primal and dual parameters
is w =

∑N
n=1

∑
y∈Y−n

αn,yΔFn(y). If (w∗, ξ∗) is
an optimal point for the primal problem and α∗ is an
optimum for the dual, then from the strong duality at the
optimum there is an equality between the primal and the
dual objective value

1
2
‖w∗‖2 ≤ 1

2
‖w∗‖2 +

C

N

N∑

n=1

1
|Y−n|

∑

y∈Y−n

ξ∗n,y

=
N∑

n=1

∑

y∈Y−n

α∗
n,yLn,y − 1

2
‖w∗‖2

where the first inequality is due to ξ∗n,y ≥ 0.
Now, we obtain

‖w∗‖2 ≤
N∑

n=1

∑

y∈Y−n

α∗
n,yLn,y ≤

N∑

n=1

∑

y∈Y−n

α∗
n,y ≤

1
λ

and ‖w∗‖ ≤√
1/λ. We can now apply Lemma 1 and get

the desired bound. �

Theorem 2. Let the conditions from the previous theorem
be satisfied and let Bn be chosen as Bn ⊆ Sn. Then it
follows that

N∑

n=1

L(yn, ŷn) ≤ λ

2
N ‖w∗‖2 +

c(1 + lnN)
2λ

+
N∑

n=1

1
|Bn|

∑

y∈Bn

�(w∗; (xn, y)).

(21)

Proof. According to the definition of fAS(wn, Bn), from
the previous theorem we have

λ

2N

N∑

n=1

‖wn‖2 +
1
N

N∑

n=1

1
|Bn|

∑

y∈Bn

�(wn; (xn, y))

≤ λ

2
‖w∗‖2 +

1
N

N∑

n=1

1
|Bn|

∑

y∈Bn

�(w∗; (xn, y))

+
c(1 + lnN)

2λN
. (22)

Using the definition of ŷn, it follows that

wTF(xn, ŷn) ≥ wTF(xn, y), ∀y ∈ Y (xn), (23)

which leads to wTΔFn(ŷn) ≤ 0. Therefore,

L(yn, ŷn) ≤ �(w; (xn, ŷn))
≤ �(w; (xn, y)), ∀y ∈ Bn,

where the last inequality follows since Bn is a subset from
Sn. Now, we have

N∑

n=1

L(yn, ŷn)

≤
N∑

n=1

1
|Bn|

∑

y∈Bn

�(wn; (xn, y))

≤ λ

2

N∑

n=1

‖wn‖2

+
N∑

n=1

1
|Bn|

∑

y∈Bn

�(wn; (xn, y)),

which, in combination with (22), provides the desired
bound. �

From the previous theorem and using the inequality

1
|Bn|

∑

y∈Bn

�(w∗; (xn, y))

≤ � MM
n (w∗), ∀Bn ⊆ Y−n, (24)

we get the following corollary.

922 D. Mančev and B. Todorović

Corollary 1. Let the conditions from the previous theo-
rem be satisfied. Then it follows that

N∑

n=1

L(yn, ŷn) ≤λ

2
N ‖w∗‖2

+
N∑

n=1

� MM
n (w∗) +

c(1 + lnN)
2λ

, (25)

as well as

N∑

n=1

L(yn, ŷn) ≤
√

c(1 + lnN)
N

‖w∗‖+
N∑

n=1

� MM
n (w∗),

by choosing

λ =

√
c(1 + lnN)
N ‖w∗‖2 .

If we set Bn = {ỹn} for each n, then the equality
holds in (24) and the previous bound reduces to that of
the stochastic version provided by Ratliff et al. (2006).
For the other selection of Bn, according to the inequality
(24), the right-hand side of (21) is at most the right-hand
side of (25), so Corollary 1 states that Pegasos with the AS
loss has at most the same bound of cumulative prediction
losses as the stochastic Pegasos algorithm.

The Pegasos algorithm of Shalev-Shwartz et al.
(2011) picks examples uniformly at random. Even though
uniform sampling is not used in the previous theorems,
it can improve the convergence rate of the method. Also,
picking examples uniformly at random can be very helpful
to eliminate problems in a dataset when the examples are
grouped by some criteria in parts of the corpus and come
in a particular order.

5. Implementation issues

Regarding implementation, there are two main operations
that are performed over the parameter vector: scaling,
when we first scale wt by factor (1− ηtλ) and optionally
once again in the projection step, and the operation add,
where we add scaled feature vectors to current parameters
multiple times. Shalev-Shwartz et al. (2011) present a
sparse implementation where scaling can be done inO(1)
and add a new feature vector in O(d), where d is the
number of non-zero elements in the feature vector. This
is done by representing the parameter vector as w = av.
They also consider averaged parameters,

wT =
1
T

T∑

t=1

wt, (26)

and state that, in practice, the final hypothesis wT often
provides better results.

We do not have a theoretical analysis for averaged
parameters, since we do not bound the overall objective

f(wT) in the structured case with the AS loss. However,
we provide an experimental analysis for averaged and
non-averaged parameters in the next section. In order
to calculate averaged parameters, we should not simply
apply the formula (26) because we will not get the sparse
updates. Xu (2011) presents an efficient procedure to
find averaged parameters using a linear transformation
where the addition of a new feature vector is also done
in O(d). In practical implementations, both averaged
and non-averaged parameters require rescaling from time
to time since the variables can go out of range. In
a non-averaged implementation it can be easily done
by rescaling a to one, while rescaling for averaged
parameters can be found in the implementation of Bottou
(2008). Note that rescaling is not a sparse operation.

The algorithm also requires selecting the set Bn

from the prediction violation set Sn. Checking if the
structure belongs to the set Sn is an easy task, although
building such a set can be a problem as we need to
collect all structures with the score greater than that for
the prediction structure. Fortunately, the algorithm does
not require the calculation of the whole set as we need
only an arbitrary portion of its elements to approximate
the objective function. Since we need structures with the
highest score, we can use a k-best inference to create the
Bestk

n set with the top k structures in a descending order,
and then we can easily remove structures which do not
belong to Sn to get the required set Bn from Sn ∩ Bestk

n.
For sequence labeling, the Viterbi (1967) algorithm

can be straightforwardly extended to the k-best variant by
keeping its k-best partial scores at every position. Storing
the k-best partial scores at each position of a sequence
of length T can be done using the matrix, leading to the
time complexity O(|Y |2Tk) and the memory complexity
O(|Y |Tk), where Y represents the set of possible labels
for each observation. Another approach, which we apply
in our experiments, is to use the A* search to generate
k-best paths on trellis (Soong and Huang, 1991; Nagata,
1994). This algorithm can also be adapted to generate
exact k-best paths with the involved loss function. The
total time complexity is O(|Y |2T + |Y |Tk log k) and the
total memory complexity isO(|Y |T + kT), which can be
a better choice than the k-best Viterbi algorithm.

6. Experimental results

We present experimental results on shallow parsing
(Tjong Kim Sang and Buchholz, 2000) on the
CONLL-2000 corpus2 and part-of-speech (POS) tagging
on the Brown corpus3. We choose these problems for
experiments as they are important tasks which come
usually as first steps in pipeline structures of natural
language processing problems. POS tagging belongs to

2http://www.cnts.ua.ac.be/conll2000/chunking.
3http://khnt.aksis.uib.no/icame/manuals/brown/.

http://www.cnts.ua.ac.be/conll2000/chunking.
http://khnt.aksis.uib.no/icame/manuals/brown/.

A primal sub-gradient method for structured classification with the averaged sum loss 923

Table 1. Templates used for generating features at position t in
a sequence, where wt denotes the current word, at at-
tributes for the current word and yt the corresponding
label.

(yt, yt−1)

(yt, wt) (yt, at)

(yt, yt−1, wt) (yt, yt−1, at)

(yt, yt−1, wt, wt−1) (yt, yt−1, wt, at−1)

(yt, yt−1, at, wt−1) (yt, yt−1, at, at−1)

sequence labeling problems where we need to assign a
single label to each member of the observed sequence.
The label represents a grammatical category, i.e., part
of speech, for the corresponding word and its context in
a sentence. Shallow parsing identifies non-overlapping
text segments which correspond to certain syntactic units.
It is usually a step preceding full parsing and following
POS tagging. The results are presented in terms of the
F-measure, as the harmonic mean of precision and recall
computed over tokens belonging to a chunk, while for
POS tagging they are presented as accuracy, i.e., the
proportion of correctly classified labels over all tokens in
a sentence.

Choosing an example for the update in the Pegasos
algorithm with the average sum loss is done sequentially,
while for the MM loss the training set is partitioned
into parts of size k on which the updates are performed
sequentially. One pass through all training examples
will be referred to as an epoch. In the forthcoming
discussion we use the following abbreviations to specify
the case we tested: the prefix avg before the algorithm
name means that the test results are produced with the
averaged parameters (26), the Pegasos algorithm will be
abbreviated with Peg, its restricted version with resPeg,
the suffixes MML and ASL after the algorithm name will
respectively refer to the max-margin loss and the average
sum loss, and -WP at the end will denote that the Pegasos
algorithm is used without the projection step.

6.1. Features. In sequence labeling problems we can
write a global feature vector as the sum over feature
functions from all positions t in a sequence, i.e.,

F(x, y) =
T∑

t=1

f(yt−1, yt, x, t).

Each feature vector at specific position f(yt−1, yt, x, t) ∈
R

M is usually presented with binary-coded active features
of the current transition and the current context around the
t-th observation. Table 1 shows the templates used for
generating features at each position in a sentence.

In addition to its label, each observation (word)
will also have a corresponding attribute. The attribute
will represent specific characteristics of a word. For

Fig. 1. Results in terms of the F-measure through epochs for the
restricted and non-restricted version of the Pegasos al-
gorithm with the averaged sum loss on shallow parsing.
The curves are drawn with k = 10.

part-of-speech tagging we used standard characteristics
for describing words: if a token is written in all
caps, the initial cap or lowercase, if a token contains
digits, if it represents a special character, a punctuation
mark or an abbreviation; and we did not use external
linguistic resources. For shallow parsing, we used
the corresponding POS tag which is already given in
the corpora, in combination with previously described
characteristics of a word and its belonging to specific
external linguistic dictionaries.

Fig. 2. Results in terms of the F-measure through epochs with
different step sizes for the stochastic Pegasos algorithm
without a projection step (top panel) and with a projec-
tion step (bottom panel). The specified step sizes are
common for both panels with α = 0.75, but are shown
in two legends for better clarity.

924 D. Mančev and B. Todorović

6.2. Restricted vs. non-restricted version. We
first compare the results for Pegasos with the AS loss
and the corresponding restricted version. Recall that
the restriction is made by selecting the set Bn as the
subset of Sn, and that it was needed for the theoretical
analysis. Also note that using the restricted version
implies the calculation of the prediction sequence (17),
see Algorithm 2, which increases the training time since
the additional Viterbi decoding must be performed. In
Fig. 1 we see minor differences in results whenever
Pegasos with the AS loss is used with or without
restriction. The specific parameter k is presented in
caption, and there were similar small differences with
other parameters we tested. Since the results are so
similar, with the only difference in training time, in
further analysis we only include restricted Pegasos in time
comparison with other algorithms and in the last table with
the results of all methods.

6.3. Dependence of the regularization parameter λ.
Figure 3 presents the influence of the regularization
parameter λ on the results for shallow parsing and POS
tagging. Small values of the regularization parameters
need more iterations, i.e., long runtimes, which is
mentioned by Shalev-Shwartz et al. (2011) and can be
clearly seen from Fig. 3 for both shallow parsing and
POS tagging. However, large regularization parameters
produce almost no difference in results after 20 and 100
epochs, but the outcomes are not satisfying. Interestingly,
the best results on both the datasets are achieved when the
projection is not used, even if theoretical analysis provides
similar bounds for both the versions.

In order to select the regularization parameter in
further experiments, we perform cross-validation. We
use 5-fold cross-validation to find the optimal parameter
for each method separately, and then we employ this
optimal parameter in a test scenario in all figures. When
we present curves as the dependence of results through
epochs, we use the optimal parameter provided after
100 training epochs in cross-validation. Further, in
experiments we will include a case when we present
only final results, and then the optimal number of
training epochs will also be selected and included in
cross-validation, which will be described later (see
Section 6.8).

6.4. Different step sizes. The Pegasos algorithm in the
t-th iteration changes parameters with the step size ηt =
1/(λt). This step can be generalized as ηt = 1/(λt)α

with α = 1. However, other values of α ∈ (1/2, 1] can
be used, as suggested by Bach and Moulines (2011). The
step can be further generalized as ηt = γ/(λγt)α with
a constant γ which is used in the ASGD implementation
of Bottou (2008) with α = 0.75. Another approach is to

employ a constant small step size in each iteration (Ratliff
et al., 2006).

In Fig. 2 we present an experiment where we tested
different step sizes. As noticed by Nemirovski et al.
(2009), with α = 1 the choice of the regularization
parameter is critical. However, as we have described
before, we perform cross-validation to choose the optimal
regularization parameter, and the results using the Pegasos
step are very similar to those with the constant step size
equal to 10−2 or using ηt = γ/(λγt)α with γ = 10−1

when the projection step is not performed (top panel). A
larger constant step size ηt = 10−1 can provide faster
convergence in the first few epochs, but in the end it does
not achieve very good results. In contrast to the results
without projection where other step sizes do not seem
to be beneficial, we can see from the bottom panel the
improvement of other step sizes in the first iterations when
the projection step is included. After all epochs in that
case, all step sizes provide very similar results, except a
very small constant size ηt = 10−3, with the best results
achieved with ηt = 10−1.

6.5. Projection and averaged parameters. Using
the averaged parameters helps to avoid oscillations in
the test results. Figure 4 shows the oscillations when
the averaged parameters are not used. The Pegasos
algorithm with averaged parameters slowly converges,
but after 100 epochs it usually provides results similar
to the non-averaged case. It is also possible to use a
mixed approach that combines both the cases by starting
averaging after some portion of training iterations, as
suggested by Rakhlin et al. (2012), which should result
in faster convergence. An open question is when or
whether or not to start averaging (Shamir, 2012). Rakhlin
et al. (2012) use averaging after T/2 iterations, Xu
(2011) employs a comparison of the moving average
of the empirical loss of non-averaged parameters and
exponential moving average parameters to determine
when to start averaging, while the implementation of
Bottou (2008) is by the default set to averaging after
the first epoch. Additionally, Shamir and Zhang (2012)
propose a simple averaging scheme which can be
performed with other stopping criteria on-the-fly, with an
unknown number of training iterations in advance.

6.6. Max-margin loss vs. averaged sum loss. Figure
5 presents the results for the Pegasos algorithm with the
MM and AS loss. In the left panel we see that both
algorithms converge to the same results irrespective of
whether or not we use the projection. As expected, the
convergence in terms of the number of epochs through
the training set is faster for Pegasos with the AS loss,
since it considers many more structures for the update.
On the other hand, when comparing convergence in terms

A primal sub-gradient method for structured classification with the averaged sum loss 925

Fig. 3. Dependence on the regularization parameter λ for the stochastic Pegasos algorithm. The results are presented with the averaged
parameters after 20 and 100 training epochs. Shallow parsing (left) and POS tagging (right).

Fig. 4. Results for shallow parsing (left) and POS tagging (right) through the iterations for the stochastic Pegasos algorithm dependent
on the use of projection and averaged parameters.

Fig. 5. Comparison between Pegasos algorithms with the MM and AS loss. The dependence of the F-measure through epochs (left)
and the dependence on the number of parameter updates (right). All curves are presented with the averaged parameters and
with k = 10 for the shallow parsing problem.

926 D. Mančev and B. Todorović

Fig. 6. Results for the Pegasos algorithm for different values of parameter k after a fixed number of iterations specified in the legend.
Results on shallow parsing (left) and POS tagging (right).

of the number of updates, the convergence is faster when
the MM loss is used, since it considers structures from k
different training examples in one update. Even if they
converge to the same values, the choice of the algorithm
will depend on whether we want to obtain the maximum
results with a fewer number of updates or with a fewer
number of examples presented to the algorithm. However,
as we will see in further analysis, if we disregard the
number of epochs/updates performed by the algorithm
and consider only the training time, then the stochastic
version will be more suitable since the decoding time
plays an important role in the overall runtime.

6.7. Dependence of parameter k. The influence of
parameter k is shown in Fig. 6 with similar behavior on
the given corpora. The optimal regularization parameter
is found during the cross-validation separately for each
point in the figure, which is defined with k provided on
the x axis and the number of training iterations provided
in legend. With a smaller number of iterations, the results
get better as we increase k for both shallow parsing and
POS tagging. This is expected since we extract more
information from each example and learn based on k-best
structures.

Also when the number of iterations is large, i.e.,
when the algorithm converges to its best result, all
values of parameter k provide similar results with slight
degradation for a very large k, e.g., 25, 50, 100. The
reason is probably that including a lot of structures into
the training procedure over numerous iterations creates
many active features and may lead to overfitting. Thus,
in this scenario, increasing k is not useful and the single
best version is enough to get very good results. However,
achieving better results by increasing k with a smaller
number of iterations shows us where the k-best version

Fig. 7. Training time comparison for different algorithms. For
all algorithms, the results are presented with averaged
parameters. The horizontal axis represents the training
time, and the curves show the F-measure on test corpora
after various time spent on training. All curves represent
the training time for 100 epoch on the shallow parsing
problem and k = 10 is set for the MIRA. (Best seen in
color.)

can be useful. If we want to train sequentially in one pass,
or if we have a model which should be online corrected
when the new example is presented, dealing with k
higher than one should increase results as it includes more
information from the new example.

6.8. Comparison with other algorithms. Finally
we compare the Pegasos algorithm with other popular
sequential structured algorithms briefly described in the
following text.

The Perceptron algorithm for structured

A primal sub-gradient method for structured classification with the averaged sum loss 927

classification was introduced by Collins (2002). It
always updates the parameter vector on the ‘best’
structure ỹn with a fixed step size. It is the easiest to
implement and fastest algorithm, and it does not have
additional hyperparameters to be tuned. Even though
it is a simple method, it can provide very good results.
Also, other methods which include optimization of the
step size and incorporate a loss function, might further
improve the results. Since Perceptron changes parameters
without a predetermined step size in an online manner,
using averaged parameters is very important, and they
significantly contribute to avoiding very large oscillations
in results.

The passive aggressive (PA) algorithm was
introduced by Crammer et al. (2006). This is an online
algorithm that considers optimization with only one
constraint at a time generated on the ‘best’ structure ỹn.
It also deals with the soft-margin by introducing a slack
variable into the optimization problem. Since only one
constraint is used, the solution can be found in analytical
form.

The sequential dual method (SDM) for structural
SVMs, described in Balamurugan et al. (2011), traverses
through training examples and, at the n-th example,
its working set of constraints is extended by the one
generated for the best structure ỹn. Then sequential
minimal optimization (SMO) (Platt, 1999) is applied to
optimize dual variables associated with structures inside
the working set. The algorithm can also be sped up by
introducing heuristics to control the growth of the working
set as described by the authors. In our experiments we do
not use any additional heuristics.

The k-best margin infused relaxed algorithm
(MIRA) (Crammer et al., 2005) is an online algorithm
which restricts optimization not only to one (as the
PA algorithm does) but to k-best (most violated)
constraints. At each example, after decoding k outputs
with the highest score, the algorithm minimizes the
norm of parameter change while satisfying constraints on
generated outputs. The minimization problem cannot be
solved analytically and an appropriate solver is needed.
We use SMO for this purpose. Note that for k = 1 the
solution can be found analytically, and thus the MIRA in
this case is reduced to the PA algorithm.

We have implemented all algorithms in C++ for
comparison. The experiments are performed on a
computer with an Intel Core i7-3612QM CPU 2.10 GHz
and 8 GB RAM. Figure 7 shows the dependence of
the F-measure through the time spent on training for
previously mentioned algorithms together with different
versions of the Pegasos algorithm. All implemented
algorithms share the same structures and operators when
working with feature and parameter vectors. Thus the
time comparison shown in Fig. 7 can be considered
reliable.

Figure 7 shows the amount of time that is needed
with k = 10 for the AS and MM loss in comparison with
stochastic Pegasos. Also the restricted version is included,
which is one of the slowest since it needs additional
decoding. For other online algorithms, we can see that
after achieving the best results there is a degradation in
the F-measure on test corpora. They all need a few
epochs to converge, so they need not be trained for 100
epochs since it can raise the problem of overfitting. This
is especially evident with the MIRA, because at each
iteration it must satisfy all k new generated constraints
in an online manner, which can notably make changes
from the previous parameters. On the other hand, Pegasos
algorithms need more iterations to achieve the highest
results with averaged parameters, as we have seen before.
Speaking of the highest results, we can see that all
algorithms, except for the Perceptron, obtain very similar
highest F-measures with slight differences among them.
However, they mostly differ in terms of training time, the
F-measure dependence on the number of training epochs
and on the regularization parameter.

We can get the same conclusions from Table 2.
It provides final results for each method on both
datasets with the corresponding parameters selected
via cross-validation. In order to select the stopping
criteria during the cross-validation up to 100 epochs
for shallow parsing (200 epochs for POS tagging), we
selected the best results between {10, 20, 30, 50, 100}
epochs for shallow parsing (including 200 for POS
tagging). Therefore, the combination of the best pair
(regularization, number of epochs) is presented and then
used in a test scenario. If a method has a hyperparameter
k, then it is also cross-validated from the set {2, 5, 10}.
As mentioned before, we can see that different versions of
Pegasos with projection consistently provide lower results
than the corresponding versions without projection, even
though the theoretical analysis provides similar bounds for
both versions. Also, the optimal values of parameter k in
Table 2 are 2 or 5 for all algorithms, which shows that
the problems do not need a lot of additional structures to
achieve the best results with enough training epochs.

From the previous experiments, we can see that
the results are consistent on both the problems. The
dependence of the regularization parameter, parameter
k, whether we use the averaging option, the restricted
version or the projection, shows similar behavior on the
both corpora.

We have presented the results for sequence labeling
problems. However, the method is applicable to
other domains wherever we can define a structured
classification problem and define a prediction violation set
by k-best inference exactly or by some approximation.

928 D. Mančev and B. Todorović

Table 2. Results for different algorithms and their corresponding parameters (regularization parameters, parameter k, number of train-
ing epochs) obtained from 5-fold cross-validation for each dataset. For all algorithms, the results are presented with averaged
parameters, so the avg prefix is omitted in the algorithm name. The parameter Cd denotes the dual regularization parameter,
where in the PA algorithm it means that the dual parameters are upper bound with Cd, while in the MIRA and SDM it means
that the sum of dual parameters is equal to Cd inside one example.

Shallow parsing Pos tagging
Method Reg. k # epoch F-measure Reg. k # epoch Accuracy

Perceptron – – 20 95.798 – – 30 94.829
PassiveAggressive Cd = 1 – 10 96.093 Cd = 10−2 – 100 95.189
MIRA Cd = 10−2 2 30 96.095 Cd = 10−2 5 50 95.214
SDM Cd = 10−1 – 100 96.084 Cd = 10−1 – 200 95.292
Stochastic Peg λ = 2 · 10−3 – 30 96.041 λ = 10−4 – 200 95.065
Stochastic Peg-WP λ = 10−3 – 100 96.082 λ = 2 · 10−3 – 200 95.320
PegMML λ = 2 · 10−3 5 30 96.044 λ = 10−4 2 200 95.068
PegMML-WP λ = 10−3 2 100 96.094 λ = 2 · 10−3 2 200 95.302
PegASL λ = 2 · 10−3 2 30 96.047 λ = 10−4 5 200 95.070
PegASL-WP λ = 10−3 2 50 96.076 λ = 2 · 10−3 5 200 95.317
ResPegASL λ = 2 · 10−3 5 30 96.034 λ = 10−4 2 200 95.066
ResPegASL-WP λ = 10−3 2 50 96.078 λ = 2 · 10−3 5 200 95.298

7. Conclusion

We have presented an iterative primal sub-gradient
method to optimize a structured SVM with the averaged
sum of hinge losses, which can deal with k different
structures at a time inside one example. In the theoretical
analysis, we have shown that the bound of cumulative
prediction losses is at most like the bound for the
stochastic version, while the empirical evaluation suggests
that, with a smaller number of iterations, increasing k
contributes to improving the results.

In contrast to the existent mini-batch version with
the max-margin loss, which can be suitable for parallel
implementation, the advantage of the version with the
average sum loss is extracting more information from
each example. It should be useful, for instance, when
the existing model should be corrected online as a new
example is presented. However, dealing with multiple
structures is not quite useful when we train the model with
many iterations and already include enough structures,
where the stochastic version provides quite satisfying
results with a simpler and faster training. Moreover,
the proposed algorithm can be used in combination
with mini-batch iterations taking advantages from both
approaches, i.e., extracting more information from each
training example, and can also be suitable for parallel
processing of multiple examples.

Acknowledgment

This research was supported by the Ministry of Education,
Science and Technological Development, Republic of
Serbia, Grant No. 174013.

The authors would like to thank the anonymous
reviewers for their valuable comments for improving the

quality of the paper and suggestions for better presentation
of results.

References
Bach, F. and Moulines, E. (2011). Non-asymptotic analysis of

stochastic approximation algorithms for machine learning,
in J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira and
K.Q. Weinberger (Eds.), Advances in Neural Information
Processing Systems (NIPS), Curran Associates, Inc., Red
Hook, NY, pp. 451–459.

Balamurugan, P., Shevade, S., Sundararajan, S. and Keerthi, S.S.
(2011). A sequential dual method for structural SVMs,
SDM 2011—Proceedings of the 11th SIAM International
Conference on Data Mining, Mesa, AZ, USA.

Bottou, L. (2008). SGD implementation,
http://leon.bottou.org/projects/sgd.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization,
Cambridge University Press, New York, NY.

Collins, M. (2002). Discriminative training methods for hidden
Markov models: Theory and experiments with perceptron
algorithms, Proceedings of the ACL-02 Conference on Em-
pirical Methods in Natural Language Processing, Vol. 10,
Association for Computational Linguistics, Stroudsburg,
PA, pp. 1–8.

Collins, M., Globerson, A., Koo, T., Carreras, X. and Bartlett,
P.L. (2008). Exponentiated gradient algorithms for
conditional random fields and max-margin Markov
networks, Journal of Machine Learning Research
9: 1775–1822.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S. and
Singer, Y. (2006). Online passive-aggressive algorithms,
Journal of Machine Learning Research 7: 551–585.

Crammer, K., McDonald, R. and Pereira, F. (2005). Scalable
large-margin online learning for structured classification,

http://leon.bottou.org/projects/sgd

A primal sub-gradient method for structured classification with the averaged sum loss 929

NIPS Workshop on Learning with Structured Outputs, Van-
couver/Whistler, Canada.

Daume, III, H.C. (2006). Practical Structured Learning Tech-
niques for Natural Language Processing, Ph.D. thesis,
University of Southern California, Los Angeles, CA.

Do, C.B., Le, Q.V., Teo, C.H., Chapelle, O. and Smola, A.J.
(2008). Tighter bounds for structured estimation, in D.
Koller (Ed.), Advances in Neural Information Process-
ing Systems, Curran Associates, Inc., Red Hook, NY,
pp. 281–288.

Gimpel, K. and Smith, N.A. (2010). Softmax-margin CRFs:
Training log-linear models with cost functions, Human
Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Compu-
tational Linguistics, Los Angeles, CA, USA, pp. 733–736.

Jaggi, M., Lacoste-Julien, S., Schmidt, M. and Pletscher,
P. (2012). Block-coordinate Frank–Wolfe for structural
SVMS, NIPS Workshop on Optimization for Machine
Learning, Lake Tahoe, NV, USA.

Joachims, T., Finley, T. and Yu, C.-N.J. (2009). Cutting-plane
training of structural SVMs, Machine Learning
77(1): 27–59.

Lafferty, J.D., McCallum, A. and Pereira, F.C.N. (2001).
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data, Proceedings of
the 18th International Conference on Machine Learning,
ICML’01, San Francisco, CA, USA, pp. 282–289.

Lee, C., Ryu, P.-M. and Kim, H. (2011). Named entity
recognition using a modified Pegasos algorithm, Proceed-
ings of the 20th ACM International Conference on In-
formation and Knowledge Management, Glasgow, UK,
pp. 2337–2340.

Li, M., Lin, L., Wang, X. and Liu, T. (2007). Protein-protein
interaction site prediction based on conditional random
fields, Bioinformatics 23(5): 597–604.

Lim, S., Lee, C. and Ra, D. (2013). Dependency-based semantic
role labeling using sequence labeling with a structural
SVM, Pattern Recognition Letters 34(6): 696–702.

Martins, A.F.T., Smith, N.A., Xing, E.P., Aguiar, P.M.Q. and
Figueiredo, M.A.T. (2011). Online learning of structured
predictors with multiple kernels, Proceedings of the 14th
International Conference on Artificial Intelligence and
Statistics, Fort Lauderdale, FL, USA, Vol. 15, pp. 507–515.

McDonald, R., Crammer, K. and Pereira, F. (2005). Online
large-margin training of dependency parsers, Proceedings
of the 43rd Annual Meeting on Association for Com-
putational Linguistics, ACL’05, Ann Arbor, MI, USA,
pp. 91–98.

Nagata, M. (1994). A stochastic Japanese morphological
analyzer using a forward-DP backward-A* N-best search
algorithm, Proceedings of the 15th Conference on Compu-
tational Linguistics, COLING ’94, Kyoto, Japan, Vol. 1,
pp. 201–207.

Nemirovski, A., Juditsky, A., Lan, G. and Shapiro, A.
(2009). Robust stochastic approximation approach to
stochastic programming, SIAM Journal on Optimization
19(4): 1574–1609.

Ni, Y., Saunders, C., Szedmak, S. and Niranjan, M. (2010).
The application of structured learning in natural language
processing, Machine Translation 24(2): 71–85.

Nowozin, S. and Lampert, C.H. (2011). Structured learning and
prediction in computer vision, Foundations and Trends in
Computer Graphics and Vision 6(3–4): 185–365.

Platt, J.C. (1999). Fast training of support vector machines using
sequential minimal optimization, in B. Schölkopf, C.J.C.
Burges and A.J. Smola (Eds.), Advances in Kernel Meth-
ods, MIT Press, Cambridge, MA, pp. 185–208.

Rakhlin, A., Shamir, O. and Sridharan, K. (2012). Making
gradient descent optimal for strongly convex stochastic
optimization, in J. Langford and J. Pineau (Eds.), Pro-
ceedings of the 29th International Conference on Machine
Learning (ICML-12), Edinburgh, UK, pp. 449–456.

Ratliff, N.D., Bagnell, J.A. and Zinkevich, M.A. (2006).
Subgradient methods for maximum margin structured
learning, ICML Workshop on Learning in Structured Out-
put Spaces, Pittsburgh, PA, USA.

Sas, J. and Żołnierek, A. (2013). Pipelined language model
construction for Polish speech recognition, International
Journal of Applied Mathematics and Computer Science
23(3): 649–668, DOI: 10.2478/amcs-2013-0049.

Shalev-Shwartz, S., Singer, Y. and Srebro, N. (2007). Pegasos:
Primal estimated sub-gradient solver for SVM, Proceed-
ings of the 24th International Conference on Machine
Learning, ICML ’07, Corvalis, OR, USA, pp. 807–814.

Shalev-Shwartz, S., Singer, Y., Srebro, N. and Cotter, A. (2011).
Pegasos: Primal estimated sub-gradient solver for SVM,
Mathematical Programming 127(1): 3–30.

Shamir, O. (2012). Open problem: Is averaging needed for
strongly convex stochastic gradient descent?, Journal of
Machine Learning Research 23: 47–1.

Shamir, O. and Zhang, T. (2012). Stochastic gradient
descent for non-smooth optimization: Convergence
results and optimal averaging schemes, arXiv preprint,
arXiv:1212.1824.

Soong, F.K. and Huang, E.-F. (1991). A tree-trellis based
fast search for finding the N-best sentence hypotheses in
continuous speech recognition, Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing, Toronto, Canada, Vol. 1, pp. 705–708.

Taskar, B., Guestrin, C. and Koller, D. (2004). Max-margin
Markov networks, in S. Thrun, L. Saul and B. Schölkopf
(Eds.), Advances in Neural Information Processing Sys-
tems 16, MIT Press, Cambridge, MA, pp. 25–32.

Tjong Kim Sang, E.F. and Buchholz, S. (2000). Introduction
to the CoNLL-2000 shared task: Chunking, Proceedings
of the 2nd Workshop on Learning Language in Logic/4th
Conference on Computational Natural Language Learn-
ing, Lisbon, Portugal, Vol. 7, pp. 127–132.

Tsochantaridis, I., Joachims, T., Hofmann, T. and Altun,
Y. (2005). Large margin methods for structured and
interdependent output variables, Journal of Machine
Learning Research 6: 1453–1484.

930 D. Mančev and B. Todorović

Viterbi, A. (1967). Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm, IEEE Trans-
actions on Information Theory 13(2): 260–269.

Weston, J. and Watkins, C. (1998). Multi-class support vector
machines, Technical report, Department of Computer
Science, Royal Holloway, University of London, London.

Xu, W. (2011). Towards optimal one pass large scale learning
with averaged stochastic gradient descent, arXiv preprint,
arXiv:1107.2490.

Dejan Mančev is currently a teaching assistant
and a Ph.D. student at the Faculty of Science and
Mathematics, University of Niš, Serbia. He re-
ceived an M.Sc degree in mathematics in 2008
from the same university. His research interests
include training methods for structured classifiers
with application in natural language processing,
and usage of neural networks in stock market
forecast.

Branimir Todorović is an associate professor at the Computer Sci-
ence Department, Faculty of Mathematics and Sciences, University of
Niš. He received his D.Sc. degree from the Faculty of Electrical Engi-
neering, University of Belgrade. His research interest include sequential
Bayesian training of feed forward and recurrent neural networks, blind
source separation and deconvolution, on-line training of structural clas-
sifiers, active and semi-supervised learning algorithms.

Received: 5 November 2013
Revised: 14 April 2014
Re-revised: 26 May 2014

	Introduction
	Problem definition
	Structured Pegasos algorithms
	Pegasos with the max-margin loss
	Pegasos with the averaged sum loss

	Theoretical analysis
	Implementation issues
	Experimental results
	Features
	Restricted vs. non-restricted version
	Dependence of the regularization parameter
	Different step sizes
	Projection and averaged parameters
	Max-margin loss vs. averaged sum loss
	Dependence of parameter k
	Comparison with other algorithms

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

