
Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 4, 723–735
DOI: 10.1515/amcs-2015-0052

TORUS–CONNECTED CYCLES: A SIMPLE AND SCALABLE TOPOLOGY FOR
INTERCONNECTION NETWORKS

ANTOINE BOSSARD a,∗, KEIICHI KANEKO b

aGraduate School of Science
Kanagawa University, Tsuchiya 2946, Hiratsuka, Kanagawa, 259-1293 Japan

e-mail: abossard@kanagawa-u.ac.jp

bGraduate School of Engineering
Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588 Japan

Supercomputers are today made up of hundreds of thousands of nodes. The interconnection network is responsible for con-
necting all these nodes to each other. Different interconnection networks have been proposed; high performance topologies
have been introduced as a replacement for the conventional topologies of recent decades. A high order, a low degree and
a small diameter are the usual properties aimed for by such topologies. However, this is not sufficient to lead to actual
hardware implementations. Network scalability and topology simplicity are two critical parameters, and they are two of
the reasons why modern supercomputers are often based on torus interconnection networks (e.g., Fujitsu K, IBM Sequoia).
In this paper we first describe a new topology, torus-connected cycles (TCCs), realizing a combination of a torus and a
ring, thus retaining interesting properties of torus networks in addition to those of hierarchical interconnection networks
(HINs). Then, we formally establish the diameter of a TCC, and deduce a point-to-point routing algorithm. Next, we
propose routing algorithms solving the Hamiltonian cycle problem, and, in a two dimensional TCC, the Hamiltonian path
one. Correctness and complexities are formally proved. The proposed algorithms are time-optimal.

Keywords: algorithm, routing, Hamiltonian, supercomputer, parallel.

1. Introduction

Today, supercomputers include hundreds of thousands of
computing nodes. The one-million node barrier limit has
even been broken recently by massively parallel systems
such as China’s Tianhe-2, as mentioned in the TOP500
list of June 2013 (TOP500, 2013). Aiming at the efficient
operation of this huge amount of CPU nodes, many
topologies have been described in the literature as being
used as interconnection networks for massively parallel
systems. However, the majority of the introduced network
topologies have been facing hardware and/or software
issues that have hampered the actual implementation and
manufacture of these topologies.

Many network topologies that focus on the efficient
connection of a large number of nodes have been
proposed as detailed in the next section. However,
as mentioned earlier, there remains a gap between
these theoretical propositions and actual hardware

∗Corresponding author

implementations. Effectively, even if critical, the
topological properties favoured by these networks, such
as a high order, a low degree, and a small diameter,
have proven insufficient to lead to actual hardware
implementations. Hence, one can see that additional
critical parameters play a determining role when it comes
to hardware architecture decisions.

Network scalability and topology simplicity can
be cited as two of these critical parameters. Also
it is no coincidence that torus interconnects are
very popular as interconnection networks of modern
supercomputers—torus based networks indeed feature
high scalability and simplicity. In the early days of
supercomputing, hypercubes (Seitz, 1985) were popular
due to their simplicity. However, due to the huge
number of nodes involved in current massively parallel
systems, this topology is no longer applicable. It is
worth noting that this critical property (i.e., simplicity)
has been largely relegated in modern interconnection

abossard@kanagawa-u.ac.jp

724 A. Bossard and K. Kaneko

network proposals. In addition, modern supercomputers
emphasise the need for expandability, for instance,
to augment the computing power by plugging-in new
computing nodes (see computer clusters). And again,
scalability and simplicity are two reasons for the absence
of hardware implementation for previously mentioned
complex topologies.

It is thus reasonable to make a trade-off between the
order/diameter of a network and its scalability/simplicity
(i.e., ease of implementation). Hardware manufacturers
are actually making similar decisions regarding the design
of their parallel systems.

In this paper, we propose a new network topology,
torus-connected cycles (TCCs), combining a torus for all
its advantages, and an additional layer based on cycles that
enables the expansion of the network order while retaining
its low diameter; this is a hierarchical network. Then,
we describe a point-to-point routing algorithm inside
this network topology. Next, we present TCC routing
algorithms that solve the Hamiltonian cycle problem, and,
in a two dimensional TCC, the Hamiltonian path problem.
Correctness and complexities of the proposed algorithms
are formally proved. In addition, the proposed algorithms
are time-optimal.

The rest of this paper is organised as follows.
The state of the art is given in Section 2. The
torus-connected cycles network topology is defined in
Section 3, where the notation and definitions are also
included. The network diameter of a TCC is established
in Section 4. A point-to-point routing algorithm inside a
TCC is subsequently deduced. An algorithm generating
a Hamiltonian cycle in a TCC is proposed in Section 5.
Then, in Section 6, an algorithm generating a Hamiltonian
path in a two dimensional TCC is described. Finally,
Section 7 concludes this paper.

2. State of the art

As stated in the introduction, due to their simplicity,
hypercubes (Seitz, 1985) were popular with
supercomputers of the previous century that included few
nodes compared to modern machines such as China’s
Tianhe-2. Hypercubes still remain actively researched
(Lai, 2012) though, for instance, as a seed network
for more advanced topologies. However, now that the
number of processing nodes has literally exploded,
several network topologies targeted at massively parallel
systems have been proposed. In general, such topologies
focus on the connection of a large number of nodes
while at the same time retaining a low degree and a
small diameter. In particular, hierarchical interconnection
networks (HINs) have proven very popular. Amongst
those, dual-cubes (Li et al., 2004) are actively researched:
as examples, Zhou et al. (2012a) discussed dual-cube
conditional fault diagnosability, and Shih et al. (2010)

give a constructive proof of the existence of Hamiltonian
cycles in dual-cubes.

Extending dual-cubes, Li et al. (2010) proposed
metacubes, and routing algorithms such as that by Bossard
et al. (2010) were set forward. Hierarchical cubic
networks of Ghose and Desai (1995) are another example
of HINs, with routing algorithms proposed by Bossard
and Kaneko (2012a; 2013). Another famous HIN is the
hierarchical hypercube of Malluhi and Bayoumi (1994)
(also known as cube-connected cubes (Wu and Sun,
1994)), with routing algorithms proposed by Bossard et
al. (2011; 2012b) and conditional fault diagnosability
discussed by Zhou et al. (2012b). In addition, let
us also cite cube-connected cycles of Preparata and
Vuillemin (1981) since they are related to our research
too. Now, as mentioned earlier, there remains a
gap between these theoretical propositions and actual
hardware implementations.

Hierarchical interconnection networks that are based
on a torus are quite rare: one can merely mention
the symmetric tori connected torus network (Al Faisal
and Rahman, 2009), H3D-torus (Horiguchi and Ooki,
2000) and twisted torus (Camara et al., 2010) as
examples. This can be mainly explained by the difficulty
in establishing the diameter of such networks, and
thus shortest path routing algorithms. Nonetheless,
interconnection networks based on a torus are very
popular with modern parallel systems: amongst others,
Fujitsu K and the Cray Titan are both built upon a
torus-based network topology. Torus routing algorithms
are indeed actively researched (Singh et al., 2003; Xiang
and Luo, 2012). In this paper, aiming at a reasonable
network size and hardware applicability, we propose
a torus-connected cycles topology with a much higher
dimensional flexibility than in existing works, such as the
H3D-torus, which focuses on two or three dimensions
only.

3. Preliminaries

The main purpose of this section is to define a
torus-connected cycles network topology. In addition, we
present the notation used in this paper.

First, let us recall the topology definitions of a mesh
network and of a torus network.

Definition 1. (Mesh) (Duato et al., 2003) An
n-dimensional mesh has ki nodes on the i-th dimension,
where ki ≥ 2 and 0 ≤ i ≤ n, thus resulting in
k0 × k1 × . . . × kn−1 nodes in total. A node u is
addressed with n coordinates (u0, u1, . . . , un−1). Two
nodes u, v are adjacent if and only if ui = vi holds for all
i, 0 ≤ i ≤ n− 1, except one, j, where either uj = vj + 1
or uj = vj − 1.

Definition 2. ((k, n)-torus) (Duato et al., 2003) A

Torus-connected cycles: A simple and scalable topology for interconnection networks 725

A B C

A B C

D

E

F

D

E

F

(a) (b)

Fig. 1. 4×3 2-dimensional mesh (a), (3, 2)-torus (b).

k-ary n-dimensional torus, also called a (k, n)-torus, is
an n-dimensional mesh with all ki’s equal to k and with
wrap-around edges: two nodes u, v are adjacent if and
only if ui = vi holds for all i, 0 ≤ i ≤ n − 1, except
one, j, where either uj = vj +1 (mod k) or uj = vj − 1
(mod k) holds.

One can note that the degree of an (k, n)-torus is n if
k = 2, and 2n otherwise. A 2-dimensional mesh of arities
3 and 4, and a (3, 2)-torus are illustrated in Fig. 1.

Definition 3. (TCC(k, n)) A k-ary n-dimensional
torus-connected cycles network TCC(k, n) is an
undirected graph that has 2nkn nodes. Each node a has
a cluster ID c(a) = (a0, a1, . . . , an−1) and a processor
ID (also known as procID) p(a) = pa, and the node
consists of the pair (c(a), p(a)), where 0 ≤ ai ≤ k − 1
and 0 ≤ pa ≤ 2n − 1. Each node a has three neighbour
nodes n1(a), n2(a) and n3(a) as follows:

n1(a) = (c(a), (pa + (−1)pa) mod 2n),

n2(a) = (c(a), (pa − (−1)pa) mod 2n),

n3(a) = (a0, a1, . . . , (a�pa/2� + (−1)pa)

mod k, . . . , an−1, pa + (−1)pa).

If n = 1, each node a is of the degree two since
n1(a) = n2(a). Otherwise, that is, n ≥ 2, each node is
of the degree three. For any node a, the edges (a,n1(a))
and (a,n2(a)) are called internal edges whereas the edge
(a,n3(a)) is called the external edge. So, each node a of
a TCC has two internal neighbours: n1(a) and n2(a),
and one external neighbour: n3(a). If one deletes all
external edges from a TCC(k, n), the remaining graph
consists of nk disjoint cycles. Each cycle has 2n nodes.
The cycle that includes a node a is denoted by C(a),
that is, the cluster of a. In addition, if we contract each
of the nk cycles of a TCC(k, n) into one single node,
we obtained a k-ary n-dimensional torus (also known as
(k, n)-torus).

Figure 2 shows an example of a 3-ary 2-dimensional
torus-connected cycles network TCC(3, 2). For example,
the node (0, 3, 3) is connected to the nodes (0, 0, 0) and
(0, 0, 2) by internal edges, and connected to the node (0,
2, 2) by an external edge.

In addition, we say that a node a = (c(a), pa) cov-
ers the dimension �pa/2�. And so, the two nodes a and

(0, 0, 0)

(0, 0, 1) (1, 0, 1)

(1, 0, 3) (2, 0, 3)

(0, 1, 3)

(0, 1, 1)

Fig. 2. Example of a TCC(3, 2): 4-cycles are connected accord-
ing to a (k, n)-torus.

n1(a) cover the same dimension �pa/2�. For example,
in a TCC(3, 2), the nodes (0, 0, 3) and (0, 0, 2) cover
the dimension 1, that is, of unit vector (0, 1). For two
nodes u and v covering the same dimension, we call u the
counterpart (or twin) of v, and vice-versa.

Lemma 1. A TCC(k, n) is a bipartite graph.

Proof. Assume that the processor IDs of nodes are
numbered 0, 1, 2 . . . similarly in each cluster. Then it is
easy to see that each node of an even (resp. odd) processor
ID is connected exclusively to nodes with odd (resp. even)
processor IDs since clusters contain an even number of
nodes: 2n. �

Lastly, let us recall several general definitions
and the notation for graphs. A path in a graph
is an alternate sequence of distinct nodes and edges
u0, (u0,u1),u1, . . . ,uk−1, (uk−1,uk),uk, which can
be written simply as u0 → u1 → . . . → uk, and
abbreviated to u0 � uk. The length of a path corresponds
to the number of edges included in that path; in the
previous example, the path is of length k. In a graph,
we say that two nodes are diagonally opposed if and only
if the length of a shortest path connecting them is equal
to the graph diameter, that is, the maximum length of a
shortest path between any two nodes.

4. Diameter and simple routing

In this section, we establish the diameter of a TCC(k, n).
The constructive proof described can subsequently be
used as a point-to-point routing algorithm. First, it is
important to note that routing inside a TCC is closely
related to routing inside a cycle. Effectively, each of
the n dimensions of a TCC is iterated by traversing
the corresponding nodes inside cycles (i.e., clusters) of
a TCC. Thus, we can reduce the point-to-point routing
problem in a TCC to the traversal of one unique 2n-cycle:

726 A. Bossard and K. Kaneko

(a) (b)

Fig. 3. TCC routing (a) can be reduced to the cycle traversal (b).

s

d

Fig. 4. Constructing a shortest path in a TCC(2, 2).

the dimension traversed by one external edge corresponds
to the internal edge on the cycle between the two nodes
that cover that same dimension; see Fig. 3.

4.1. Formally established diameter. Three cases are
distinguished: k = 2, k ≥ 3 with k even, and k ≥ 3 with
k odd.

Lemma 2. A TCC(2, n) (i.e., k = 2) has diameter 5 in
the case n = 2, and at most 3n− 2 in the case n ≥ 3.

Proof. We give a constructive proof. Two cases are
distinguished: n = 2 and n ≥ 3. Let us consider two
nodes s and d that are diagonally opposed.

If n = 2, select the external edge s → s′ incident
with s; then select the internal edge s′ → u such that
the external edge of u is connected to C(d), say u →
v ∈ C(d). Lastly, we traverse half of C(d) to reach d,
thus requiring 2 internal edges. In total, the selected path
s → s′ → u → v � d is of length 5; see Fig. 4.

If n ≥ 3, select the external edge incident with s; this
induces a cycle traversal direction (see Fig. 5). Continue
traversing the cycle in this direction so as to consume 1
external edge for each of the n− 1 remaining dimensions,
finally reaching C(d); this takes 1 + 2(n − 1) edges.
Lastly, δ ≤ n internal edges in C(d) are required to reach
d. If δ = n, then we discard the selected path and start
again by traversing the cycle in the opposite direction (i.e.,
we first select the internal edge incident with s and its
counterpart). Because this time the n − 1 dimensions are
consumed in reverse order compared with the previous
selection, we arrive in C(d) at the diagonally opposed
position as previously, and thus δ ≤ n − 2 (actually
δ = 0). So, in total, the selected path is of length at most
1+2(n−1)+(n−1) = 3n−2. Note that if δ = n in the

C(s)

s

Fig. 5. Cycle traversal direction induced by the selection of the
external edge incident with s.

s

d′ d

A

B

C

Fig. 6. Cycle traversal: k/2 − 1 external edges consumed on
part A (s � d′), k/2 on part B (d′ � s) and 1 on part
C (s � d′).

first place, s and d are not diagonally opposed since they
can be connected with the second path in 2n edges.

�

Lemma 3. A TCC(k, n) with k ≥ 3 and k even has
diameter nk.

Proof. We give a constructive proof. Let us first consider
a (k, n)-torus. If k is even, two diagonally opposed
nodes are separated by the same minimum number of
edges, regardless of the direction in which you traverse
the torus to join these two nodes. Thus, in a TCC(k, n),
one can freely choose the rotation direction inside the
cycle without impacting the number of external edges
needed to reach a diagonally opposed cycle. Below
we give a shortest path routing algorithm that connects
two diagonally opposed nodes in a TCC; see Fig. 6 and
examples in Fig. 7.

Consider two special positions on the cycle: the
position of the source node s and that of the external
neighbour d′ of d. Traverse the cycle in the direction
where the position of d′ is reached before the counterpart
position for the same dimension. By traversing the cycle
according to this direction, consume k/2 − 1 external
edges per dimension for the dimensions on the s � d′

part of the cycle, d′ dimension included. Then, continue
the cycle traversal by consuming k/2 external edges per
dimension for the dimensions on the d′

� s part of the
cycle, this time with d′ dimension not included. Finally,
achieve the cycle traversal by consuming 1 external edge
per dimension for the dimensions on the s � d′ part of
the cycle. This way, we are guaranteed that no internal
edge will ever be selected inside C(d).

Consuming one external edge on one dimension
requires 1 internal edge on the cycle and 1 external

Torus-connected cycles: A simple and scalable topology for interconnection networks 727

s

d

d′

(a)

s

d
d′

(b)

Fig. 7. Two cases of diagonally opposed nodes s,d connected
with shortest paths (length 8) (a), (b).

edge. So, on the s � d′ part of the cycle, assuming
δ dimensions are consumed on this part, we have δ ×
2(k/2− 1) edges required. We recall that dimensions on
this part of the cycle are consumed up to k/2− 1 external
edges. Then, on the d′

� s part of the cycle, n − δ
dimensions are fully consumed (i.e., up to k/2 external
edges); it takes (n − δ) × 2(k/2) edges. Finally, on the
part s � d′ of the cycle, δ dimensions are consumed
with only one external edge for each dimension; it takes
δ×2(1) edges. In total we have found a path between two
diagonally opposed nodes of length

δ × 2(k/2− 1) + (n− δ)× 2(k/2) + δ × 2(1) = nk,

which is obviously a shortest path. �

Lemma 4. A TCC(k, n) with k ≥ 3 and k odd has diam-
eter at most nk + n.

Proof. We give a constructive proof. Again, let us first
consider a (k, n)-torus. If k is odd, depending on the
direction used to traverse the torus to join two diagonally
opposed nodes, the minimum number of edges required
varies. Considering one single dimension, depending on
the direction used to traverse this dimension, either �k/2�
or �k/2	 edges are required to reach a diagonal node.
Thus, in a TCC(k, n), the direction used to traverse the
cycle will impact on the number of external edges needed
to attain a diagonally opposed cluster. So, to find a path
between two diagonally opposed nodes s and d, we apply
the same idea as in the case k even. However, we take
care to stay at a distance of 1 external edge to C(d) for
dimensions of s � d′, d′ included, and this may induce
selecting successive internal edges to skip dimensions.
Assuming that each of all dimensions is consumed in the
direction requiring (k+1)/2 external edges, the maximum
length of a generated path is as follows.

On the s � d′ part of the cycle, assuming δ
dimensions are consumed on this part, we have δ ×
2((k − 1)/2) edges required. We recall that dimensions
on this part of the cycle are consumed up to (k − 1)/2
external edges. Then, on the d′

� s part of the cycle,
n − δ dimensions are fully consumed (i.e., up to (k +
1)/2 external edges), taking (n − δ) × 2((k + 1)/2)
edges. Finally, on the part s � d′ of the cycle, δ

Table 1. Empirically calculated diameter of a TCC(k, n).
�����n

k
2 3 4 5 6 7 8

2 5 6 8 10 12 14 16
3 7 9 12 15 18 21 24
4 10 13 16 20 24 28 32
5 13 16 20 25 30
6 16 20 24 30 36
7 19 23 28
8 22 27
9 25

10 28

dimensions are consumed with only one external edge for
each dimension, taking δ × 2(1) edges. In total, we have
found a path between two diagonally opposed nodes of
length:

δ× 2((k− 1)/2)+ (n− δ)× 2((k+1)/2)+ δ× 2(1)

= nk + n.

�
An extra cost of n edges compared with the case

where k is even is induced; however, this has very low
actual impact. Effectively, the dimension of a torus (n) is
always very small compared to its arity (k); for example,
the Cray Titan uses a three dimensional torus to connect
hundreds of thousands of nodes, i.e., n
 k.

Thus, for any two TCC nodes u,v, that is, two nodes
that are not necessarily diagonally opposed, we can apply
the same algorithm to find a path u � v whose length
is at most the diameter as established previously. We
summarise this discussion in Theorem 1 below.

Theorem 1. A TCC(k, n) has diameter 5 for k = 2, n =
2; at most 3n − 2 for k = 2, n ≥ 3; nk in the case k is
even, and at most nk + n in the case k is odd.

Proof. This can be directly deduced from Lemmas 2–4.
�

4.2. Experimentation and comparison with related
networks. We have empirically calculated the diameter
of a TCC(k, n) by finding all the possible shortest paths
between all the possible pairs of nodes. Then, considering
all the shortest paths established, we have retained the
length of the longest one, that is, the diameter of the TCC
for this instance of k, n. Results are given in Table 1.

We observe that the case k = 2 is indeed special
as detailed in Lemma 2. As for the cases k ≥ 3, we
see that the empirical data are matching our theoretical
estimations of nk in the case k is even, and at most nk+n
otherwise.

Finally, we summarise in Table 2 the TCC
topological properties and compare them with those of

728 A. Bossard and K. Kaneko

Table 2. Comparing TCCs, CCCs and (k, n)-tori.
CCC(n) TCC(k, n) (k, n)-torus

order n× 2n 2n× kn kn

degree 3 3 2n
diameter 2n+ �n/2� − 2 nk n�k/2�
bisection 2n−1 2× kn−1 2× kn−1

related networks, namely, (k, n)-tori (Duato et al., 2003)
and cube-connected cycles (Preparata and Vuillemin,
1981). A cube-connected cycle CCC(d, k) is a d-cube
connecting 2d k-cycles. A CCC(d, k) with d �= k is not
considered here since it is neither symmetric nor regular.
So, we consider only the case d = k, and simply denote
CCC(n). Additionally, for the sake of clarity, we only
consider the case where k is even for a TCC(k, n).

The bisection width of a graph G is the cardinality of
a minimum set of edges H such that G\H is made of two
disconnected subgraphs of the same size. The bisection
width is an important metric regarding fault-tolerance. We
observe that the TCC bisection width is the same as that
of a (k, n)-torus: k edges on each of the n− 1 dimensions
are cut in two places so that the initial graph is separated
into two similar entities.

5. Hamiltonian cyclicity

In this section we show the existence of a Hamiltonian
cycle in a TCC by giving a constructive proof.
This fundamental routing problem has many important
applications. The main idea of this algorithm is to follow
a divide-and-conquer approach: the Hamiltonian cycle
problem in a TCC(k, n) is reduced to the same problem
in two TCC(k, n− 1) networks. We proceed recursively
as follows (see Fig. 8).

First, the base case is given in Lemma 5 below.

Lemma 5. In a TCC(k, 1) (i.e., n = 1), we can find a
Hamiltonian cycle in O(k) optimal time.

Proof. Ignoring the extra nodes inside clusters, if
any, a TCC(k, 1) is isomorphic to a ring, and thus it is
trivial to include extra nodes inside clusters to obtain a
Hamiltonian cycle. A TCC(k, 1) has 2k nodes, and thus
the time complexity to construct a Hamiltonian cycle is
O(k), which is obviously optimal. �

Then, we have the general case reducing towards the
base case of Lemma 5.

Lemma 6. In a TCC(k, n) with n ≥ 2, we can find a
Hamiltonian cycle in O(kn) optimal time.

Proof. We give a constructive proof. Select a dimension
i (0 ≤ i ≤ n − 1) and divide the TCC(k, n) into
k sub-networks TCC(k, n − 1) along the dimension i.
When reducing from a TCC(k, n) into sub-networks

(a) (b)

Fig. 8. First: constructing distinct Hamiltonian cycles inside k
TCC(k, n − 1) sub-networks (a). Second: connecting
the k distinct Hamiltonian cycles together (b).

TCC(k, n − 1), clusters remain 2n-cycles (as in a
TCC(k, n)); we simply assume that such a TCC(k, n−
1) has extra nodes inside clusters, but these nodes have
no impact since they are incident with only internal edges.
Apply this algorithm recursively to obtain a Hamiltonian
cycle inside each of the k sub-networks TCC(k, n− 1).

Inside one of the k sub-networks TCC(k, n − 1),
we select one internal edge that is incident with the two
nodes covering the dimension i. There are kn such edges,
one per cluster of the TCC(k, n − 1). This selected
edge, as well as those corresponding to it inside the other
TCC(k, n − 1) sub-networks, are discarded from the
Hamiltonian cycles previously obtained recursively. In
total, k internal edges are thus discarded. The external
edges incident with the nodes of the discarded edges are
selected in order to connect the k distinct Hamiltonian
cycles together, and thus obtain a Hamiltonian cycle in
the TCC(k, n).

Regarding the time complexity, let N be the
dimension of the original network (i.e., TCC(k,N)); the
algorithm starts with n = N . In the case n = 1, the
Hamiltonian cycle is trivial and returned in O(kN) so
as to include all extra nodes inside clusters (in total, 2N
nodes per cluster). The selection of the dimension i is
performed in constant time. Then, this is a recursive
call: it is processed n times. The remaining operations
are O(k) time. So, in total, this algorithm takes O(kN)
optimal time. �

We summarise this discussion in Theorem 2 below.

Theorem 2. In a TCC(k, n), we can construct a Hamil-
tonian cycle in O(kn) optimal time.

Proof. It can be directly deduced from Lemmas 5 and 6.
�

6. Hamiltonian laceability of a TCC(k, 2)
and a Hamiltonian path algorithm

In this section, we show the Hamiltonian laceability of
a TCC(k, 2) by giving a constructive proof. A k-ary
2-dimensional TCC offers the widest range of applications
due to its simple, yet powerful (regularity, scalability,

Torus-connected cycles: A simple and scalable topology for interconnection networks 729

d
0

1
2

3

(a)

d

0
1

2
3

(b)

Fig. 9. Dimension covered by d: either horizontal (a) or vertical
(b).

symmetry, etc.), structure on both the high-level (torus
level) and the low-level (clusters).

From Lemma 1, a TCC(k, n) is bipartite. So clearly,
there does not exist a Hamiltonian path for any pair of
nodes. Precisely, any two nodes can be connected by
a Hamiltonian path if and only if they are located in
distinct partitions of the bipartite graph. We say that a
graph satisfying this property is Hamiltonian laceable.
So, in a TCC(k, n), any two nodes can be connected by a
Hamiltonian path if and only if they have processor IDs of
distinct parities. Hence, we show here that a TCC(k, 2)
is Hamiltonian laceable, and we give an algorithm which,
given any two nodes whose processor IDs are of distinct
parities, finds a Hamiltonian path (Hamiltonian lace)
between them.

In a TCC(k, 2), for any two nodes s and d of
distinct parities, we describe in this section an algorithm
establishing a Hamiltonian path s � d. Since a TCC
is symmetric, we can assume without loss of generality
that s = (0, 0, 0). The main idea of this algorithm is
to select a traversing order depending on the dimension
covered by d: either horizontal or vertical, see Fig. 9.
Assuming that a horizontal traversal has been selected,
we then traverse successively each of the k rows of k
clusters, finally reaching C(d), the cluster of d via C(u),
the cluster containing the external neighbour u of d′ the
twin node of d.

We recall that, since n = 2, each cluster is a
4-cycle. For the sake of clarity, we assume without loss of
generality that processor IDs inside clusters are numbered
as follows: 0 – East, 1 – South, 2 – West and 3– North,
and that processor IDs 0 and 1 (resp. 2 and 3) are for the
horizontal (resp. vertical) dimension, that is, as shown in
Fig. 9.

We distinguish two main cases: d on the horizontal
dimension, that is, p(d) = 1, since we assumed that
p(s) = 0, and we recall that s and d must have processor
IDs of distinct parities, and d on the vertical dimension,
that is, p(d) = 3, for the same reasons.

Lemma 7. In a TCC(k, 2), for s = (0, 0, 0) and a node
d /∈ C(s) with procIDs of distinct parities, and with d on
the horizontal dimension (i.e., p(d) = 1), we can find a
Hamiltonian path s � d.

Proof. We give a constructive proof. As d is on the
horizontal dimension, we traverse the network vertically,

one column after another. The special cases where C(s)
and C(d) share one dimension are solved in Appendices
A (the dimension of d is shared) and B (the dimension of
d is not shared).

Step 1. We initialise the path for a vertical traversal of the
network; see Fig. 10(a).

Step 2. Extend the path obtained in Step 1 by traversing
each of the k − 1 remaining columns of clusters. In
practice, this is done by deselecting inside each cluster
of the row of C(s) except C(s) the edge incident with
the two nodes of the vertical dimension (i.e., nodes
of processor IDs 2 and 3), and instead traverse the
corresponding cluster column; see Fig. 11(a). If h = d,
a Hamiltonian lace is found.

Step 3. First, in C(d), replace the original full traversal
2, 1, 0, 3 by 2, 3 so that the path does not go through
d yet. Define C(u) the cluster containing the external
neighbour u, of d′ the twin node of d. Formally,
d′ = n1(d), and u = n3(d

′). Replace the original
full traversal 2, 1, 0, 3 by 2, 3 so that the path does not
go through u yet.

Find a cluster C1 that satisfies the following conditions:

• C1 must be in the same column as C(h) with h,
the head of the path that is being constructed, and
strictly before C(h) (i.e., C(h) �= C1) according
to the traversal direction (i.e., here, above C(h)).

• C1 must not be in the same row as C(s).

• C1 can be on the same horizontal dimension as
C(d) (i.e., same row), or below C(d), but not
above C(d).

We say that C1 is the cluster for the first elbow. In a few
special cases, there is no such cluster C1; these cases are
treated separately in Appendices A and B.

Step 4. If C1 is in the same row as C(u), that is, C1

is at the crossing of C(u) and C(h), go directly to
Step 5. Otherwise, select the cluster C2 that is in the
same column as C(u) and in the same row as C1. We
say that C2 is the cluster for the second elbow.

Step 5. We modify the traversing of C(h) so that C(h)
is now fully traversed at once: 0, 1, 2, 3 (= h) instead of
0, 3 � 2, 1 (= h). Then, from this new h, we follow
the previously established path until reaching C1. Once
C1 is attained (we arrive at procID 2), we modify the
traversing of C1 so that the path exits C1 via 1 instead
of 3: C1 is now traversed in the order 2, 3, 0, 1 instead of
2, 1, 0, 3.

Step 6. Now, we will traverse the network horizontally,
thus having the path being constructed enter several
clusters twice, mixing the original vertical traversal and
a horizontal traversal to eventually reach C(u). In

730 A. Bossard and K. Kaneko

practice, we exit C1 via procID 1 and arrive in the
next cluster, say C′

1, on procID 0. The path obtained
previously fully traversed C′

1 in the order 2, 1, 0, 3; this
traversal of C′

1 is now split into two parts: the original
path for a vertical traversal now shrinks to 2, 3 instead of
2, 1, 0, 3, and the horizontal traversal arriving from C1 is
set to 0, 1.

Apply the same method of having the path being
constructed enter each cluster twice in the row of C1

until reaching C2, or directly C(u) if C2 has not been
defined. If C(u) is reached, go directly to Step 8.

Step 7. We have arrived in C2 on procID 0. In the path
previously established, C2 is fully traversed in the order
2, 1, 0, 3; we replace this traversal by 0, 1, 2, 3. Then, we
apply the same method as in Step 6 until reaching C(u),
that is, having the path being constructed enter clusters
twice in the column of C2 between C2 and C(u) in the
original vertical traversal order (here downwards).

Step 8. If C(u) is reached in Step 6, then we arrive in
C(u) on procID 0. We traverse C(u) for the second
time according to 0, 1 (= u), and we finally reach d with
the sub-path u → d′ → d. See Fig. 13(a).

Now, if C(u) is reached in Step 7, then we arrive in
C(u) on procID 2. Instead of the original 2, 1, 0, 3
traversal of C(u), we now follow the order 2, 3, 0, 1 (=
u). Finally, we reach d with the sub-path u → d′ → d;
see Fig. 12(a).

Step 9. Now, consider the column of C1, a column which
by definition also includes C(h). In the case C1 is
not adjacent to C(h) in the original vertical traversal
order (here downwards), that is, there exists one or more
clusters between C1 and C(h) in the original vertical
traversal order, these clusters have been completely
skipped from the previously established s � d path.
The same remarks hold if C2 is not adjacent to C(u):
clusters between C(u) and C2 according to the original
vertical traversal order will be skipped. So, we shall now
extend the established s � d path so that it includes the
traversal of the clusters between C1 and C(h). For each
such skipped cluster, we extend the path by traversing
horizontally the row of this cluster, applying the same
method as in Steps 6 and 7: clusters in this row will now
be entered twice by the path, the first time for the original
vertical traversal, and the second time for the horizontal
traversal for path extension.

We detail the path extension in the case C1 is not
adjacent to C(h). The same process can be applied to
skipped clusters between C(u) and C2 (see Fig. A3(a)).
Consider the row of each such skipped cluster C̃. In this
row, consider the cluster C̃′ that is in the same column
as C(s). The path established previously traversed C̃ ′

in the order 2, 1, 0, 3. Now, instead of selecting the

s

d

(a)

s

d

(b)

Fig. 10. Step 1: path initialisation for vertical (a) and horizontal
(b) traversals. Newly selected edges in bold; the greyed
node is the head of the (still in construction) path.

s

d

h

(a)

s

d

h

(b)

Fig. 11. Step 2: path extension for vertical (a) and horizontal (b)
traversals. Newly selected edges in dashes.

edge 1, 0 in C̃′, we traverse the row of C̃′ (horizontally,
obviously) as follows. First, we exit C̃′ via procID 1. If
the next cluster is C̃ , then it is fully traversed according
to 0, 3, 2, 1, and subsequently exited. If the next cluster
is not C̃, then it will be entered by the path twice:
previously fully traversed according to 2, 1, 0, 3, the
original vertical traversal now shrinks to 2, 3, and the
horizontal traversal currently being established selects
0, 1 and goes to the next cluster. Repeat this operation
until returning to C̃′. In such a row, exactly one cluster
(C̃) will be fully traversed by this horizontal traversal
for path extension, and all other clusters in the row will
be entered twice by the path being constructed. See
Fig. 13(a).

�

Lemma 8. In a TCC(k, 2), for s = (0, 0, 0) and a node
d /∈ C(s) with procIDs of distinct parities, and with d
on the vertical dimension (i.e., p(d) = 3), we can find a
Hamiltonian path s � d.

Proof. We give a constructive proof. As d is on the

s

d u
C1 C2

(a)

s

d

u

C1

C2

(b)

Fig. 12. Step 8: going through C1 and C2 before reaching C(u)
and eventually d in the case of vertical (a) and horizon-
tal (b) traversals. Newly selected edges in dashes.

Torus-connected cycles: A simple and scalable topology for interconnection networks 731

s

d u
C1

C̃C̃′

(a)

s

d

u

C1C̃

C̃′′

C̃′

(b)

Fig. 13. Step 9: extending the path to include skipped clusters
C̃ (if any) in the case of vertical (a) and horizontal (b)
traversals. Path extension emphasised by dashed edges.

vertical dimension, we traverse the network horizontally,
one row after another. The algorithm is rather symmetrical
to that of Lemma 7. Similarly, the special cases where
C(s) and C(d) share one dimension are solved in
Appendices C (the dimension of d is shared) and D (the
dimension of d is not shared).

Step 1. We initialise the path for a horizontal traversal of
the network; see Fig. 10(b).

Step 2. Extend the path obtained in Step 1 by traversing
each of the k− 1 remaining rows of clusters. In practice,
this is done by deselecting inside each cluster of the
column of C(s) except C(s) the edge incident with the
two nodes of the horizontal dimension (i.e., nodes of
processor IDs 0 and 1), and traverse the corresponding
cluster row instead; see Fig. 11(b). If h = d, a
Hamiltonian lace is found.

Step 3. First, in C(d), replace the original full traversal
0, 3, 2, 1 by 0, 1 so that the path does not go through
d yet. Define C(u) the cluster containing the external
neighbour u of d′, the twin node of d. Formally,
d′ = n1(d) and u = n3(d

′). Replace the original full
traversal 0, 3, 2, 1 by 0, 1 so that the path does not go
through u yet.

Find a cluster C1 that satisfies the following conditions:

• C1 must be in the same row as C(h) with h, the
head of the path that is being constructed, and
strictly before C(h) (i.e., C(h) �= C1) according
to the traversal direction (i.e., here, on the right of
C(h)).

• C1 must not be in the same column as C(s).

• C1 can be on the same vertical dimension as C(d)
(i.e., same column), or on the left of C(d), but not
on the right of C(d).

We say that C1 is the cluster for the first elbow. In a few
special cases, there is no such cluster C1; these cases are
treated separately in Appendices C and D.

Step 4. If C1 is in the same column as C(u), that is, C1 is
at the crossing of C(u) and C(h), go directly to Step 5.
Otherwise, select the cluster C2 that is in the same row

as C(u) and in the same column as C1. We say that C2

is the cluster for the second elbow.

Step 5. We modify the traversing of C(h) so that C(h)
is now fully traversed at once: 2, 3, 0, 1 (= h) instead of
2, 1 � 0, 3 (= h). Then, from this new h, we follow
the previously established path until reaching C1. Once
C1 is attained (we arrive in procID 0), we modify the
traversing of C1 so that the path exits C1 via 3 instead
of 1: C1 is now traversed in the order 0, 1, 2, 3 instead of
0, 3, 2, 1.

Step 6. Now, we will traverse the network vertically, thus
having the path being constructed enter twice several
clusters, mixing the original horizontal traversal and a
vertical traversal to eventually reach C(u). In practice,
we exit C1 via procID 3 and arrive in the next cluster,
say C′

1, on procID 2. The path obtained previously fully
traversed C′

1 in the order 1, 2, 3, 0; this traversal of C′
1 is

now split into two parts: the original path for horizontal
traversal now shrinks to 1, 0 instead of 1, 2, 3, 0, and the
vertical traversal arriving from C1 is set to 2, 3.

Apply the same method of having the path being
constructed enter each cluster twice in the column of C1

until reaching C2, or directly C(u) if C2 has not been
defined. If C(u) is reached, go directly to Step 8.

Step 7. We have arrived in C2 on procID 2. In the path
previously established, C2 is fully traversed in the order
0, 3, 2, 1; we replace this traversal by 2, 3, 0, 1. Then,
we apply the same method as in Step 6 until reaching
C(u), that is, having the path being constructed enter
clusters twice in the row of C2 between C2 and C(u) in
the original horizontal traversal order (here leftwards).

Step 8. If C(u) is reached in Step 6, then we arrive in
C(u) on procID 2. We traverse C(u) for the second
time according to 2, 3 (= u) and we finally reach d with
the sub-path u → d′ → d; see Fig. 13(b).

Now, if C(u) is reached in Step 7, then we arrive in
C(u) on procID 2. Instead of the original 2, 1, 0, 3
traversal of C(u), we now follow the order 2, 3, 0, 1 (=
u). Finally, we reach d with the sub-path u → d′ → d;
see Fig. 12(b).

Step 9. Now, consider the row of C1, a row which by
definition also includes C(h). In the case C1 is not
adjacent to C(h) in the original horizontal traversal
order (here leftwards), that is, there exists one or more
clusters between C1 and C(h) in the original horizontal
traversal order, these clusters have been completely
skipped from the previously established s � d path.
The same remarks hold if C2 is not adjacent to C(u):
clusters between C(u) and C2 according to the original
horizontal traversal order will be skipped. So, we shall
now extend the established s � d path so that it
includes the traversal of the clusters between C1 and

732 A. Bossard and K. Kaneko

C(h). For each such skipped cluster, we extend the
path by traversing vertically the column of this cluster,
applying the same method as in Steps 6 and 7: clusters
in this column will now be entered twice by the path,
the first time for the original horizontal traversal, and the
second time for the vertical traversal for path extension.

We detail the path extension in the case C1 is not
adjacent to C(h). The same process can be applied to
skipped clusters between C(u) and C2 (see Fig. A3(b)).
Consider the column of each such skipped cluster C̃ .
In this column, consider the cluster C̃′′ that is in the
same row as C(s), and consider further the cluster C̃ ′

that is adjacent to C̃′′ in the order for vertical traversal
path extension (here downwards). Here, C̃′ is at the
top of the column. The path established previously
traversed C̃′ in the order 0, 3, 2, 1. Now, instead of
selecting the edge 3, 2 in C̃′, we traverse the column
of C̃′ (vertically, obviously) as follows. First, we exit
C̃′ via procID 3. If the next cluster is C̃, then it is
fully traversed according to 2, 1, 0, 3, and subsequently
exited. If the next cluster is not C̃, then it will be
entered by the path twice: previously fully traversed
according to 0, 3, 2, 1, the original horizontal traversal
now shrinks to 0, 1 and the vertical traversal currently
being established selects 2, 3 and goes to the next cluster.
Repeat this operation until returning to C̃′. In such a
column, exactly one cluster (C̃) will be fully traversed
by this vertical traversal for path extension, and all other
clusters in the column will be entered twice by the path
being constructed; see Fig. 13(b).

�

Lemma 9. In a TCC(k, 2), for s = (0, 0, 0) and a node
d ∈ C(s) with procIDs of distinct parities, we can find a
Hamiltonian path s � d.

Proof. We give a constructive proof. If s = d, this
is the Hamiltonian cycle problem, and by Theorem 2 a
Hamiltonian path s � d can be found. Now, assume
s,d are distinct. Since s �= d, s,d are of distinct parities
and since we assumed s = (0, 0, 0), either p(d) = 1 or
p(d) = 3. If p(d) = 3, we can apply the Hamiltonian
cycle algorithm of Section 5, which will always select
the edge s = (0, 0, 0) → (0, 0, 3) = d. Effectively,
the internal edges that are not selected in the Hamiltonian
cycle are exclusively incident with nodes covering the
same dimension. Discarding this edge s → d from the
established Hamiltonian cycle induces a Hamiltonian path
s � d. If p(d) = 1, the main idea is to consider clusters
in the row of C(s) as skipped clusters C̃ as in Step 9 of
Lemma 8 the general case (with C̃ ′ clusters defined as in
Step 9 of Lemma 8, that is, adjacent to C̃ in the order for
vertical traversal path extension (here downwards)); see
Fig. 14. �

We summarise this discussion in Theorem 3 below.

s
d

(a)

s
d

C̃′ C̃′ C̃′

C̃ C̃ C̃

(b)

Fig. 14. Special case: d ∈ C(s) and p(d) = 1. Path construc-
tion initialised in (a) and completed in (b).

Theorem 3. In a TCC(k, 2), we can find a Hamiltonian
path between any two nodes of procIDs with distinct par-
ities in O(k2) optimal time.

Proof. A constructive proof is given in Lemmas 7
and 8. Regarding time complexity, one should note that
all decision operations are made in constant time, for
instance, by simply looking at the dimension of d. The
selection of one edge is also done in constant time. So,
in order to select all the edges needed, the algorithm
takes O(k2) time as we visit all the 4k2 nodes of a
TCC(k, 2). Obviously, this time complexity is optimal
for a Hamiltonian path/lace. �

7. Conclusions

In this paper, we have proposed a new topology for
interconnection networks of massively parallel systems:
torus-connected cycles. The aim of this topology is
to mitigate the issues faced by most modern topologies
described in the literature—issues which prevent actual
hardware implementation of these topologies. Then, we
have shown that the diameter of a TCC(k, n) is nk
in the case k is even, and nearly optimal in the case
k ≥ 3 is odd, precisely nk + n. We have deduced
from this result a point-to-point routing algorithm that
generates a path between any two nodes of length at most
the diameter of the network. Next, we have shown the
existence of and described an algorithm for constructing
a Hamiltonian cycle inside a TCC. Finally, we have
shown the existence of and proposed an algorithm for
constructing a Hamiltonian path inside a two dimensional
TCC.

Regarding future works, one may consider showing
that the diameter of a TCC(k, n) is nk for k ≥ 3,
where k is odd. Also, describing algorithms that solve the
node-to-node and the node-to-set disjoint paths routing
problems would be meaningful. Finally, fault-tolerance
could be another possible research area.

Acknowledgment

This study was partly supported by a Grant-in-Aid
for Scientific Research c© of the Japan Society for the

Torus-connected cycles: A simple and scalable topology for interconnection networks 733

Promotion of Science under Grant No. 25330079.

References
Al Faisal, F. and Rahman, M. (2009). Symmetric tori connected

torus network, Proceedings of the 12th International Con-
ference on Computers and Information Technology (IC-
CIT), Dhaka, Bangladesh, pp. 174–179.

Bossard, A. and Kaneko, K. (2012a). Node-to-set disjoint-path
routing in hierarchical cubic networks, The Computer
Journal 55(12): 1440–1446.

Bossard, A. and Kaneko, K. (2012b). The set-to-set disjoint-path
problem in perfect hierarchical hypercubes, The Computer
Journal 55(6): 769–775.

Bossard, A. and Kaneko, K. (2013). Set-to-set disjoint paths
routing in hierarchical cubic networks, The Computer
Journal 57(2): 332–337.

Bossard, A., Kaneko, K. and Peng, S. (2010). Node-to-set
disjoint paths routing in metacube, Proceedings of the
22nd International Conference on Parallel and Distributed
Computing and Systems (PDCS), Marina del Rey, CA,
USA, pp. 289–296.

Bossard, A., Kaneko, K. and Peng, S. (2011). A new node-to-set
disjoint-path algorithm in perfect hierarchical hypercubes,
The Computer Journal 54(8): 1372–1381.

Camara, J.M., Moreto, M., Vallejo, E., Beivide, R.,
Miguel-Alonso, J., Martinez, C. and Navaridas, J. (2010).
Twisted torus topologies for enhanced interconnection
networks, IEEE Transactions on Parallel and Distributed
Systems 21(12): 1765–1778.

Duato, J., Yalamanchili, S. and Ni, L. (2003). Interconnection
Networks: An Engineering Approach, Morgan Kaufmann,
San Francisco, CA.

Ghose, K. and Desai, K.R. (1995). Hierarchical cubic network,
IEEE Transactions on Parallel and Distributed Systems
6(4): 427–435.

Horiguchi, S. and Ooki, T. (2000). Hierarchical 3d-torus
interconnection network, Proceedings of the 5th Interna-
tional Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN), Dallas, TX, USA, pp. 50–56.

Lai, C.-N. (2012). Optimal construction of all shortest
node-disjoint paths in hypercubes with applications,
IEEE Transactions on Parallel and Distributed Systems
23(6): 1129–1134.

Li, Y., Peng, S. and Chu, W. (2004). Efficient collective
communications in dual-cube, The Journal of Supercom-
puting 28(1): 71–90.

Li, Y., Peng, S. and Chu, W. (2010). Metacube—a
versatile family of interconnection networks for extremely
large-scale supercomputers, Journal of Supercomputing
53(2): 329–351.

Malluhi, Q.M. and Bayoumi, M.A. (1994). The hierarchical
hypercube: A new interconnection topology for massively
parallel systems, IEEE Transactions on Parallel and Dis-
tributed Systems 5(1): 17–30.

Preparata, F.P. and Vuillemin, J. (1981). The cube-connected
cycles: A versatile network for parallel computation, Com-
munications of the ACM 24(5): 300–309.

Seitz, C. (1985). The cosmic cube, Communications of the ACM
28(1): 22–33.

Shih, Y.-K., Chuang, H.-C., Kao, S.-S. and Tan, J.J. (2010).
Mutually independent Hamiltonian cycles in dual-cubes,
Journal of Supercomputing 54(2): 239–251.

Singh, A., Dally, W., Gupta, A. and Towles, B. (2003).
Goal: A load-balanced adaptive routing algorithm for
torus networks, SIGARCH Computer Architecture News
31(2): 194–205.

TOP500 (2013). China’s Tianhe-2 supercomputer
takes no. 1 ranking on 41st TOP500 list,
http://top500.org/blog/lists/2013/06/
press-release/, (last accessed in August 2013).

Wu, J. and Sun, X.-H. (1994). Optimal cube-connected cube
multicomputers, Journal of Microcomputer Applications
17(2): 135–146.

Xiang, D. and Luo, W. (2012). An efficient adaptive
deadlock-free routing algorithm for torus networks,
IEEE Transactions on Parallel and Distributed Systems
23(5): 800–808.

Zhou, S., Chen, L. and Xu, J. (2012a). Conditional fault
diagnosability of dual-cubes, International Journal of
Foundations of Computer Science 23(8): 1729–1748.

Zhou, S., Lin, L. and Xu, J. (2012b). Conditional fault diagnosis
of hierarchical hypercubes, International Journal of Com-
puter Mathematics 89(16): 2152–2164.

Antoine Bossard is an assistant professor of the
Graduate School of Science, Kanagawa Univer-
sity, Japan. His research is focused on graph
theory, interconnection networks and dependable
systems. He received the B.E. and M.E. de-
grees from Université de Caen Basse-Normandie,
France, in 2005 and 2007, respectively, and the
Ph.D. degree from the Tokyo University of Agri-
culture and Technology, Japan, in 2011. He is a
member of the ACM and ISCA.

Keiichi Kaneko is a professor at the Tokyo Uni-
versity of Agriculture and Technology, Japan.
His main research areas are dependable systems,
interconnection networks, functional program-
ming, parallel and distributed computation, par-
tial evaluation and educational systems. He re-
ceived the B.E., M.E. and Ph.D. degrees from the
University of Tokyo in 1985, 1987 and 1994, re-
spectively. He is a member of the IEEE, ACM,
IEICE, IPSJ and JSSST.

Appendix A

d on the horizontal dimension: C(s) and C(d) share
one dimension, the dimension of d

We are in the case d on the horizontal dimension. Now, if
this dimension (horizontal dimension) is the one shared by

http://top500.org/blog/lists/2013/06/
press-release/

734 A. Bossard and K. Kaneko

C(s) and C(d), then we need to slightly modify the initial
path as given in Step 1 (see Fig. 10(b)) in order to avoid
havingC(d), C(u) andC(h) in the same dimension (here
the horizontal dimension). In practice, we shall initialise
the path such that the head of the path is shifted to another
row. Details are given in Fig. A1(a). Then, the path is
extended as detailed in the general case (cf. Lemma 7);
see Fig. A2(a). Finally, similar to the general case, C1 and
C2 are positioned, and routing is performed accordingly;
see Fig. A3(a). Skipped clusters C̃ are processed similarly
as in the general case, with C̃′ in the row of C̃ and the
column of C(s).

s d

(a)

s

d

(b)

Fig. A1. Special case: C(s) and C(d) share one dimension, the
dimension of d. Path initialisation for vertical (a) and
horizontal (b) traversals. Newly selected edges in bold;
the greyed node is the head of the (still in construction)
path.

s d

h

(a)

s

d

h

(b)

Fig. A2. Special case: C(s) and C(d) share one dimension,
the dimension of d. Path extension for vertical (a)
and horizontal (b) traversals. Newly selected edges in
dashes.

s d u

C1 C2

C̃C̃′

(a)

s

d

u

C1

C2 C̃

C̃′

(b)

Fig. A3. Special case: C(s) and C(d) share one dimension, the
dimension of d. Extending the path to include skipped
clusters C̃ (if any) in the case of vertical (a) and
horizontal (b) traversals. Path extension emphasised
by dashed edges.

Appendix B

d on the horizontal dimension: C(s) and C(d) share
one dimension, but not the dimension of d

Now, we are in the case d on the horizontal dimension,
and C(s) and C(d) share the vertical dimension. The
algorithm described in Lemma 7 for the general case
can be applied with the exception that there is no C1

needed: C(u) can be reached directly from C(h) without
elbow (so, straight). Successive steps are illustrated in
Figs. B1(a), B2(a) and B3(a). Skipped clusters C̃ are
processed similarly as in the general case, with C̃ ′ in the
row of C̃ and the column of C(s).

s

d

(a)

s
d

(b)

Fig. B1. Special case: C(s) and C(d) share one dimension, but
not the dimension of d. Path initialisation for vertical
(a) and horizontal (b) traversals. Newly selected edges
in bold; the greyed node is the head of the (still in
construction) path.

s

d

h

(a)

s
d

h

(b)

Fig. B2. Special case: C(s) and C(d) share one dimension, but
not the dimension of d. Path extension for vertical (a)
and horizontal (b) traversals. Newly selected edges in
dashes.

s

d u

C̃C̃′

(a)

s
d

u
C̃

C̃′

(b)

Fig. B3. Special case: C(s) and C(d) share one dimension,
but not the dimension of d. Extending the path
to include skipped clusters C̃ (if any) in the case
of vertical (a) and horizontal (b) traversals. Path
extension emphasised by dashed edges.

Torus-connected cycles: A simple and scalable topology for interconnection networks 735

Appendix C

d on the vertical dimension: C(s) and C(d) share
one dimension, the dimension of d

We are in the case d on the vertical dimension. Now, if
this dimension (vertical dimension) is the one shared by
C(s) and C(d), then we need to slightly modify the initial
path as given in Step 1 (see Fig. 10(b)) in order to avoid
havingC(d), C(u) andC(h) in the same dimension (here
the vertical dimension). In practice, we shall initialise the
path such that the head of the path is shifted to another
column. Details are given in Fig. A1(b). Then, the path
is extended as detailed in the general case (cf. Lemma 8);
see Fig. A2(b). Finally, similar to the general case, C1 and
C2 are positioned, and routing is performed accordingly;
see Fig. A3(b). Skipped clusters are processed similarly
as in the general case with the exception that, considering
the column of each such skipped cluster C̃, we define the
cluster C̃′ of this column to be in the same row as C(s).

Appendix D

d on the vertical dimension: C(s) and C(d) share
one dimension, but not the dimension of d

Now, we are in the case d on the vertical dimension
and C(s) and C(d) share the horizontal dimension. The
algorithm described in Lemma 8 for the general case can
be applied with the exception that there is no C1 needed:
C(u) can be reached directly from C(h) without elbow
(so, straight). Skipped clusters are processed similarly as
in the general case with the exception that, considering
the column of each such skipped cluster C̃ , we define the
cluster C̃′ of this column to be in the same row as C(s).

Received: 9 April 2014
Revised: 28 October 2014

	Introduction
	State of the art
	Preliminaries
	Diameter and simple routing
	Formally established diameter
	Experimentation and comparison with related networks

	Hamiltonian cyclicity
	Hamiltonian laceability of a TCC(k, 2)and a Hamiltonian path algorithm
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

