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SENSITIVITY ANALYSIS OF BUCKLING LOADS
OF PHYSICALLY NON-LINEAR FRAMES
USING DYNAMIC AND STATIC CRITERIA

ANDRZEJ GARSTECKI*, ApAM GLEMA*

Small eigenvibrations around the prestressed equilibrium state are considered
and the sensitivity of eigenfrequencies with respect to cross-sectional parame-
ters of the frame is assessed. The sensitivity operators thus derived are used
to determine the sensitivity of buckling load with dynamic criterion. For com-
parison, the static criterion is employed, too. The problem is solved with the
use of variational formulation. The redistribution of prestress is evaluated by
the adjoint-variable method. Numerical examples solved with the use of the
Finite-Element Method illustrate the theory and demonstrate the quantitative
contribution of prestress redistribution into sensitivity operators. The numerical
efficiency of dynamic and static approaches is discussed.

1. Introduction

Sensitivity analysis (SA) of buckling loads and eigenfrequencies of frames finds wide
application in the optimal structural design. An efficient method of computing the
sensitivity of eigenfrequencies and buckling loads of linear elastic structures has been
presented in (Cohen et al., 1990; Mréz and Haftka, 1988). Design engineers are often
faced with problems when the structure responds in the non-linear regime, therefore
in the present paper physically non-linear structures are considered. The sensitivity
analysis and optimal redesign of physically non-linear columns using the variational
calculus and Pontriagin maximum principle were presented in (Garstecki and Glema,
1991; Glema, 1992). The implementation of a static criterion of stability with the
use of the Finite-Element Method (FEM) was discussed in (Garstecki and Glema,
1992). The aim of this paper is to demonstrate the use of a dynamic criterion in
sensitivity analysis of buckling loads of physically non-linear frames subjected to an
initial prestress and to discuss its efficiency in comparison with the static criterion.

2. Problem Statement

Consider a frame structure made of a non-linear elastic material with an arbitrary,
increasing ¢ = o(e) relation. In the following, three steps of considerations and
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computations can be distinguished. In the first step, the non-linear analysis of the
structure subjected to external load is carried out. The layered beam-type finite ele-
ment and the Newton-Raphson procedure are implemented. The values referring to
this state will be denoted by the subscript ‘0’. Let uo and wp denote longitudi-
nal and transversal displacements, Ny and Mj denote the axial tensile force and
bending moment, whereas x and z represent local longitudinal and transversal axes,
respectively. In the next step, small free vibrations around the initial state of equi-
librium are computed. The third step consists in sensitivity analysis using the results
of previous steps.

In the present stage of study, we neglect the initial transverse displacements wq
and the initial bending moment M; in the vibration analysis and in the prebuckling
state of equilibrium. Damping is also neglected. Hence, in implementation of the
FEM the tangent stiffness, initial stress and mass matrices will appear, whereas the
geometric matrices and damping matrices will not be introduced.

For harmonic small vibrations the equilibrium condition can be written in the
following variational (weak) form:

/ [wa’l’éwi' + Duiéu’ + Nowybw' — w?m(w, éw + uu?u)] dz =0 (1)
L

for all kinematically admissible variations of displacements §u and §w. Here wy, u;
denote displacement amplitudes and w, m denote the eigenfrequency and distributed
mass, respectively. Furthermore, D® and D® denote bending and longitudinal tan-
gent stiffness cross-sectional coefficients computed in the non-linear analysis of the
structure at the initial state of loading. In the following, [...dz will denote inte-
gration along all the members of the frame. Note that the initial axial force Ny is a
non-linear function of the cross-sectional design parameter s and strains &g

No = No(s,e0) = / o(co)dd, o=} @)
AGs)
and

do ()

D“:/ E'dA, Db=/Etz2dA, E'=—— (3)
A A 66

where E* and A denote the tangent modulus of elasticity and cross-sectional area,
respectively.

Equation (1) describes the eigenvalue problem. In the FEM formulation the first
two terms of (1) contribute to the tangent stiffness matrix, whereas the third and
forth terms form the initial stress and mass matrices, respectively.

3. Sensitivity Analysis of Eigenfrequencies

Setting éu = u; and dw = w; in (1), we obtain

/ [wai’w’l’ + D®uiul + Nowjw) — w?m(wiw; + ulul)] dz =0 (4)
L
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The variation of (4) with respect to the design parameter vector s leads to
/L [wi’w'{&Db + 2D%w! 6w} + ujui6D* + 2D%ujbu; + wiw; Ny
+2Now) 8w} — §(w?) m (wiwy + urw1) — w?(wiwy + viu1)dm
—2w%m (wibwy + uléul)] dz =0 (5)

The terms standing with factor 2 vanish due to (1).

The variations §D® and §D® depend on s explicitly and also implicitly through
redistribution of Ny due to the variation és

oD® oD® oD* oD*
b 2= —_— ¢ = — —_
6D° = s bs + 3 O(SsNo, 6D EP 0s + 3N, 6sNop (6)

Using (6) and normalization of the eigenvector {ui, w}, i.e. based on the dependence
J m(u1u1 +wywr)dz = 1, we can rewrite (5) in the form

oD oD* om
6(&)2) = L { [—g w'l'w’l' + —-é's—" u'l'u'l - wzg‘—s—(u}lwl + ulul)] 65

oD® oD*
+ [a—No wwi + 3N ujuy + w’lw'l] 63Ng} dz (7
To compute the implicit variation §,Ng in (7), we introduce an adjoint structure
which is linear and elastic with stiffness coefficients D* and D?. We assume that it
is subjected to the initial axial strain
) oD*
€= N, wiw] + I ujuy + wijw] (8)
In what follows, the strain, stress and displacement fields of the adjoint structure
will be denoted by the subscript ‘2.

The strain e is kinematically inadmissible, therefore the elastic strain e§ ap-
pears, so that the total strain u) = g3 = €3 +¢5 is kinematically admissible, whereas
the induced stress N, is self-equilibrated. Hence

D® a )
/ (gTwi'w'l' + g%u'lu'l + 'wi'w’l) 8;Nodz = /ES(SSN[] dz
0 0

= / (e26sNo — ££6,Np) dz = — / e£8,No dz (9)

The underlined term vanishes because 6,Np is statically admissible and self-
equilibrated.
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Variation of (2) with respect to s gives

65No=/ ?ﬂ&eodA+/ aodA:/ EtéeodA+/ sodA  (10)
A Oe SA A A

Introducing (10) to (9) we obtain

—/52‘355N0dx=—/(/ e Btbe, dA+/ . dA) dz
A 6A

:“/NgéEo dI—-// 6260'0 dAdz (11)
5A

The underlined term vanishes because N> is self-equilibrated, whereas 6ey is kine-
matically admissible. Since §A is small, [;,(...)dA =(...)64 =(...)0A4/8s5(s).

Using (9), (11) and (7) we obtain the variation of the eigenvalue with respect to
the design variable s:

oD éD*
§w?) = L(—w{'wi’+—as uju)

0s
;] 0A
—wz—g-:—(%w +uruy) *Efaog) 8sdz (12)

4. Sensitivity of Critical Load Using Dynamic Criterion

Assume one parameter load with load factor A. Our aim is to find the sensitivity
derivative of A with respect to the distributed design parameter s. In the state of
critical load A = XA°", the eigenfrequency is equal to zero, w = 0, for the variable s,
so that

Ow? Ow?
2 e — cr —
d(w?) = e ds+ Eh) oA 0 (13)
Hence
er . OW'Bs  §(w?)
AT = —8w2/6)\63 = 5@ (14)

where the numerator is equal to (12).
The denominator in (14) is a scalar parameter, and therefore the easiest way of

its numerical evaluation is to apply the finite-difference scheme

0w?) L AWY)| [l X (s, A7 — AN]?

e —_—
~

2y
L) =53 AN |ymyer AN

(15)

Hence the sensitivity derivative of critical load factor §A°" is a function proportional
to (12) evaluated at A = A°", with proportionality factor —1/8)(w?).
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5. Sensitivity of Critical Load Using Static Criterion

Let us note that the normal force in the cross-sections of a frame in the pre-buckled
state is a non-linear function of the design variable s and load factor A\, Ny =
No(s,A) and thus (6) takes the form

oD dDb ON,
b
0D = -85 + 5 (55N0+ Aax)
(16)
._0D° 9D ONy
OD* = S5 bs + o (55N0+ 5 6A)

Substituting (16) into (5) and neglecting the inertial terms with w and 6w we obtain

an an aNU " II
J{[Tons 3 (00 o)t

+ [aD 55+ 22" (5 No+%6>\)]

0 EA oA
+ 2D} 6w} + 2D%u 6}
+ (65N0 + 8;\70 15/\) wiw; + 2N0w16w1} dz =0 (17

The terms with factor 2 vanish due to (1) with inertial terms neglected. Thus (17)
can be transformed to

6AT = :

5 a
—fL BNQ 6D u II + E)D “1“1 +w1w1 )d.’L‘

b De
X/L[(aaDs Twy +683 u’lu'l) §s

+ (an oy oD*

N, 1t 5

To transform the implicit variation §,/Ny to an explicit form with respect to §s,
we use again the adjoint-variable method (8) to (11) and we finally get

—uju; + w1w1> 65N0] dz (18)

OAT = BD” // // -
- [, 5e (§Rrwiwy + SRouiu) +wiw) ) dz
oDb oD+ JA
X/L( B wiwy + —— s ujuy —es 05> )55 dz (19)

Let us note that if we set w = 0 in (12), then the numerators of (14) and (19) are
equal since the eigenmodes {w,u} for vibrations with w = 0 are identical to the
eigenmodes {w,u} for stability. It can be proved that for conservative systems the
formulae (14) and (15) can be transformed to the form (19). However, for numerical
applications, the formulae (14) and (15) seem to be more advantageous than (19).
This will be studied by means of numerical examples.
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6. Numerical Examples

For brevity of description, the same cross-section of bars is assumed in all the exam-
ples, namely a box section made of 2 [ 140F, reinforced by two cover plates attached
to flanges. Each cover plate is 80 mm wide and 6 mm thick. The total cross-sectional
area and moment of inertia around the y-axis, parallel to webs, are equal to A =
40.8cm?, I = 980.48 cm?, respectively.

A FEM program has been developed for the non-linear analysis of structures
subjected to initial loads and for the solution of the linear eigenvalue problem as well
as for computing the sensitivity operators. A multi-layered beam finite element has
been used. In the following examples, the cross-section is divided into 10 layers parallel
to the y-axis. Four of them are placed in flanges of [C 140F sections and four other
ones in webs. The last two layers are reserved for cover plates. This discretization
allows for a non-linear stress distribution within the depth of the cross-section.

The examples will illustrate the sensitivity of the eigenfrequency with respect to
the variations of the width of cover plates §s and the load factor §), where P = \P°".
Sensitivity operators are calculated for the load factor A = 0.0 (the structure without
loading), A = 0.5 and A = 1.0 (the buckling load). The results are compared with
those obtained by total finite-difference and semi-analytical methods.

The material satisfies the non-linear elastic law described by a bilinear relation
with transition curve represented by a third-order polynomial which ensures conti-
nuity of the function o(e) and its first derivative do(e)/de. The Young modulus of
elasticity is equal to E = 210 GPa. For the second linear part, the tangent modulus
is equal to E; = 10GPa. Both lines of the constant modulus would intersect at
the stress o, = 250 MPa, while the transition portion is between o = 215 MPa and
o = 251.7MPa. For comparison, calculations are also performed for the linear elastic
material. The material mass density is equal to p = 7850 kg/m>. The cross-sectional
and structural dimensions are assumed such that the prebuckling stress remains in
the non-linear regime of the above physical rule.

6.1. Simply-Supported Column with Concentrated Tip Force

This simple structure has an analytical solution for free vibrations, therefore it illu-
strates well the accuracy of eigenfrequencies and sensitivity operators obtained by
computer methods. Let the length of the column be equal to 4.5m. The first eigen-
value is examined, using 20 finite elements to discretize half of the column. The
critical buckling load for the linear elastic material is P§™ = 1003.535 kN and for the
non-linear law Pf§f; = 905.140kN. The sensitivity derivatives of w? obtained from
formula (12) with the use of the FEM program are presented in Fig. 1.

2
n

EI PL? P
2 _ 2 4 _ — .2 _
wp =nm (1 = szI) W (1 CT) (20)

where wy and P°" denote the eigenfrequency of the unloaded column and Euler criti-

The exact formula for the n-th eigenfrequency squared w? of an elastic column

is
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Fig. 1. Sensitivity operators with respect to the cross-sectional pa-
rameter s for the variable load factor A = P/P°".
(a) Linear elastic column; (b) non-linear elastic column.

cal load, respectively. Variation of (20) with respect to the cross-sectional parameter s
and load P, for n=1 leads to

p P wé
2 . = (1= ) 85002 (5. 0: 65) — w?— L sper(s. 5) — L0
§(w?) (s, P;és,6P) = (1 PCT) §(wg)(s,0;88) — wg P P (s; 65) Per 6P (21)

A formal notation for the Giteau variation is used, namely §(w?) (s, P;és,5P)
refers to the design s, P and the direction §s, §P . The first two right-hand side
terms in (21) represent the variation of w? due to &s, while the last term results from
the independent variation of the prestress 6P.

From (20) it follows that w? = 15271.357 (rad/s)? and the same value was ob-
tained by the FEM. Exact integration of formula (12) for a constant variation §s gives
§(w?)/6s = 24687.5rad?/s’m for A\ = 0, §(w?)/6s = 47145.4rad?/s’m for A = 0.5
and §(w?)/és = 69603.3 rad?/s?m for A = 1.0.

The doubled surface under the respective curves in Fig. 1a, when compared with
the above exact values §(w?)/és, shows the excellent accuracy keeping the error less
than 4 x 107%%. The total Finite-Difference Method (FDM), with forward step equal
to 1.25% of s, has also been implemented for comparison with the values shown in
Fig. 1a,b. The results of the total FDM give underestimation of §(w?)/6s with the
error less than 0.2%. The error increases with the increase of the step.

The values shown in Fig. la,b for A = 1.0, when multiplied by the factor
—1/6x(w?) according to (14), provide the sensitivity of the buckling load &())/6s
from the dynamic criterion. The sensitivity derivatives §(w?)/8s and §(\°")/6s for
the linear and non-linear structural material are shown in Table 1.
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Tab. 1. Sensitivity derivatives 6§(A)/§s for the simply-supported column.

El §(w?)/és §(A°")/6s
No || linear l non-linear || linear I non-linear
1 6946 21264 0.4548 0.3278
2 6861 21003 0.4493 0.3237
3 6692 20487 0.4382 0.3158
4 6444 19728 0.4220 0.3041
5 6124 18747 0.4010 0.2890
6 5738 17566 0.3757 0.2708
7 5297 16215 0.3468 0.2499
8 4811 14727 0.3150 0.2270
9 4292 13138 0.2810 0.2025
10 3753 11489 0.2458 0.1771
11 3207 9819 0.2100 0.1513
12 2668 8169 0.1747 0.1259
13 2150 6581 0.1408 0.1014
14 1664 5093 0.1089 0.0785
15 1222 3742 0.0800 0.0577
16 837 2561 0.0548 0.0395
17 516 1579 0.0338 0.0243
18 268 821 0.0176 0.0127
19 100 305 0.0065 0.0047
20 14 44 0.0009 0.0007

6.2. Portal Frame

Consider eigenvibrations of an orthogonal portal frame with the columns 3.6 m high
and with the span of the beam equal to 6.0m. The columns are rigidly fixed in
foundations. Let the frame be subjected to two concentrated vertical loads, applied
at the top of the columns. The FEM computations are carried out for the whole
structure, although the results are presented only for its half. Symmetric discretiza-
tion with 6 finite elements for a column and 6 for half the beam span was used.
The critical buckling load for the linear case was Pf" = 1015.986kN and for the
non-linear material P§; = 917.920kN. The square of the first eigenfrequency was
w? = 2442.441 (rad/s)? and it was associated with the antisymmetric mode. The
sensitivity derivatives 6(w?)/6s with respect to the cross-sectional parameters for
different A are shown in Fig. 2. The sensitivity derivatives §(1)/6s were computed
using both the dynamic method (12), (15), (14) and the static approach (19). The
sensitivity derivatives are listed in Table 2.
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Fig. 2. Sensitivity operators for the portal frame.
(a) Linear elastic material; (b) non-linear elastic material.

Tab. 2. Sensitivity derivatives §()\)/6s for the portal frame.

El 8(w?)/bs 6(A°T)/6s
No || linear | non-linear || linear | non-linear
1 1503 4948 0.6038 0.5636
2 1030 3327 0.4140 0.3789
3 402 1216 0.1613 0.1385
4 38 89 0.0151 0.0102
5 182 732 0.0731 0.0834
6 738 2697 0.2965 0.3071
7 749 634 0.3010 0.0722
8 502 425 0.2017 0.0484
9 305 258 0.1224 0.0294
10 156 132 0.0628 0.0151
11 58 49 0.0232 0.0056
12 8 7 0.0033 0.0008

6.3. Three-Bar Structure

The dimensions of the structure and the discretization with 24 finite elements are
shown in Fig. 3. The critical buckling load of the structure is P§" = 1037.441 kN
for the linear case and P§/; = 912.885kN for the non-linear law. The square of the
eigenfrequency of the unprestressed structure is equal to w? = 6431.932 (rad/s)?.
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Fig. 3. Three-bar structure.

The sensitivity operators with respect to the variation of the width of cover plates
are shown in Table 3 for the linear and non-linear elastic material. The sensitivity
derivatives presented in Table 3 were computed using formula (12) with an analytic
method of evaluating the derivatives of the corresponding stiffness and mass matrices.
For comparison, a semi-analytical method, employing the FDM to calculate deriva-
tives of the matrices, was used, too. The values presented in Table 3 were checked
with the use of the total FDM. All sensitivity operators obtained using the three
approaches described above were in satisfactory agreement (errors in the range of
0.5%).

Table 4 illustrates interesting phenomena regarding the quantitative contribution
of various terms of (12) to the sensitivity operator. Column 3 pertains to the first two
integrands in (12), whereas columns 4 and 5 refer to the third and forth integrand,
respectively. A comparison of column 5 with columns 3, 4 and 6 demonstrates that
the implicit redistribution of §,Ny contributes significantly to the total sensitivity.

As regards the comparison of numerical efficiency of the two approaches based on
the static and dynamic criteria, the crucial point is the numerical effort of evaluation
of denominators in (19) and (14). Therefore in all the examples presented above, the
accuracy of formula (15) was studied. It appeared that w? was nearly linear with
respect to the load parameter A in a vicinity of w = 0. Therefore formula (15) gave
very good results for different steps A, and was numerically very efficient. Hence
the sensitivity derivatives computed using the static approach demonstrate very good
agreement with differences remaining within computer round-off errors.

7. Concluding Remarks

The variational formulation and solution to the sensitivity analysis of linear and non-
linear elastic frames subjected to on initial load were presented. The sensitivity
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Tab. 3. Sensitivity derivatives §()\)/8s for a three-bar structure.

El 8(w?)/6s 5(XT)/és
No || linear ] non-linear linear I non-linear
1 739 3109 0.0782 0.0778
2 741 3113 0.0783 0.0779
3 746 3128 0.0789 0.0782
4 763 3177 0.0807 0.0795
5 812 3318 0.0859 0.0830
6 949 3717 0.1004 0.0930
7 1333 4837 0.1409 0.1210
8 2402 7978 0.2540 0.1996
9 4 1 0.0004 0.0000
10 32 22 0.0033 0.0006
11 89 71 0.0094 0.0018
12 175 147 0.0186 0.0037
13 292 250 0.0308 0.0063
14 437 381 0.0462 0.0095
15 613 540 0.0648 0.0135
16 817 726 0.0864 0.0182
17 151 -254 0.0160 -0.0063
18 4451 13512 0.4706 0.3380
19 8919 27713 0.9431 0.6932
20 9261 28602 0.9792 0.7154
21 5148 15317 0.5443 0.3831
22 531 714 0.0562 0.0179
23 -153 -1076 -0.0162 -0.0269
24 3752 11675 0.3967 0.2920

Tab. 4. Contribution to §(w?)/és for a three-bar structure (the non-linear material).

A | Element || Stiffness Mass Redistr Total
1 2 3 4 5 6
4 2798 -1940 0 858
0.0 12 1268 -638 0 630
20 2798 -1940 0 858
4 374 -313 242 303
0.5 12 696 -281 -2 413
20 7128 -2860 -243 4025
4 76 0 3101 3177
1.0 12 169 0 -22 147
20 31719 0 -3117 28602
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derivatives of the square of the eigenfrequency thus derived were used in the evaluation
of the sensitivity of the buckling load with the use of the dynamic criterion. The static
approach to the sensitivity analysis of critical loads was used, too. It was shown that
the sensitivity derivatives of the buckling load are proportional to the respective
derivatives of the square of the eigenfrequency.

The method of SA based on the dynamic criterion was numerically more efficient
than the method based on the static criterion. Writing the code of the program was
easier. The results were identical within the limits of computer round-off errors. The
effective method of computation of the sensitivity operators allowing for the redistri-
bution of the pre-buckling load in the non-linear structure was demonstrated using
the adjoint-variable method. The redistribution is often neglected in the optimal
design. The numerical example of a three-bar structure demonstrated that the redis-
tribution of prestress contributes significantly to the sensitivity operators and cannot
be neglected.

The illustrative examples also demonstrated numerical efficiency and stability
of computations using the derived formulae for sensitivity. An excellent accuracy
of analytical sensitivity analysis and a good accuracy of semi-analytical sensitivity
analysis were observed for linear and non-linear structures and for various load levels
in the case of derivatives of the eigenfrequency.
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