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ROBUST PREDICTIVE CONTROL USING
A TIME-VARYING YOULA PARAMETER

Ton J.J. VAN DEN BOOM*, Ros A.J. DE VRIES*

In this paper, a standard predictive control problem (SPCP) is formulated,
which consists of one extended process description with a feedback uncertainty
block. The most important finite horizon predictive control problems can be seen
as special realizations of this SPCP. The SPCP and its solution are given in a
state-space form. The objective of the controller is a nominal performance sub-
ject to signal constraints and robust stability with respect to a 1-norm bounded
model uncertainty. The optimal controller consists of a feedforward part for
nominal signal tracking and a feedback part for disturbance rejection and model
error compensation. The feedforward part is realized by the predictive controller
for the nominal disturbance-free case. The feedback part of the controller is re-
alized by using the Youla parametrization. The Youla parameter is optimized at
every sample time in a receding horizon setting to cope with signal constraints
and (robust stability) constraints on the operator itself.
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1. Introduction

Since the introduction of predictive control in the late 1970’s, it has shown to be very
successful both in theory and in practice. This last property is not surprising because
predictive control is an advanced model-based control method that, contrary to many
other methods, originated from industry (Cutler and Ramaker, 1979; Richalet, 1993).
The main benefits of MBPC are the easy constraint handling and the fact that complex
processes (e.g. multivariable or nonlinear) can be controlled without much special
precautions or theoretical background.

Every predictive control problem consists of the specification of a process model
(which is used to predict the future behaviour), a criterion function (which speci-
fies the desired future behaviour) and, in all practical situations, signal constraints.
Because of these many degrees of freedom in the problem specification, there exist
many different predictive controllers which are all based on the same concept, but
solve different predictive control problems. Soeterboek (1992) unified most important
predictive control methods by using a unified process model and a unified criterion
function, which could realise most of these control problems. In the present paper,
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this “unification process” is carried out one step further by formulating a standard pre-
dictive control problem (SPCP) which consists of one extended process description.
The most important predictive control problems for multivariable linear processes,
using quadratic criterion functions and linear constraints can be seen as special cases
of the SPCP. The SPCP and its solution are given in a state-space form which is,
especially in the multivariable case, easier to use, more transparent and numerically
more reliable then a description in transfer function form. The solution can be seen
as an extension of the work of Kinnaert (1989) for the GPC case.

A controller is called robustly stable if a small change in the system does not
destabilize the system. It is said to give a robust performance if the performance
does not deteriorate significantly for small changes in the system. The design and
analysis of linear time-invariant (LTT) robust controllers for linear systems has been
studied extensively in the last decade. In practice, a predictive controller usually
can be tuned quite easily to give a stable closed loop and to be robust with respect
to a model mismatch. However, in order to be able to guarantee stability, feasibility
and/or robustness and to obtain better and easier tuning rules by an increased insight
and better algorithms, the development of a general stability and robustness theory
for predictive control has become an important research topic.

For the nominal case, a quite general stability (and feasibility) theory has become
available over the past seven years. Two basic ways of using an infinite prediction
horizon (Rawlings and Muske, 1993) or end-point constraints (Clarke and Scattolini,
1991; Kouvaritakis et al., 1992; Mosca and Zhang, 1992) to guarantee nominal sta-
bility, have recently been unified in more general approaches (De Vries and van den
Boom, 1996; Rossiter et al., 1998). One way to obtain robustness in predictive con-
trol is by carefull tuning (Clarke and Mothadi, 1989; Lee and Yu, 1994; Soeterboek,
1992). This method gives quite satisfactory results in the unconstrained case. In the
constrained case robustness analysis is much more difficult, resulting in more complex
and/or conservative tuning rules (Gencelli and Nikolaou, 1993; Zafiriou, 1990). One
approach to guarantee robust stability is to use an explicit contraction constraint
(De Vries and van den Boom, 1997; Zheng, 1995). Two main disadvantages of this
approach are the resulting non-linear optimization problem and a strong but unclear
influence of the choice of the contraction constraint on the controlled system. An
approach to guarantee a robust performance is to guarantee that the criterion func-
tion is a contraction by optimizing the maximum of the criterion function over all
possible models (Zheng and Morari, 1993; 1994). The main disadvantages of this
method are the need to use polytopic model uncertainty descriptions, the use of less
general criterion functions and, especially, a difficult minimax optimization. Recently
Kothare et al. (1996) derived an LMI-based method that circumvented all of these
disadvantages. However, it may become quite conservative. A third solution is using
a Youla parametrization in combination with the small-gain theorem (Vidyasagar,
1993). By optimizing the time-varying Youla parameter instead of the ouput of the
controller, stability constraints on the Youla parameter, as well as signal constraints
can be satisfied (De Vries and van den Boom, 1994; Kouvaritakis et al., 1992).
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In this paper, the nominal stability results and the tool of a time-varying Youla
parametrization will be used to solve the constrained predictive control problem while
remaining robustly stable. First, a basic nominally stable constrained predictive con-
troller is tuned for optimal signal tracking in the unperturbed case. The feedforward
part of the true controller is realized by this basic controller using the nominal model
and assuming that there are no disturbances. Well-known stability and feasibility
results can be used for this part. The feedback part of the controller is realized by
the time-varying Youla parameter which is optimized to reject state-disturbances and
the effects due to model uncertainty. Bounds on this Youla-parameter based on the
small-gain theorem give robust stability against a 1-norm bounded model error.

One major contribution of the presented results is its generality. The only as-
sumptions made are that the process and signal constraints are linear, that a quadratic
criterion function is used and that an upper bound is known on the [;-norm of the
model uncertainty (which can be structured or unstructured, additive, output reverse,
etc.). By using the small-gain theorem robust stability can be guaranteed without
the difficult and limiting choice of one specific contraction constraint. The second
contribution is the highly structured design procedure. In relatively simple steps, one
is taken from the nominal unconstrained disturbance-free case to the constraint per-
turbed case. Two other advantages of the approach are that it offers a clear link with
the well-known results and insights obtained in the design of LTI robust controllers
and that the resulting optimization problem is convex and thereby easy to solve.

This paper is structured as follows. We start with the formulation of the con-
strained predictive control problem in a standard setting, followed by the related
prediction model. In Section 4 the structure of the controller is given and it is shown
how stability can be guaranteed. In Sections 5, 6 and 7 a solution to the SPCP
problem is given, first for the unperturbed case (no noise, no model error), then for
the nominal case (no model error) and finally for the robust case. The tuning of the
controller is discussed in Section 8. The results are llustrated by a simulation example
in Section 9, which is followed by the conclusions.

Notation: The difference operator A(q) is defined as A(g) = (1 — ¢ ') I, where
g~! denotes the backward shift operator. S™ denotes the linear vector space of
all sequences {z(k)}, k € Z, z(k) € R*. For x € S™ the oo-norm is defined as
[Z]lo = maxy ; |zi(k)|, where z;(k) denotes the i-th element of the vector z(k) € R™.
For z € S™ the rms-seminorm is defined as

T

1/

k=—-T

9

Let H(q) be the transfer matrix of a system with Markov-parameters h(k):
y(k) = H(g)u(k) = Yooy h(r)u(k — 7). The 1-norm of h is equal to the induced
0o-norm, so

1Al = masx 0> [his ()

j=1 k=0
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where h;;(k) is the (i,7)-th element of h(k). The associated 1-norm of H is defined
as

1H ) = l1Allx

The normed space 1% of bounded sequences is defined as 12, = {z € S™:
[|z]l.o < o0}. The space I . of power-bounded sequences is defined as % . =
{z€ S™: ||T|ltms < 00}

Finally, a mapping G : S™ — S™ is called BIBO or [-stable if it has a bounded
induced co-norm: wu € I} implies that Gu € [ and there exists a finite constant
ec such that ||Gu|leco < €6 ||ulloo ¥ u € IZ2. In this paper, a system is called stable if
it is BIBO stable.

2. Standard Predictive Control Problem

Definition 1. (Standard Predictive Control Problem, or SPCP) Consider a system
{62,2, 08, ¢1,y} = T{d1,w, e, Au} given by the state-space realization

z(k + 1) = Az(k) 4+ B161 (k) + Bow(k) + Bse(k) + Byou(k)
83(k) = Cyx(k) + D111 (k) + Dysw(k) + Dise(k) + D1s6u(k)
2(k) = Cax(k) + D161 (k) + Dasw(k) + Daze(k) + Dasbu(k)
¢r(k) = Csx(k) + D3101(k) + Dsaw(k) + Dsze(k) + Dsadu(k)
¢1(k) = Cyz(k) + D161 (k) + Daow(k) + Dyse(k) + Dagdu(k)

y(k) = C5CL'(I<J) + Ds10; (k’) + D52w(k) + D53€(k)

where w € §™ is a vector containing all known signals such as the reference signal and
the known disturbance signals, e € S™ is a zero-mean white noise signal, Au € S™
is the increment of the control signal (so w(k) = u(k — 1) + Au(k)) and y € S™s
is the process ouput measurement. Further, §; € S™ and J; € S™* are related
by the mapping 4;(k) = Q(q) 62(k), where the model error Q(g) is a stricly proper
linear time-invariant transfer function in the backward shift operator ¢~!. Finally,
z(k) denotes the performance signal, ¢z (k) denotes the equality constraints and ¢;
denotes the inequality constraints. We then make the following assumptions:

1. (A, By) is stabilizable.
2. Ds3 is square and invertible.

3. A— BgDs_3l Cs has all eigenvalues inside the unit circle (This implies that the
pair (Cs, A) is detectable).
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Further, we define

506 = M. [ SR AT+ 1K) . AT(e NIE) | € ROV
Fo(k) = Mg | LKD) FEG+ 1) .. FEG+ NIk) ]T ¢ RIVHIms
Fr(k) = M [ BE(kIR) SR +1R) .. 6T (k+ NIE) " € mvsime

where 2(k+jlk), ¢u(k+jlk) and ¢;(k+ j|k) are the predictions of z(k+ j) € R™2,
ér(k +j) € R™ and ¢;(k+j) € R™ at time k, respectively, and M, Mg and
M7 are constant weighting matrices with proper dimensions. Finally, we define

ﬁ(k)=[wT(k) wl(k+1) ... wT(k+N)]T€R(N+1)nz

which is a vector containing a-priori known signals, and the sets S;? and S7? which
specify the domain of w and e using a-priori information: w € Sj2 € S™ and
e € 808 C S,

The Standard Predictive Control Problem (SPCP) is now given as follows:

Find a stabilizing controller Au(k) = K(W,y,k) such that the criterion function
J(k) = 2T (k)Z(k)

15 minimized subject to the constraints

de(k)=0 and ¢(k) <1 (2)

for all model errors which satisfy
1920l < eq
The optimal controller is denoted by
K = IC(E,MZ,ME,M,—,EQ,S:},?,S;‘S,k)

where gj(k) < 1 means that each component of 51 is less than or equal to 1. The
standard predictive control problem is visualized by the configuration of Fig. 1.



106 T. van den Boom and R. de Vries

@ |
01 02
W ] e 2
e T —>gf
Ay y
e I —
b i} i~} 5o
P 5

Fig. 1. Standard predictive control problem.

Remark 1. Typically, the variable z(k) is a vector with a performance measure and
a measure of control action. For example, GPC (Clarke and Mohtadi, 1989; Kinnaert,

1989) uses
w(k) — (k) ]
l: AAu(k)
(k

where (k) = P(g)y(k) and w(k) is the reference signal. For MPC (Garcia et al.,
1989; Lee et al., 1994) one chooses

Q1/2$ k
ok = (k)
R2u(k)
Definition 2. (Well-defined SPCP) A standard predictive control problem

K =K(Z,M,, Mg, My, eq, S, S, k)

as defined in Definition 1 is called well defined if the equality constrained nominal
predictive control problem

K = K(Z, M., Mg,0,0,5™,5™ k)

results in a feasible stabilizing controller.

Definition 3. (Nominal feasible SPCP) A well-defined standard predictive control
problem

=]C(EaM27ME7MIJEQ,S'Z215?S’]C)
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as defined in Definitions 1 and 2 is called nominal feasible if the constrained nominal
predictive control problem

K =K(Z, M., Mg, M1,0,552, 523, k)

results in a feasible stabilizing control law.

Remark 2. In this paper, we will assume the SPCP to be well-defined and nominal
feasible. The SPCP can always be made well-defined by increasing the prediction
horizon N (Rawlings and Muske, 1993), by including.a terminal-state or end-point
constraint (Clarke and Scattolini, 1991; Mosca and Zhang, 1992), or by using the
compromise between these two approaches presented in (De Vries and van den Boom,
1996). The nominal feasibility of the SPCP depends on the equality and inequality
constraints, and/or on the signal spaces S22 and S7* (De Vries and van den Boom,
1996; Rossiter et al., 1998).

3. Prediction

In this section, we will give the prediction model for the vectors Z(k), qEE(k) and
#r(k) in the SPCP. As is usual in predictive control, we will use the minimum-
variance prediction which is obtained by taking the conditional expectation given
information up to time k. Further, we will use the certainty-equivalence principle or,
in other words, the predictions are based on the nominal model which implies that
nominal performance will be optimized.

Using the certainty-equivalence principle implies the assumption that Q(q) =0
and thus that §;(k) = 0 in the system (1). Hence it implies the assumption that the
system is given by the following nominal system:

£(k + 1) = A#(k) + Baw(k) + Bsé(k) + BsAu(k)
(k) = Cyz(k) + Dysw(k) + Da3é(k) + DagAu(k)
(k) = Csi(k) + Dasw(k) + D3zé(k) + DagAu(k) (3)
&1(k) = Cyz(k) + Dagw(k) + Dazé(k) + DggAu(k)
y(k) = Csz(k) + Dsaw(k) + Dszé(k)

Moreover, it implies the assumption that the signal é(k) given by
é(k) = Dzt (y(k) — Gs(k) — Dszw(k)) 4

is zero-mean white noise. This, in turn, implies that the minimum-variance prediction
ék+jlk)=0Vj>1

Remark 3. Note that the nominal system (3) in which é(k) is given by (4) is stable
by Assumption 3 in the SPCP given in Definition 1, and that D3 in (4) exists by
Assumption 2.
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Proposition 1. Consider the standard predictive control problem given in Defini-
tion 1. Define the vector

u(k) = [ AuT(k) AuT(k+1) - AdT(k+N) }T € g+

and let B, =[I 0 ... 0] and E, = [I 0 ... 0] be selection matrices such that
Au(k) = Byu(k) and w(k) = Ey,w(k). Introduce the basic block matrices

D 0
CB D
Mu(A,B,C, D) = CAB CB D
CAN—2B ... D
C D
CA CB
M. (A,C)=| CA* |, M.(A,B,C,D) = CAB
CAN_l CAN—?,B
Using these basic block matrices, define the matrices:
BQ:Bng, B4:B4Eu
02 = MzMz(Aa 02): D22 = MzMu(A, B21027D22)
D23 = MzMe (A, Bg, CQ,DQ;;), D24 = -szMu(A, B47 02’D24)
C3 = MpMq(4,Cs), D3y = MpM.u(A, By, Cs, D3s)
D33 = MpM. (4, B3, C3, Ds3), D3y = MpMy (A, By, C3, D)
04 = MIMm(A, C4)a D42 = M]Mu(A,B2, 04,D42)

Dy = MM, (A, Bs,Cy, Dy3), Dys = MiMy(A, By, Cs, Dyg)

Then the minimum variance prediction vectors Z, JE and 51 based on the certainty-
equivalence principle are given by the extended system

£(k+1) = A2(k) + Bw(k) + B3é(k) + Bau(k)
Z(k) = Caz(k) + Doa@(k) + Dasé(k) + Dogti(k)
¢5(k) = C32(k) + D3ow(k) + Dizé(k) + Dsati(k)
é1(k) = Cud(k) + Daoiw(k) + Dasé(k) + Dasti(k)

where é(k) is given by (4).
The proof can be constructed easily by successive substitution of the nominal state
equation (3).
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4. Controller Parametrization

The presented controller is a variation on the well-known Youla parametrization,
where the time-invariant parameter Q(q) is replaced by a time-varying parameter
Q. Further, the feedforward action w — Awu and the feedback action y — Awu
are split to guarantee that the feedforward action is not influenced, and from that
destabilized, by the model error. Section 7 will go further into this matter.

Theorem 1. Consider a nominal feasible SPCP as given in Definition 8. Let F,
Fe, L, and L. be matrices such that A— BsF,,, A— B4F, and A— L.Cys have all
eigenvalues strictly inside the unit circle. Further, let E, ={I 0 ... 0] be a selection
matriz such that w(k) = E,, w(k). Finally, define the mapping (Au, &) = K1(w,y,v)
as

£e(k+1) = Ao (k) + Le&(k) + Lyw(k) + BsAu(k) (5)
Au(k) = —F.Z.(k) + v(k) (6)
f(k) = —C5§:e(k) - DSZEUJE)(]C) +y(k) (7)

where v(k) € £24 is an additional input-signal and £(k) € S™ is an additional
output signal.

Then the mapping (32, z, dg, ¢1,&) = A(61,W, e,v) is a mapping from o, to Lo
and gwen by the state-space description

[ 271 (k+1) [ A—B4F.  B.F. By ByE, Bs By ]
oo (k+1) 0 A-L.Cs | Bi—L.Ds; BsE,—Ly, B3s—L.Ds3 0
d2(k) - Ci—DuF, Dk, D1y D12 Ey D1z Dy
z(k) = | Ca=Dyle  DyyF Dy, Dos By Ds3 Doy
¢r(k) C3—DsaFe  DifFe D3 D32 Ey D33 Dy
¢r(k) Cs—DyF, DyF, Dy Dy By Dy3 Dy
L &k 1 L 0 Cs Dsy 0 Ds3 0 J
oo (k)]
zra (k)
S1(k)
X Bk @)
e(k)
| v(k)
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Furthermore, let a mapping v = K2 (&,10) be given by
Tw(k +1) = (A — ByFy)&w(k) + Low(k) + Bs(Quw) (k) (9)

v(k) = (Fe = Fy) 20 (k) + (Qu) (k) + (Qe€) (k) (10)
where Q. and Q. are mappings from Ly, to L.
Then the resulting mapping (62,2, ¢g, dr) = V(d1,W, e) is a mapping from Ly to

{5 and the closed-loop with controller Au = K (y, W) will be Bounded-Input Bounded-
‘Output (BIBO) stable.

The proof is given in Appendix A.

Interpretation and design strategy. The configuration of the controller K is
given in Fig. 2 and will be designed as follows: First, an arbitrary LTI nominally sta-
bilizing feedback controller is designed (Q(q) = 0, @ = 0). This part of the controller
is completely determined by F, and L.. Any F. and L. that satisfy the assump-
tions in Theorem 1 are allowed. As usual, we will choose L. as the optimal Kalman
gain. The effect of F, on the proposed control strategy and guidelines for its choice
are discussed in Section 8. Secondly, a nominal feedforward controller is designed
(¢ = 0). This part of the controller is completely determined by F,,, L, and Q,,.

(k)

Fig. 2. SPCP controller configuration.
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In this paper, Fy, Ly, and Q, = @, are chosen such that —F,, (k) + Q,w(k) is
equal to the optimal (guaranteed stabilizing, LTT) predictive controller output in the
nominal, disturbance-free case without inequality constraints. To handle the inequal-
ity constraints, the operator Q,, becomes time-varying and is optimized at every
sample time. This feedforward controller is incorporated in K in such a way that
Au = —F, Z,(k) + Quw(k) when & = 0. The design of the feedforward controller
is given in Section 5. Thirdly, a feedback controller Q. is designed for optimal dis-
turbance rejection and model-error compensation. The time-varying operator Q. is
optimized at every sample time such that Aw is the optimal predictive controller out-
put. If there-are no inequality constraints, the optimal Q. becomes time-invariant.
To obtain a simple (convex) optimization problem, Q. will be parametrized as a
(time-varying) finite-impulse-response operator. The stability of this operator (and
the nominal stability of the closed loop) will be guaranteed by defining some constraint
on the magnitude of its impulse-response parameters. Robust stability of the entire
closed loop will be guaranteed by an additional constraint on Q. which guarantees
that the small-gain theorem is satisfied. The design of Q. is given in Sections 6
and 7.

5. Reference Signal Tracking

In this section, the unperturbed case will be considered, so there is no noise (e(k) = 0),
no model error (2(¢) = 0) and we have an equal initial state (z(0) = z.(0) = z,,(0)).
The SPCP problem is then solved by setting Q. = 0 and only tuning the feedforward
part of controller K.

Theorem 2. Consider a nominal feasible SPCP, where e(k) =0 and Q(q) =0, and
the controller of Theorem 1, where F, and L. are matrices such that A— B4F, and
A —L.Cs have all eigenvalues strictly inside the unit circle. Define the matrices

Lw = Bng
- - - —1 — —
N 90T, Dy, DI, 9DT.C, N
F, = [1o]| 727 7 S F, =E,F,
Dy 0 Cs
_ _ _ —1 - -
_ 2DT D,y DT 2DT D -
Qu = —[r o) 2 T HER N Qu = B
Dsy 0 Dss

and let v(k) € ENFIM pe the the solution to the following optimization problem.:

min J (k) = g&r)l v(k)T DI, Dayvi(k) (11)
subject to the constraints
(Cs — DuaFy) & (k) + (Daz — DsaQu) (k) + Dagir(k) < 1 (12)
DayD(k) = 0 (13)
17(K)|| < vimax  (14)
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The SPCP for e(k) = 0, Q(q) = 0 and equal initial state ((0) = %.(0) = Z,,(0))
is solved by the controller given in Theorem 1, where the mappings Q. and Q. are
given by

(wa) (k) = Quw(k) + v(k)
(Qe) (k) =

v(k) = E,v(k)
and U(k) is the optimal solution to the optimization problem (11)-(14).
The proof of this theorem is given in Appendix B.
Remark 4. The extra condition ||7(k)|| < Vmax guarantees v(k) € lyms. This means

that the mapping @w — v given in the above theorem is a mapping from £., to £
and so for the case where e(k) = 0 and Q(g) = 0 the closed loop will be BIBO stable.

Remark 5. Note that if ¢;(k) < 1 for #(k) = 0 it follows that v(k) = 0 is the
optimal input signal. This corresponds to the fact that the optimal SPCP controller
is LTI if no inequality constraints are active.

Remark 6. Let us note that the optimal feedback can be expressed as
Au(k) = —FyZy (k) + (waﬁ) (k)

By construction of the controller we have £, — Z,, for k — o0. By choosing
%4 (0) = £.(0) = z(0) we guarantee that %, (k) = Z.(k) for all k, and

Au(k) = Futy (k) + (Qui) (k) = (Fo = Fu)&u(k) — Fede (k) + (Quit) (k)

6.. Nominal Performance

In this section, we consider the standard predictive control problem for the model
error-free case (so 2(¢) = 0 and thus d; (k) = 0). This is done by tuning the feedback
part Q. of the mapping K. In this paper, the mapping v, = Q£ is based on a
time-varying finite-impulse-response (TV-FIR)

ve(k) =Y Mi(k)¢(k — i) (15)
1=0

where v, (k) € 2% and M;(k) are the time-varying finite-impulse-response parame-
ters. We choose the number of parameters njps > N. A state-space representation
for this TV-FIR is given by

.’L'Q(k + 1) = AQ.’L‘Q(k) + BQf(k) (16)
ve(k) = Cq(k)zq (k) + Do(k)é(k) (17)
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where Ag, Bg, Cg(k) and Dg(k) are given by

0 0
I 0 0
Aq = , Be=1| . (18)
0
|0 I 0|
Co(k) = [Mi(k) Ma(k) ... My, (k)],  Dq(k) = Mo(k) (19)

Lemma 1. Consider the mapping Q. given by (16)-(19). Further, define the pa-
rameter vector

T
6(k) = col { Do) } € R™
CE (k)

and let the parameter vector be bounded by |0(j)| < Omax for all j € Z. Then Q. is
a mapping from Lo, to £o.

The proof of Lemma 1 is omitted. Since the filter in (15) is FIR, though time-
varying, the uniform boundedness of its coefficients makes the statement of Lemma 1
trivial. From now on we will use the notation Cq(6,k), Dg(8,k) and M;(8,k) to
emphasize the dependence on the parameter vector 6 that will be optimized later.

Making a prediction based on the actual parameters 6(k), we obtain an extended

vector (k) € (I oiven by
Ue(k) = Cq(8, k)zq (k) + D (8, k)E(k) (20)
where
oo ]
Cqodq
Cq(8,k) = | Codl
L CoA ™" |
[ Mi(8,k)  My(6,k) ... Mijn, -~N(0,k) ... Mn, (6,k) ]
My(0,k)  M;3(0,k) ... Moy, —n(0,K) ... 0 |
= ' (21)
L MN(H,]C) MN+1(9,]€,) e MHM(G,k) L -0
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and
[ Dg(6,k ]
Co(8,k)B
@(8,k)Bg M6
Do®,k)=| Cq(0,k)AgBg | = . (22)
Mn_1(6,k
| Coo,0)AN 2B | 6
Define
Te(k) = [Vonmq(k) + Ve1€(k) -+ Vo, (k) + Ven, E(K)] (23)

where V;; and V;; are such that

ng g
Cq(8,k) = Veibi(k),  Dq(0,k) =) Vibi(k)
i=1 =1

Then
Ve(k) = Cq(8,k)zq (k) + Dq £(k) = L. (k) 8(k)

For the nominal case we give the following theorem which is an extension of Theorem 2.

Theorem 3. Consider a nominal feasible SPCP with (q) = 0 and a controller in

the configuration of Theorem 1, where Fyy, Ly, Qw and U_are given by Theorem 2.
Further, let L, = }5'3D5'31 and let F, be giwven such that B, F, = F, and A— B4F, =
A — ByF, has all eigenvalues strictly inside the unit circle. Define the signals

e(k) = ~Fotie(k) + (B = F) 0 (k) + Gu B (k) + 7(k)
Z(k) = Cy #(k) + Doy W(k) + Das e(k) + Daq e (k)
bEe(k) = Cs 2.(k) + Day w(k) + Dss e(k) + Dsy e (k)
bre(k) = Cyzo(k) + Dyp (k) + Dys e(k) + Dyy e (k)
Finally, let.the mapping Q. be given by
(Qe€)(k) = EuT (k) 6(k)

where Te(k) is given by (23) and 0(k) is the solution to the quadratic-programming
(QP) problem

min 67 (k) D7 (k) D, Dax L (k) O(k) + 72 (k) Daa Te(k) B(F) (24)
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subject to the constraints

¢r(k) = ¢ppe(k) + D3a Lo (k) (k) = 0 (25)
é1(k) = bre(k) + Daa Te(k)B(K) < 1 (26)
6(k)] < Omax (27)

In these settings, the controller Au(k) = K(W,y) is the solution to the SPCP for
Q(q) =0.

The proof is given in Appendix C.

7. Robust Stability

In this section, we will solve the robust SPCP. Q. is parametrized by a TV-FIR as
in Theorem 3 and bounds on the parameters § will be derived to guarantee robust
stability for all “Q”(l) < €q.

Theorem 4. Consider the SPCP as in Definition 1 and a controller in the con-
figuration of Theorem 3, with the TV-FIR Youla parameter Q.. Let 61(k) € {2,
02(k) € €31, and let the functions h(k) : Z — (227™, g(k) : Z — {7 and
f(k) 1 Z — €72 be impulse responses given by

h(0) = D11, h(k)=0 for k<0

A-BsF, BiF, |77
h(k) = [01 — Dy Fe D14Fe] 0 A—L.Cs _
By |
X for k>0
By — L. Ds; |

9(0) = Dig, g(k)=0 for k<O
g(k) = [C1 = DuF.][A-ByF)" ' [By] for k>0
f(0)=[Ds1], f(k)=0 for k<O

f(k) = [Cs][A— L.Cs]" '[By — L. Ds1] for k>0

Define the truncation-tail functions

6(k):{o for k<u
h(k) for k>p
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e, (k) = { 0 for kE<u
g(k) for k>p

, for k<up
ef(k) =
f(k) for k>p
for some mteger p >0 and define
Nerune = (lenlls + H%”lMHHle + gl Ml el

where My = 20,k —3) || for M; given in (15).

Finally, define a kernel-function H(k+ j,k+j—m) for 5 >0, m >0:

u min(n,m-+1i)

H{k+j,k+j—m)=hm +Z Z 9(1)My—3(8,k — i) f(m —1)

Then a sufficient condition for robust stability is as follows:

"y
mava]Hab k+j, k+j—m)

b=1 m=0

i min(m,n+i)

*ZE ; 9a(6) Mici(0,K) fo(m — | < 0 = thrune V520 (28)

where Hyy denotes the (a,b)-th element of the matriz H, g, denotes the a-th element
of the vector g. and f, denotes the b-th element of the vector f.
The proof is given in Appendix D.

Because the TV-FIR function M(6,k) is linear in the parameters 6(k), the
derived robustness constraint is convex in #(k). Convex optimization algorithms can
now be used to compute the optimal robust standard preditive controller. How to
choose the parameter p will be discussed in the next section about tuning.

8. Tuning
8.1. Tuning of Feedback Controller Parameters F, and L.

It is desirable that h(k) (as defined in Theorem 4) has a 1-norm less than 1/eq, or

ny oo

IH?X Z Z

j=1 k=0

hij(k)| < 1/eq (29)

This is because the nominal controller will then satisfy the robustness constraint which
increases the likelihood of a feasible solution. Therefore I, and L. have to be tuned
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such that A — ByF, and A — L.Cs have all eigenvalues inside the unit circle and
condition (29) is satisfied. If A allready has all eigenvalues inside the unit disc and
the system ¥11(q) = Ci(ql — A)~'By + Dy has a 1-norm less than 1/eq, (e.g. for
an additive model error we have X;; = 0), the choice ﬁe =0 and L, = B3Dg31
is obvious, thereby A(k) = 0. Otherwise, select F. such that A — B4F, has all
eigenvalues inside the unit circle and the 1-norm condition (29) is satisfied. F, can
now be defined as

Fe
N F,(A-BF.)™
P, =
F.(A-ByF,) "

If for a given L. there is no stabilizing F, such that h(k) has a 1-norm less than
1/€q, there are two possibilities. Either we detune L. or we choose a stabilizing F,
that does not give a h(k) that has a 1-norm less than 1/eq with a higher risk that
infeasibility occurs. Note that if condition (29) is satisfied and there are no signal
constraints, feasibility is guaranteed. If there are only equality constraints, feasibility
at all future times is guaranteed if there exists a solution at the initial time sample,
independent of the condition (29).

8.2. Tuning of Prediction Horizon N and Control Horizon N,

The tuning of N and N, is as usual in predictive control. The main difference is that
we assume the SPCP to be well-defined and nominal feasible, so nominal stability is
required. This means that either an end-point constraint is introduced, or that we
first compute the feedback matrix F,, as in Theorem 2 and check if A — B4F,, has
all eigenvalues inside the unit circle. The increase in N has a strong influence on the
computational burden due to the robustness constraint.

8.3. Tuning of TV-FIR Parameters njp;

If ny > N we do not loose any degree of freedom in choosing the optimal %(k) in
comparison with conventional predictive control techniques as long as rank(T’;) > N.
By choosing nps > N the chance that a feasible solution exists increases and the
robustness constraint may become less conservative because of the extra degrees of
freedom. However, increasing nps increases the computational load.

8.4. Tuning of Truncation Parameter p

The parameter p should be chosen such that 7irunc < €q. The values ||ex]|1, [|€,|l1,
lleslli, llglly and ||Alj; can be computed beforehand. The value My depends on
the actual optimization. The value 7t une is convex in #(k) and can be included
in the optimization. Another option is to put an upper bound on My during the
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optimization. A third possibility is to compute the value nirune after the optimization
and to adapt the value p if the value My becomes too large.

9. Simulation Example
In this section, the results of a predictive control problem will be shown using the
state-space controller, as derived in the previous sections.
Consider the process
0.5¢72(1 —0.4¢7 %)
(1-0.5¢71)(1-0.9¢71)(1 —¢)

G(q) =

with the noise model

1

H(q) = =gt

A constrained GPC problem (Clarke et al., 1987) with additive model error is con-
sidered and the following parameters are chosen:

e prediction horizon H, = N = 8§,
e control horizon H, = N, =4,
e control weighting: A = 0.1,
e number of TV-FIR parameters: n = 8.
The reference signal r(k) is given by
T(k):{ 0 for k<10
1 for £>10
The input increment signal is bounded by the rate constraint
fAu(k)| < 0.25
A perturbed process is given by

iy 1.4¢71(1 - 0.41¢71)
G = G550 - 0.75¢- (1 — ¢ 1)

(31)
which results in a bound on the additive model error by
1y = IG = Gllzy < 5.0

The disturbance signal e(k) is a zero-mean white noise sequence with an addi-
tional peak at time k = 50, so

e(k) = ey (k) + ez (k) | (32)

-
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where e;1(k) is a zero-mean white noise sequence with variance 4 x 1074, and

0 for k+#50

(k) = { 0.3 for k=50 4%

'The output-disturbance, denoted by d(g), is equal to

The matrices for the SPCP are given by

05 0 0|l 0 0 0 125
0 09 0|0 0 0 —5625

o
o
—
o
o
—
(=2}

A | Bi By By B
Cl Dll D12 D13 D14 e e .
Cs | Doy Daa Das Doy 1 1 1 0 -1 1 0 ’

G| u 2w D pa| 7| 00 0|0 000

Cs | D Daz Das Daa 0O 0 0/0 0 0 0
C’5 D51 D52 D53 D54 D .

M; = [016x1 L6x16 O16x1], Mg = {O4x5 Isxa, My = [Isxs Osx1o]

The simulation results (with 0 < k < 100) are given in Figs. 3—5. The left panels
give the results when the true process is equal to the nominal model (30). The right
panels give the results when the true process is equal to the perturbed model (31).
The solid lines in all figures show the results if the robustness bound eq =5 is taken
into account, the dash-dot lines correspond to the case where the robustness bound
is not taken into account, i.e. ¢g = co. In Fig. 3 the reference signal r(k) is given
(dashed line) together with the optimal output y(k) (solid line/dash-dot line) and the
output disturbance signal d(k) (dotted line). In Fig. 4 the control increment signal
Au(k) is given. Clearly, the rate-constraint |Au(k)| <0.25 is not violated. In Fig. 5
the magnitudes of the parameters 6;(k) are given.

It is clear that the SPCP results in a robust controller for the nominal, as well
as for the perturbed case, where the design with eg = co gives a good performance
for the nominal case, but becomes unstable for the perturbed case.
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10. Conclusions and Future Research

A standard predictive control problem (SPCP) has been defined which unifies most of
many existing predictive control problems. The SPCP is solved for the unperturbed
case, the nominal case and the robust case. The internal structure of the SPCP
controller consists of a feedforward controller and a feedback controller using a Youla
parametrization, where a time-varying Youla-parameter Q. is optimized. It has been
shown that using this structure conditions guaranteeing nominal and robust (BIBO)
stability can easily be derived. The resulting optimization problem is convex in the
parameters of Q. and therefore easy to solve. Finally, a straightforward procedure
has been given for the tuning of the degrees of freedom in the SPCP controller.
An example shows that by using the derived algorithm a perturbed process can be
controlled, while handling constraints and preserving robust stability.

The proposed scheme provides a firm basis for robust adaptive control. Identifi-
cation algorithms that provide models with 1-norm model error bounds are available
(Hakvoort and Van den Hof, 1997) and can be included. in the presented frame-
work. To limit the computational burden, involving the robustness constraint, a dual
Youla parametrization scheme (Wams and Van den Boom, 1997) can be used. In
this approach, the functions in Theorem 4 simplify to h(k) = 0, g(k) = 6(k) I and
f(k) = 6(k) I. Thus the optimization and the tuning become easier.

Appendices

A. Proof of Theorem 1

For a controller (y,w,v) = (Au,§), given by eqns. 5-7, the closed-loop mapping

(02,2, 08, ¢1,&) = A(01,W,e,v) can be found by choosing z71 (k) = z(k), zr2(k) =
z(k) — &.(k) and elimination of the variables Au(k) and y(k):

(k) = ~Cie(k) ~ Dsa Buii(K) + y(k) |

= —Csiﬁe (k) — D52Ew’l_’l\)'(k)+ Osﬂ:(k)+ D51(51 (k)+ D52Ewﬁ(k)+ Dsge(k)

= C5£L'T2(k)+ D5151 (k)+ D53€(k>

z(k + 1) = Az(k) + B161(k) + BoE,w(k) + Bse(k) + By Au(k)
Te(k+1) = AZc(k) + Le&(k) + Ly (k) + BsAu(k)
= (A — L¢C5) % (k) + LeCsz(k) + L. D56, (k)
+ Ly@(k) + L. Dsze(k) + BsAu(k)
or2(k+1) = (A~ L.Cs)zra(k) + (B — Lo Ds1) 61 (k)

+ (Bng — Lw)ﬁ(k) + (B3 - LeD53)€(k')
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z(k + 1) = Az(k) + B161(k) + By E,@(k) + Bse(k) + ByAu(k)

$T1(k + 1) = (A — B4Fe).’L'T1 (k) + B4FexTz(k) + B1d1 (k)
+ B2 E,w(k) + Bse(k) + Byu(k)

82 (k) Ch Dy D1y Dy3
k C D Dos D
B2 e | P2 am | P fem s | 7P e
oe(k) Cs D3y D3y D33
¢r(k) Cy Dy Dy Dys
[ D14 ] Cy — Dy4F, | Dy F,
D Cy — Doy Fy Do, F,
|l T aum) = | T T e+ | T | amek)
D3y Cs — D3y FFe DsyF,
| Das | C4 — DasFe | Dy F,
[ Dy ] Dy [ Dis Dy
Doy Doy Das Doy
+ o1(k) + w(k) + e(k) + v(k)
D3, D3 D3; Dsy
| Da | Dys | Das Dy

This results in the state-space description (8) which has all system eigenvalues strictly
inside the unit circle. So the closed-loop mapping (02, z, ¢, ¢1,&) = A(61,1W,e,v) is
stable.

Note that the signal v(k) only affects the state zri(k) and not state zpa(k),
and that the signal £(k) is not affected by the state zpi(k). Thus the mapping
v(k) — &(k) is zero and

o1 € Lo, GEEmifeeoo
Because Q. and Q. are mappings from £, to £, it follows that
W E loo, § €loo = v E Lo

Finally,

01 €Eloo, W E Loy, € Efog = 02 € Lo, 2 € Loy, OB € boo, 1 € Lo
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B. Proof of Theorem 2
For given L, L, e(k) =0 and d;(k) = 0 we have from the closed-loop equation (8)
era(k+1) = (A—L.Cs)zra(k) + (Bi — LeDs1)d1 (k)

+ (BzEw - Lw)ﬁ(k) -+ (B3 - LeDsg)e(k)

= (A= L.C5)zrs(k) =0

because zr2(0) = £(0)—%.(0) = 0. Asaresult, £(k) =0 and sowv.(k) = (Q&)(k) = 0.
Now it follows immediately from (1), (5) and (9) that

(k) = o (k) = (k) = (A— ByF.)&y(k) + Ly@(k) + By (k)

= (A - B4F,)%w(k) + Lu@(k) + v(k)

First consider the case without inequality constraints: Define two additional
signals:

7(k) = Codu(k) + Doy W(k) (B1)
¢ (k) = Cs2u(k) + D3z w(k) (B2)
From Proposition 1 we know that
Z(k) = Dag (k) + Z'(k) and $p(k) = Dasi(k) + dp(k)

First consider the problem of minimizing ming ) 27 (k)Z(k) subject to the constraint
éu(k) = Dsy (k) + q?jg(k) = 0. Using the Lagrange multiplier method, the following
solution is found:

— _ — -1 —
_ 2D§14D24 Dg; 2D%:1 Z(k)’
u(k) = —[I, 0]

D34 0 P (k)

= —Fy &y (k) + Quw (k)
= —Fy iy (k) + Quii(k)
Zo(k) = Co 4y (k) + Dagw(k) + Doy tig(k)
Now we adapt the value g such that the inequality constraint
(k) <1
is not violated. Define the signals

(k) = fio (k) + (k)
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and so
Z(k) = Zo(k) + D24 D(k)
The criterion J(k) becomes
J(k) = 2T (k)2(k) = Z (k)Z0 (k) + (k)T D3, D24 v(k)

where we used the fact that @o(k) is the optimal solution and so 2] (k)Das (k) =0
for all v(k) satisfying D34 ¥(k) = 0. Further the equality constraint becomes

$1(k) = Dy B(k) = D3a 5(k) = 0
and the inequality constraint
(gl (k) = fi;IO (k) + Das v(k) < 1

where

¢10(k) = Cy (k) + Dag (k) + Dy tio (k)

= (Cy— D44ﬁw) T (k) + (Daa + D4aQu) W(K)

The optimal value of ¥(k) is now given by the optimization problem (11)-(14). It is
clear that the optimal input signal is given by

Au(k) = —Fy Ew(k) + Quuw(k) + v(k)

= —F.&(k) + (F. = Fy) &u(k) + (Quw)(k)

C. Proof of Theorem 8

Theorem 1 gives
:Z:f['g(k + 1) = (A — Lecs)ITz(k) + (Bl — L3D51)51(k)

+ (B2Ey — Ly — LeDss By )W(k) + (Bs — LeDs3 ) e(k)

= (A — LeC5).I:T2(k)

for 01(k) = 0, Ly = ByE, — L.Ds3E,, and L. = B3D3;. The eigenvalues of
A-L.Cs = A~B3D3—3l C's are strictly inside the unit circle by Definition 1. This means
that zr2(k) will converge to zero for any initial condition and, because zrs(k) =
z(k) — Z.(k), we find that z.(k) will converge to z(k). From Proposition 1 we have

(k) = (k) + T (K)9(k)

Z(k) = Z.(k) + D24 T (k)6(k)

¢p(k) = ¢pe(k) + D3y T.(k)0(k)

é1(k) = ¢1o(k) + Daa T, (E)O(k)
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The problem ming) Z7 (k)Z(k) subject to the constraints é5(k) =0 and br(k) <1
has now become an optimization one over #(k). The optimal value of 8(k) is given
by the solution to the optimization problem (24)-(27). Condition (27) guarantees
that Q. is a mapping from £, to s and the controller is stabilizing.

D. Proof of Theorem 4

Consider the system A in Theorem 1 for r =0 and e = 0. Then
92 (k) A1 (q) Aw(g) o1 (k)
&(k) As1(q) 0 v(k)

v(k) = Q.(8) £(k)

81(k) = Q8,(k)

The impulse-response parameters corresponding to A11(g), A14(g) and As;(q) are
given by h(k), g(k) and f(k), respectively. Further, the Kernel parameters corre-
sponding to the time-varying mapping Q.(f) are given by M, (k). Now it follows
that

[o¢]

82(k) = 3 h(m)ér(k —m) + D g(m)v(k —m) (D1)
m=0 m=0

&ky = D f(m)dy(k —m) (D2)
m=0

v(k) = EMm §(k—m) (D3)

m=0

Substitution of equations (D2) and (D3) in (D1) gives (for j > 0)
a2k +j) = Zh )61(k+j —m)

min(m,n+1)

+y N 9(@) Mi_i(k+j — i) f(m —1) 61 (k + j —m)

m=0 =0 =i

o0

=Y H(k+j,k+j—m)é(k+j—m)

m=0
where

co min(m, n+'L)

H(k+j,k+j—m)= +§: Z @) Mii(k +3j—i) f(m—1), j>0
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To obtain robust stability for all |||y < eq, the mapping d2(k) = T(8)d1(k) must
satisfy

sup || 92(k) lloo =  sup ’l Z H(k,k—m) & (k— m)H <1/egq
182 (K)]eo <1 81 () lfeo <1 *°

and a necessary and sufficient condition is

n1

maXZZlHabk+Jyk+J~ m)| <1/eq forall j>0

b=1 m=0

Now for all 7 > 0 an upper bound can be derived:

3 o

maa,xz Z |Hob (K + 7,k +j —m)]

b=1 m=0

n1 co min{m,n4i)

— maxY S ) 430 S 0ali) Micsll 43— ) fuom 1)
=0 =i

b=1 m=0
ny o min(m,n+1)

< maXZZ as(m) + ) Z ga(i)l\éfz—i(k+.7'—i)fb(m—l)l
b=1 m=0 =0

1 o0
er{?xz Z lhab(m

b=1 m=p+1

ny oo co min(m,n+1)

+maxzz Z Z 'ga(i>”Ml—i(k +j—i)||fb(m—l)!

b=1 m=01i=p+1 =1

o min(m,n+1)

-l-maxz Z 3 Z |92 (DI Mi—i (k +j — i) | [ fo(m ~ 1)]

b=1 m=p+1 i=0

i min(m,n+i)

ab +Z Z ga, ‘Z\/Il z k+.7 —7’ fb(rn-l '-I_ Ttrunc

b=1 m=0 =0

where

Merune = [lenlly + [leglls Mall fllx + gl Mollesllx
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To guarantee a feasible solution in the future, we can choose 6(k + j) = (k) for
4 >0, and so My(k + j) = M(k) for j > 0. Hence

u min(m,n+1i)

M+ Y gali) Mii(k o+ — ) folm = )|
1=0 =1

min{m,n+1)

Z Z ga() Mi_i(k+j—14) fslm—1)

i=j+1 [=

7 min(m,n+i)

+Z Z gali) Mi_i(k + § — ) fo(m — 1)

7 min(m,n+1i)

= [Halb tgktsm) £ 2230 ) Mlh) folom 1)

i=0
and a sufficient condition for robust stability is given by

j min(m,n+1)

maXZ Z \Hﬂb k+j, k+j—m +Z Z ga Ml 1 )fb(m_l)1 < €q—Ttrunc

b=1 m=0 =0 =1
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