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DATA PROBES, VERTICAL TRAJECTORIES AND CLASSIFICATION:
A TENTATIVE STUDY
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In this paper we introduce a method of classification based on data probes. Data points are considered as point masses in
space and a probe is simply a particle that is launched into the space. As the probe passes by data clusters, its trajectory will
be influenced by the point masses. We use this information to help us to find vertical trajectories. These are trajectories in
the input space that are mapped onto the same value in the output space and correspond to the data classes.
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1. Introduction

In this paper we consider a problem related to classifica-
tion. In supervised learning we usually have access to
data pairs (xk, yk), for k = 1, . . . , m, where the xk’s
are observed input vectors and the yk’s are observed re-
sponse or output vectors. In our particular study, we re-
quire that xk ∈ R

n and yk ∈ R, although the method
could be extended to include yk ∈ R

p but this is not con-
sidered in this paper. One of the objectives of supervised
learning is to find a mapping π : R

n → R that satisfies
π(xk) = yk for k = 1, . . . , m. The mapping π could be
anything from a simple linear regression model to more
sophisticated methods like, e.g., support vector machines
or neural networks; the particular choice of the model is of
secondary importance in this paper. The relation to clas-
sification is that if two input vectors xi, xj are deemed to
be in the same class and the classes are defined by the out-
put values, then we will have π(xi) = π(xj) = y0 for
some particular value y0. Or, what is more reasonable,
π(xi) ≈ π(xj) ≈ y0 because we are working with real
data and the necessary tolerances. If π(xi) = π(xj) = y0

and we can calculate a trajectory in R
n, denoted by x(t)

for 0 ≤ t ≤ δ, such that
• x(0) = xi,

• x(δ) = xj ,

• π(x(t)) = y0 for 0 ≤ t ≤ δ,

then x(t) is called a vertical trajectory.

Our aim is to develop a method of calculating such
vertical trajectories from an existing database, i.e., a set
of observed data pairs (xk, yk), for k = 1, . . . , m. Our
hypothesis is that these vertical trajectories could be used
along with the original data when we wish to identify the
parameters of the particular model that we have chosen for
the mapping π. We hope that constraining the calculated
π to satisfy the vertical trajectory criteria will lead to a
better representation of the underlying geometrical struc-
ture of the data. Although we are not yet able to prove
our hypothesis, our preliminary investigations have pro-
duced some promising results. Work along the same lines
has been carried out by some researchers, cf. (Benton and
Hand, 2002; Hand, Li and Adams, 2001), although ours is
purely deterministic and does not take into consideration
any notions of probability.

Because we need to generate dynamic data (vertical
trajectories) from static data (the (xk, yk) pairs), we need
to find a method that allows us to do this. In the course
of our research we learned that the most satisfying way of
doing this was to be found in a field called data sonifica-
tion. In data sonification, sound is generated from data.
The sound can be listened to and interpreted, thus provid-
ing an extra dimension to the data and aiding the analysis
task. One particular method of generating sound is called
‘model based’ and essentially generates trajectories based
on static data. This is the method presented in (Hermann
and Ritter, 1999) and the method that we have adopted.
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The differential equations relating to this method are New-
tonian and refer to the trajectory of a point mass. It is this
point mass that we call a data probe.

We have needed to combine different disciplines to-
gether in order to achieve our objectives. Our principal
sources of inspiration are nonlinear control theory (Isidori,
1995), differential geometry and, in particular, vertical
fields (Hermann, 1964), data sonification (Hermann and
Ritter, 1999) and cluster analysis (Chiu, 1994).

We have been investigating vertical fields and their
applications for a number of years. In particular, we have
been able to look at the structure of neural networks (Pear-
son, 1996) and, by relating vertical fields to the notion
of homogeneous data, we have applied them to pollution
forecasting (Pearson and Batton-Hubert, 2005).

The paper is organised into three main sections. The
mathematical formulation of probe dynamics and vertical
fields are presented in the first section. The subsequent
section is devoted to the exploitation of the generated tra-
jectories. Then some results based on simulated data are
presented. The work is very much ongoing and so the pa-
per concludes with some perspectives.

2. Mathematical Formulation

As was stated in the introduction, the data are organised
into input/output pairs (xk, yk) for k = 1, . . . , m, where
xk ∈ R

n and yk ∈ R. For a vector x we denote its com-
ponents by xT = [x1, . . . , xn] and we use subscripts to
indicate different vectors such as xi and xj .

2.1. Probe Dynamics. We assume that the data are
grouped together into homogeneous sets referred to as
clusters. The criterion of homogeneity is that the output
value, say y0, is the same for all data pairs belonging to the
same cluster. We also assume that there exists some un-
derlying mapping π : R

n → R that satisfies π(xk) = yk

for k = 1, . . . , m. For each data pair (xk, yk) we define
the corresponding data point dk as

dk =

[
yk

xk

]
.

The dynamics of the probe follow the model of (Her-
mann and Ritter, 1999). We begin by defining the follow-
ing function:

φ(y, x) =
m∑

k=1

exp
(
− α

∥∥∥ [
y
x

]
− dk

∥∥∥2)
, (1)

where α is a positive scalar parameter.
A probe is simply a particle that is launched into

the data space and influenced by the data points consid-
ered as masses. The standard Newtonian equation of mo-
tion of the particle contains therefore acceleration, veloc-
ity and resistance terms. In order to recover an ordinary

first-order autonomous differential equation, we apply the
standard trick of augmenting the state space dimension by
defining

z =

⎡
⎢⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y

x

ẏ

ẋ

⎤
⎥⎥⎥⎦ , (2)

where ẏ = dy/dt etc. Using (1) and (2), the equation of
motion of the probe is

ż =

⎡
⎢⎢⎢⎣

ż1

ż2[
ż3

ż4

]
⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

z3

z4

∇φ(z1, z2) − γ

[
z3

z4

]
⎤
⎥⎥⎥⎦ , (3)

where γ is a positive scalar parameter and

∇φ(z1, z2) =

⎡
⎢⎢⎢⎢⎣

∂φ

∂z1

...
∂φ

∂zn+1

⎤
⎥⎥⎥⎥⎦ .

Note that the partial derivatives are up to ∂/∂zn+1 be-
cause, by definition, xn = zn+1. We note also that this
equation is slightly different than the model presented in
(Hermann and Ritter, 1999) because we have not included
any masses. We assume that all data points have unit mass.

2.2. Vertical Trajectories. Let π(x0) = y0 and let
x(t) with 0 ≤ t ≤ δ be a trajectory that satisfies x(0) =
x0. If the condition π(x(t)) = y0 ∀t ∈ [0, δ] is satis-
fied, then x(t) is said to be a vertical trajectory (Hermann,
1964). If the dynamic equation for x is ẋ = f(x) for
some vector field f , then ẏ = π(x)∗f(x), where π(x)∗ is
the differential of π. If the trajectory is vertical, then the
vector field satisfies π(x)∗f(x) = 0. This condition will
be important in what follows.

In the case of control theory, one use of vertical fields
is the following (Isidori, 1995): Assume that we have a
system described by the dynamics ẋ = f(x)+ug(x) with
the output y = h(x), where f and g are vector fields satis-
fying certain technical conditions (usually smooth or ana-
lytic), h is a function (also usually smooth or analytic) and
u is a scalar input variable. The objective is to calculate u
to satisfy h(x(t)) = 0 for 0 ≤ t ≤ δ. If this is the case,
then f +ug will be a vertical field for the function h. This
process is called output zeroing.

Vertical trajectories are of interest to us because we
are working with supervised learning. Therefore we know
the desired output for any given input in the data set. Thus,
if the input xi is associated with the output y0, then we
will have π(xi) = y0 and, if xj belongs to the same cluster
as xi, then we will also have π(xj) = y0. In other words,
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we could construct a trajectory x(t) for 0 ≤ t ≤ δ such
that x(0) = xi, x(δ) = xj and π(x(t)) = y0 for 0 ≤
t ≤ δ, a vertical trajectory linking xi to xj . As has been
mentioned in the introduction, we cannot really hope to
have π(xi) = π(xj) but more like π(xi) ≈ π(xj), and so
numerical tolerances have to be taken into consideration
when implementing the algorithm.

Now consider a data probe. If the probe’s trajectory
takes it near a cluster, then the value of z1(t) will be close
to some particular output value, say y0, for some t, by the
definition of z(t) (2). If, at the same time as z1(t) ≈ y0,
we also have z3(t) ≈ 0, then, from the previous para-
graphs in this subsection, the trajectory is close to a verti-
cal trajectory at this point. As the probe equations are in-
tegrated, we have a sequence of points and each point on
a data probe trajectory that satisfies these criteria is kept
in memory for further use. We will refer to these points as
wi.

For each point wi, we can construct a vertical tra-
jectory passing through the point by applying the output
zeroing technique as follows (Isidori, 1995): The system
equations are based on (2), but with an added feedback
term in the z3 coordinate that zeros the coordinate, i.e.,
zeros ẏ. Then the overall system is as follows, where we
use v as a variable to indicate that the trajectory is wholly
vertical:⎡

⎢⎢⎢⎣
v̇1

v̇2[
v̇3

v̇4

]
⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v3

v4[
∇φ(v1, v2) − γ

[
v3

v4

]
+

[
g(v)
0

]]
⎤
⎥⎥⎥⎦ (4)

with the system output

h(v) = v1 − y0, (5)

where g(v) is the feedback function to be calculated and
v(0) = wi. Following the method presented in (Isidori,
1995), we know that by construction v1(0) = y0 and,
to achieve h(v(t)) = 0 for sufficiently small t, it can be
shown that g(v) must be set to

g(v) = −∂φ(y0, v2)
∂v1

.

In this way, a set of vertical trajectories can be gener-
ated from the data and used in the estimation of the map-
ping π.

3. Using Vertical Trajectories

Vertical trajectories such as (4) give us information on
how the data are arranged in space. We now want to ex-
ploit that piece of information in order to calculate the
function π. There are, obviously, various ways in which
we can do that and, in fact, this will be the subject of fu-
ture investigations: For the moment we have adopted the

following approach. For each centre we consider the tra-
jectories associated with the centre, by looking for the ini-
tial points and seeing on which trajectory of Type (2) they
lie. Each centre k is then associated with a function πk as
follows:

πk(x) = exp(−αk‖Akx − ck‖2), (6)

where αk > 0 is a parameter fixed in advance (we will
come back to this point later), ck is the centre k and Ak

is an n × n matrix to be calculated. The parameter αk

corresponds to the radius of influence of the centre k and
does not necessarily take the same value of α in (1); each
centre could have a different value. In reality, we have
to integrate all the differential equations numerically and
so a vertical trajectory consists of a sequence of vectors
v where, from (4), we see that for each vector in the se-
quence we have symbolically v1 = y, v2 = x, v3 = ẏ
and v4 = ẋ. Therefore, if the vector v in the sequence is
vertical, then we must have

dπ

dt
(x(t)) = π�(x(t))ẋ(t) = π�(v2)v4 = 0.

This provides us with a minimisation criterion to al-
low us to calculate Ak. We need to minimise the following
expression:

Ek =
∑

v∈verticalk

(π�(v2)v4)2,

where verticalk is the set of all sequences of vectors asso-
ciated with vertical trajectories of the centre k. We would
also like the maximum of the function (6) to be achieved
when x = ck and so we add the constraint Akck = ck to
the above to obtain the following constrained optimisation
problem:

min
∑

v∈verticalk

(π�(v2)v4)2 (7a)

subject to

Akck = ck. (7b)

Each Ak is thus calculated via a constrained minimi-
sation problem (7a) and then an overall function for π is
determined as follows: We consider all vertical trajecto-
ries associated with a centre and calculate the mean value
of all of the v1 components. For centre k, we refer to this
mean value as ωk. The overall function for π is then given
by

π(x) =
p∑

k=1

ωkπk(x), (8)

where p is the number of centres.



110 D.W. Pearson

4. Some Simulation Results

In this section we illustrate our algorithm using some sim-
ulated data. We use such data because, obviously, the geo-
metrical properties are known in advance. Also, the small
dimensions of the data allow a clear visual presentation.

The data were randomly generated to belong to two
well separated clusters, i.e.,[

1
2

]
+ 0.5r

with the output 1 + 0.2s, and[
−2
−1

]
+ 0.5r

with the output 1.5+0.2s, where r is a 2-dimensional vec-
tor with elements in N(0, 1) and s is a scalar in N(0, 1).
Twenty data points were generated for each cluster to act
as training data. We also generated further ten points
for each cluster to act as parameter optimisation data and
ten points for each cluster for model validation purposes.
Some example data can be seen in Fig. 1.
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Fig. 1. Example data.

We calculated 40 trajectories of Type (2) with the
data as initial points for the z1 and z2 sub-vectors. The z3

and z4 coordinates were initially set to zero for these sim-
ulation results. For the function φ in (1) we used α = 0.5
and in (2) we used γ = 2. The influence of the initial val-
ues and the parameters is the subject of ongoing research.
A standard Runge-Kutta routine was used to integrate (2).
Some typical results can be seen in Fig. 2.

All of the z trajectories converged to one of two clus-
ter centres, giving the following centres:

c1 =

[
0.9707
2.0787

]
, c2 =

[
−2.1099
−1.1581

]
,

which can be seen to be close to the centres of the ran-
domly generated data.
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Fig. 2. Example trajectories.

We then looked for candidate points on vertical tra-
jectories amongst the z trajectories. In order to avoid nu-
merical problems and false candidates, we imposed some
conditions on the vectors. We required the z1 coordinate
to be close to a known output value and the z3 coordinate
to be sufficiently close to zero. Also, the z4 coordinate
was initialised to zero and so we imposed ‖z4‖ to be suf-
ficiently high to ensure that the probe had achieved some
reasonable velocity. The actual values that we used are as
follows:

• |z3| < 0.01,

• |z1 − y0| < 0.1,

• ‖z4‖ > 0.3.

Using these criteria, we found 23 candidate points for
the first cluster and 28 for the second one. Using these as
initial points, we then calculated the set of vertical trajec-
tories (4). In Fig. 3 we can see the components of a typical
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Fig. 3. Example vertical trajectory.

vertical trajectory in the time domain; as we can expect v1

(the continuous line) remains almost constant whilst the
other two coordinates vary.



Data probes, vertical trajectories and classification: A tentative study 111

The vertical trajectories were used as data to identify
the parameters of the πk functions (6). We used a stan-
dard nonlinear constrained optimisation package to carry
out the calculations. We used the optimisation data set to
choose the best value for αk, and we fixed both parame-
ters to the same value. We varied the parameter between
0.05 and 0.5 in steps of 0.05 and found that the best value
for αk, in terms of the best correlation between the real
output and the predicted output for the optimisation set,
was 0.05.

Then, based always on the generated vertical trajec-
tories, we calculated ω1 = 1.0426 and ω2 = 1.5069.

In order to compare our method with another stan-
dard method for supervised learning, we applied Chiu’s
algorithm to the same data (Chiu, 1994). To be fair to
Chiu’s algorithm, we must point out that his model is sim-
ilar to (8) but without the matrices Ak, and so it contains
fewer parameters. However, we believe that it does give
a reasonable comparison and it is a standard, universally
accepted reference. We used the optimisation data to fix a
value for αk for Chiu’s model and found that a value of 0.2
gave the best results. The algorithm found the following
centres:

c1 =

[
1.4078
2.3560

]
, c2 =

[
−1.8363
−0.8830

]
,

which are clearly similar to the centres that our algorithm
found. We note that in the original Chiu algorithm, the
centres must correspond to actual data points whereas in
our algorithm this is not necessarily the case.

Both models were then tested on the validation data.
The correlations between predicted and real data were
found to be 0.7855 for our model and 0.7722 for Chiu’s
model. The real and predicted values for our model can
be seen in Fig. 4 and those for Chiu’s model in Fig. 5. The
two are similar, although the predicted values for Chiu’s
model are “flatter”.

We finish this section by making the remark that our
model is identified wholly on generated data and not on
the original data, whilst Chiu’s model is the opposite i.e.,
identified wholly on the original data.

5. Perspectives

We have presented a method of classification based on
data probes. We have made the assumption that the data
are organised geometrically into homogeneous or nearly
homogeneous clusters. Although this is a fairly strong as-
sumption, we do not believe it to be totally invalid.

We have related vertical vector fields and trajectories
to the notion of homogeneous data. This is an area of
research into which we have been looking for a number of
years and we believe that it has not yet yielded up all of
its potential.
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Fig. 4. Real and predicted outputs.
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Fig. 5. Real and predicted outputs.

This work has also opened up some new areas of in-
vestigation for us. Work is ongoing to fully determine the
influence of the various parameters in the model. How-
ever, it must be said that the influence of these parameters
is fairly dependent on the data being analysed and so we
cannot really hope to achieve any global absolute results.
We are also convinced that a more sophisticated use could
be made of vertical trajectories.
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