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Multiple models are recognised by their abilities to accurately describe nonlinear dynamic behaviours of a wide variety of
nonlinear systems with a tractable model in control engineering problems. Multiple models are built by the interpolation
of a set of submodels according to a particular aggregation mechanism, with the heterogeneous multiple model being of
particular interest. This multiple model is characterized by the use of heterogeneous submodels in the sense that their state
spaces are not the same and consequently they can be of various dimensions. Thanks to this feature, the complexity of
the submodels can be well adapted to that of the nonlinear system introducing flexibility and generality in the modelling
stage. This paper deals with off-line identification of nonlinear systems based on heterogeneous multiple models. Three
optimisation criteria (global, local and combined) are investigated to obtain the submodel parameters according to the
expected modelling performances. Particular attention is paid to the potential problems encountered in the identification
procedure with a special focus on an undesirable phenomenon called the no output tracking effect. The origin of this
difficulty is explained and an effective solution is suggested to overcome this problem in the identification task. The
abilities of the model are finally illustrated via relevant identification examples showing the effectiveness of the proposed
methods.
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1. Introduction

Effective dealing with many problems in control
engineering, such as modelling, control and diagnosis,
generally needs the use of nonlinear models instead of
the standard Linear Time-Invariant (LTI) models. The
latter can be satisfactorily used to represent a mildly
nonlinear system in some situations as proposed by
Mäkilä and Partington (2003). However, they have
fundamental limitations in their abilities to deal with
highly nonlinear behaviours and complex interactions in
a large operating range, for example, when an extended
working range of the system (global behaviour) must
be considered in preference to a reduced operating
range in the neighbourhood of an operating point (local
behaviour).

Nonlinear models are frequently obtained from
theoretical modelling on the basis of a priori knowledge
on the nature and the intrinsic mechanisms of the systems.
These white-box models are often extensive and complex,
and their usability for real-world applications (control,
state estimation, etc.) often requires some simplifications.
Besides, the a priori knowledge on relatively complex
systems is partially or totally unavailable in many
practical situations, and consequently the theoretical
modelling fails. In this quite common case, experimental
modelling (identification) from measurements must be
used as an alternative to theoretical modelling. Nonlinear
system identification has been the focus of a great deal
of attention in the past decades and several models with
adequate algorithms have been proposed, for instance,
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temporal Volterra series, kernel estimators, block oriented
models, radial basis function networks, artificial neural
networks, fuzzy models, neuro-fuzzy models, multiple
models, etc. (Sjöberg et al., 1995; Babuška, 1998; Ljung,
1999; Nelles, 2001). Nevertheless, adequate structure
selection in this multitude of existing structural nonlinear
models is particularly critical for the success of the
identification task as well as model usability. Ideally, as
mentioned by Edwards and Hamson (2001), the success
of a model depends on how easily it can be used and how
accurate are its predictions. Note also that any model will
have a limited range of validity and should not be applied
outside this range. In summary, accurate modelling in a
large domain of validity must be accomplished by models
as simple as possible to cope with real-world problems.

Multiple models, also known as local model net-
works, are recognised by their abilities to capture highly
nonlinear behaviours in a wide operational range of
the system with an exploitable model (Johansen and
Foss, 1993; Murray-Smith and Johansen, 1997; Leith
and Leithead, 1999). Indeed, multiple models offer
a good trade-off between accuracy, complexity and
usability. In this modelling approach, the operating
space of the system is decomposed in a finite number
of possibly overlapping operating zones. The closeness
to each of them is quantified by a weighting function.
Linear models (submodels) are then able to describe the
dynamics of the system inside each operating region. The
global modelling of the system is finally performed by
considering the contribution of each submodel according
to the operating point of the system. In this way a
single complex model whose parameters are not easily
identifiable is replaced by a set of submodels judiciously
interconnected via an interpolation mechanism. Different
structures of multiple models can be derived according to
the interpolation mechanism. However, as stated by Filev
(1991), two main structures can be clearly distinguished
based on the use of homogeneous or heterogeneous sub-
models. A comparison between these multiple models
has recently been proposed by Gregorčič and Lightbody
(2008).

In the first structure, all the submodels share the
same state space and are consequently called homoge-
neous submodels. A good example of this kind of multiple
model is given by the well-known Takagi–Sugeno (TS)
multiple model proposed by Takagi and Sugeno (1985),
in a fuzzy modelling framework, and by Johansen and
Foss (1993), in a multiple model modelling framework.
This multiple model structure, called here the homo-
geneous multiple model, has been largely adopted for
nonlinear modelling and its abilities of dealing with highly
nonlinear systems are unquestionable (Murray-Smith and
Johansen, 1997; Babuška, 1998; Abonyi and Babuška,
2000; Verdult et al., 2002; Kiriakidis, 2007). That kind
of model has also been largely studied to cope with fault

detection and estimation (Xu et al., 2012) or fault-tolerant
control (Rodrigues et al., 2007; Ichalal et al., 2012).
From a structural point of view, the aggregation of
submodels is achieved via a time varying weighted sum
of the submodel parameters (Gregorčič and Lightbody,
2008). Hence, system complexity inside each operating
zone must be quite similar because the submodels have
the same dimension and in some cases the number of
parameters needed for system description is inevitably
increased (overparametrization). This fact is known as the
curse of dimensionality, where the number of parameters
needed for an accurate representation increases extremely
rapidly along with nonlinear system complexity (Leith
and Leithead, 1999).

In the second multiple model structure, the
submodels do not share the same state space and are
consequently called heterogeneous submodels. This
feature offers some degrees of freedom of particular
interest to cope with the curse of dimensionality. Indeed,
the dimensions of the submodels can be different and
they can be adjusted to fit to system complexity inside
each operating zone. In this way, the flexibility
and generality of this multiple model structure are
undoubtedly increased. This kind of multiple model,
initially proposed by Filev (1991), is reported in
the literature under several designations, such as the
local-state local model network (Gawthrop, 1995), the
multiple local models (Gatzke and Doyle III, 1999;
Venkat et al., 2003; Vinsonneau et al., 2005), local
model networks by blending the outputs (Gregorčič and
Lightbody, 2000; 2008), multiple model for models with
a non-common state (Kanev and Verhaegen, 2006), the
neuro-fuzzy decoupling multiple model scheme (Uppal
et al., 2006) and the recently decoupled multiple model
(Orjuela et al., 2006; 2008; 2009). Despite their
different names, these approaches share a similar multiple
model structure. In the sequel, this multiple model is
called the heterogeneous multiple model. The previously
quoted works have illustrated successful implementations
of this structure for modelling (Venkat et al., 2003;
Vinsonneau et al., 2005; Orjuela et al., 2006), control
(Gawthrop, 1995; Gatzke and Doyle III, 1999; Gregorčič
and Lightbody, 2000) or state estimation and diagnostic
(Kanev and Verhaegen, 2006; Uppal et al., 2006; Orjuela
et al. 2008; 2009) and have shown its relevance. Hence,
this kind of multiple model can be used as an interesting
alternative to the homogeneous multiple model.

The main contribution of this paper is to provide a
supervised off-line identification algorithm for nonlinear
systems on the basis of the heterogeneous multiple model
structure. The proposed algorithm is based on a specific
analysis (sensitivity function computation) of parameter
identification of submodels using different optimisation
criteria (local, global or combined local/global). Indeed,
according to the expected model performances, three cost



Nonlinear system identification using heterogeneous multiple models 105

criteria to be minimised are presented and the relationship
between them is discussed. A particular attention is
paid to practical implementation and potential problems
encountered in the identification procedure. Indeed, an
undesirable identification phenomenon, called the no out-
put tracking effect, is clearly revealed and a modification
of the multiple model structure is proposed to reduce its
impact on the identification quality. These topics seem
poorly investigated in the literature related to this kind of
multiple model.

The remainder of the paper is organised as follows.
In Section 2, the heterogeneous multiple model is
presented. The parametric identification problem is stated
in Section 3, where three cost criteria are proposed. The
identification procedure using these criteria is exposed
in Section 4, where the computation of the sensitivity
functions is detailed. Section 5 is devoted to the
explanation of the no output tracking effect and a way
to overcome this problem is proposed. Finally, the
abilities of this multiple model to cope with nonlinear
system identification are assessed in Section 6 by means
of different identification examples. Some concluding
remarks and directions for future research are presented
in Section 7.

2. Heterogeneous multiple model structure

This section is devoted to the description of the
heterogeneous multiple model structure. A mathematical
formulation of this multiple model is firstly detailed. The
weighting function definition employed in this paper is
afterwards proposed.

2.1. Heterogeneous multiple model structure. The
state space structure of the heterogeneous multiple model
used in this work is given by

xi(k + 1) = Ai(θi)xi(k) + Bi(θi)u(k) (1a)

+ Di(θi),
yi(k) = Ci(θi)xi(k), (1b)

y(k) =
L∑

i=1

μi(ξ(k))yi(k), (1c)

where xi ∈ R
ni and yi ∈ R

p are respectively the state
vector and the output of the i-th submodel, u ∈ R

m is
the input and y ∈ R

p is the output of the multiple model.
The matrices Ai ∈ R

ni×ni , Bi ∈ R
ni×m, Di ∈ R

ni

and Ci ∈ R
p×ni of each submodel are constant matrices

whose entries θi must be determined.
The number L of submodels is intuitively given

by the granularity of the operating space decomposition
needed for an accurate representation of the system under
investigation. A complete partition of the operating
space of the system into L operating zones is performed

using a characteristic variable ξ(k) of the system called
the decision variable that is assumed to be known and
real-time available. The distance to each operating zone
is quantified with the help of the weighting functions
μi(ξ(k)) (cf. Section 2.2). The output yi(k) of the
submodels is unmeasurable internal signals of the model
(1); only u(k) and y(k) are available for parameter
identification.

It is worth noting from (1) that each submodel
evolves independently in its own state space depending
on the input control and its initial condition. Hence,
the state space dimension ni of each submodel can be
different from one another and it can be adjusted to
correctly describe the system behaviour in each operating
zone. It can be expected from this feature that some
flexibility in the representation of nonlinear systems
will be introduced. This multiple model is then suited
for black-box modelling of complex systems with a
variable structure in the operating space such as biological
and chemical systems whose state dimension (e.g., the
number of products or species) may vary according to
the operating conditions. This feature also offers the
possibility to apply model order reduction techniques to
the submodels to reduce the global model complexity. It
can be noticed that other multiple model structures can be
obtained by blending the inputs of the submodels instead
of the outputs (Vinsonneau et al., 2005) or by blending
both of them.

2.2. Weighting function definition. The weighting
functions μi(ξ(k)) ∈ [0, 1] : R

w → R
1 quantify the

relative contribution of each submodel to the global model
according to the current operating point of the system
by means of the decision variable ξ ∈ R

w. This last
variable is a real-time available characteristic variable of
the system, e.g., the system input.

Here, the weighting functions are obtained from
normalised multidimensional Gaussian basis functions:

ωi(ξ(k)) =
w∏

j=1

exp

(
− (ξj(k) − ci,j)

2

σ2
j

)
, (2a)

μi(ξ(k)) =
ωi(ξ(k))

∑L
j=1 ωj(ξ(k))

, (2b)

where ξj is the j-th component of the decision variable
vector ξ, the two parameters ci,j and σj are respectively
employed to place the centre and to choose the
overlapping of weighting functions in the operating space.
It can be noted that other mathematical definitions can be
used. In each case, the weighting functions μi(ξ(k)) must
satisfy the following convex sum properties:

L∑
j=1

μj(ξ(k)) = 1, ∀k, (3a)

0 ≤ μj(ξ(k)) ≤ 1, ∀j = 1, . . . , L, ∀k. (3b)
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According to the operating space decomposition,
the weighting functions (2) can be qualified as strongly
overlapped for smooth decomposition or weakly over-
lapped for hard decomposition, as depicted in Figs. 1
and 2. The relationship between the functions ωi(ξ(k))
and μi(ξ(k)) is also shown in this figure. The overlapping
between these functions can be viewed as the overlapping
between the validity regions of the submodels. As will be
pointed out in Section 3.3, these notions play an important
role in the potential interpretation given to the identified
submodels. Throughout this paper and for the sake of
simplicity, the weighting functions μi(ξ(k)) are written
as μi(k).
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Fig. 1. Strongly overlapped weighting functions: ωi(ξ) (left)
and μi(ξ) (right) for σi = 0.3.
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Fig. 2. Weakly overlapped weighting functions: ωi(ξ) (left) and
μi(ξ) (right) for σi = 0.1.

3. Parametric identification problem

The multiple model parametric identification generally
deals with three main issues: (i) decision variable ξ(k)
selection, (ii) the choice of the weighting functions μi(k)
for operating space decomposition and (iii) submodel
parameter estimation for a given multiple model structure.
Model validation constitutes the final stage of the
identification procedure, for example, with the help of
appropriate correlation tests (Billings and Zhu, 1994).
Unfortunately, these issues are not straightforward and
their simultaneous resolution leads to a very hard
nonlinear problem. Hence, a systematic procedure for
multiple model identification is not available despite the
great effort made in this direction.

Here, the three mentioned identification problems
are tackled as follows. The chosen decision variable
ξ(k) is an entry or the complete input vector u(k) of the
system. Indeed, the evolution of the current operating
point of the system is a priori driven by the input
system signal. This choice provides a solution to the
first problem without loss of generality. Concerning
the second problem, it is assumed that the operating
space decomposition is a priori known (supervised
case). Several ways can be employed to obtain this
decomposition. The use of the static regime characteristic
of the system is, for example, a simple way to perform this
partition. In fact, this characteristic provides very helpful
information about the local linear behaviours as well as
the operating points (Venkat et al., 2003). Clustering
algorithms (Gustafson–Kessel algorithm, fuzzy c-means,
fuzzy c-varieties, etc.) are also very useful to deal with
the operating space decomposition in an efficient way
(Babuška, 1998; Dumitrescu et al., 2000). The last, but
not the least, quoted problem is investigated in the sequel.

The basis of heterogeneous multiple model
identification by minimising the error between the
system and the model outputs is exposed by Gray et al.
(1996). In the work of McLoone and Irwin (2003)
the identification is achieved using a heterogeneous
structure with a particular class of submodels known
as velocity-based local models. The use of these
submodels provides transparency of the overall network
because the submodels are always affine. In the work of
Venkat et al. (2003) the input/output data for submodel
identification are generated in one particular small
operating zone of the nonlinear system; the linearity
of the submodel associated with each set of data is
ensured in this way. Hence, submodel identification
can be independently accomplished via standard linear
identification techniques. However, a large number of
experiments are necessary to obtain independent data
sequences for submodel identification. Vinsonneau
et al. (2005) perform the identification of heterogeneous
multiple model with blended inputs with a global total
least square technique. In this section, multiple model
identification mainly deals with submodel parameter
estimation θi in (1). Different optimisation criteria to
accomplish the identification task are proposed and
compared in the following sections.

3.1. Submodel parametric identification problem.
The set of parameters to be identified can be gathered in a
partitioned vector θ as follows:

θ = [θ1 . . . θi . . . θL]T ∈ R
q, (4)

where each block θi is formed by the unknown parameters
of the i-th submodel:

θi = [θi,1 . . . θi,q . . . θi,qi ]
T ∈ R

qi , (5)
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where θi,k (k = 1, . . . , qi) is a scalar parameter to
be estimated, qi the number of parameters of the i-th
submodel and q =

∑L
i=1 qi denotes the total number of

parameters of the multiple model.

The statement of the identification problem,
addressed in this paper, can be formulated as follows:
For given weighting functions and for a given set of
input/output data of a MISO system, the parameters of the
L submodels must be determined. The relative accuracy of
the identified multiple model is evaluated and quantified
via a cost function J(θ) to be minimised, in other words

θ̂ = argmin
θ

J(θ). (6)

The optimisation criterion J(θ) generally quantifies
the output model quality with respect to the system
output. According to the choice of this criterion
and thanks to the flexibility of multiple models, some
modelling specifications can be introduced (for example,
a global representation of the systems and/or its
local representation) in the identification procedure, as
proposed in the next section.

3.2. Optimisation criteria. Three optimisation
criteria (global, local and combined) to be minimised
can be employed in parameter identification of multiple
models (Yen et al., 1998; Abonyi and Babuška, 2000;
Johansen and Babuška, 2003). Obviously, the choice of
a criterion is related to the expected performances of the
model as well as its future applications.

Global criterion. The global criterion is defined by

JG(θ) =
1
2

N∑

k=1

ε2(k),

=
1
2

N∑

k=1

(y(k) − yS(k))2, (7)

where N is the number of training data and ε(k) is the
global error between y(k) the output of the identified
multiple model (1c) while yS(k) stands for the system
output given by the data. This criterion encourages the
global approximation between the nonlinear system and
the multiple model behaviour across the operating space.
This criterion is interesting when the multiple model is
used for predictions without any interpretation of the
submodels. Indeed, the local behaviours of submodels
inside each operating zone are not considered by (7).

Local criterion. The following weighting local criterion is

firstly introduced for each submodel:

JL,i(θi) =
1
2

N∑

k=1

μi(k)ε2
i (k),

=
1
2

N∑

k=1

μi(k)(yi(k) − yS(k))2, (8)

where εi(k) is the local error between the i-th submodel
output yi(k) given by (1b) and the system output yS(k).
The classic least-squares algorithm can be applied for
each submodel identification when a hard operating space
decomposition is considered, i.e., when μi(k) are not
overlapped. In this particular case, the multiple model
output y(k) is given by the submodel output yi(k)
according to the operating point. However, the outputs
of the submodels are simultaneously available and a more
general local criterion can be defined by considering the
contribution of all submodels:

JL(θ) =
1
2

L∑

i=1

JL,i(θi). (9)

This criterion takes into account the local
approximation provided by the submodels inside each
operating zone and some interpretation can eventually
be accorded, e.g., a local linearisation of the nonlinear
system around operating points. Hence, each submodel is
identified by only considering data inside its associated
validity region according to the weighting term μi(k) in
(8). In comparison with the global criterion (7), a large
number of submodels can be necessary to provide a good
global characterisation of the system.

Combined criterion. A trade-off of global and local
criteria can be obtained by the combined criterion defined
by (Yen et al., 1998)

JC(θ) = αJG(θ) + (1 − α)JL(θ). (10)

The use of this criterion makes the so-called
multi-objective optimisation possible in which the
two above criteria are more or less taken into account
according to the weight given by the scalar α ∈ [0, 1].
The influence of α on the trade-off between local model
interpretability and the accurate global approximation
was investigated by Johansen and Babuška (2003). Some
modelling conflicts between the local and the global
objectives are also pointed out in that paper and the way
to detect and solve these conflicts is analysed.

3.3. Link between the criteria and the operat-
ing space decomposition. The weighting functions are
used for zoning the operating space of the system. As
previously mentioned, the operating space decomposition
can be performed in a first step from a priori
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knowledge of the system. The expected results of the
identification procedure according to criterion selection
are consequently conditioned by this partition.

Notice, in particular, that even if a local criterion is
used, the local behaviour interpretation of the multiple
model cannot be accomplished when the operating zones
are strongly overlapped. Indeed, some submodels
have a large validity zone and consequently a local
interpretation inside a very delimited validity region is
not well adequate. In opposition, a global interpretation
can always be made because the multiple model is
built for accomplishing this objective. The local and
global features of the submodels are conditioned by the
appropriate choice of the weighting functions, i.e., by the
operating space decomposition.

4. Submodel parametric identification

An analytical solution of the discussed identification
problem given by (6) is not available because the
optimisation issue remains nonlinear with respect to the
submodel parameters. Hence, the proposed parametric
estimation of the unknown parameter vector θ is
based on an iterative minimisation procedure of a
criterion J (global, local or combined) according to the
Gauss–Newton algorithm associated with the Levenberg
and Marquardt method given by the following recurrence
relation (Walter and Pronzato, 1997; Ljung, 1999; Nelles,
2001):

θ(m+1) = θ(m) (11)

− Δ(m)(H(θ(m)) + λ(m)I)−1G(θ(m)),

where θ(m) is the estimated parameter vector at the
m-th iteration, θ(m+1) is the evaluated vector at the next

iteration, H(θ(m)) = ∂2J
∂θ∂θT

∣∣∣
θ=θ(m)

is the Hessian matrix

and G(θ(m)) = ∂J
∂θ

∣∣
θ=θ(m) the gradient vector at the

current iteration. In the sequel we shall simply write
H(θ) = H(θ(m)) and G(θ) = G(θ(m)). The computation
of G(θ) and H(θ) is based on the calculation of sensi-
tivity functions of the multiple model output with respect
to the submodel parameters. The step size Δ(m) and
the regularisation parameter λ(m) enhance the velocity
and convergence avoiding some numerical problems, for
example, a bad numerical conditioning of the Hessian
matrix (Walter and Pronzato, 1997; Ljung, 1999).

4.1. Computation of GG(θ) and HG(θ) with a global
criterion. The global gradient GG(θ) is calculated by
differentiating the global criterion (7) with respect to the

parameter vector θ:

GG(θ) =
∂JG(θ)

∂θ
,

=
N∑

k=1

ε(k)
∂y(k)

∂θ
. (12)

By using (1c), it follows that

∂y(k)
∂θ

=
L∑

i=1

μi(k)
∂yi(k)

∂θ
. (13)

Here ∂yi(k)/∂θ are the first order sensitivity functions
of the i-th submodel output with respect to the unknown
parameters of the multiple model.

The Hessian matrix HG(θ) is obtained by
differentiating the gradient vector (12) with respect
to θ as follows:

HG(θ) =
∂2JG(θ)
∂θ∂θT

,

=
N∑

k=1

ε(k)
∂2y(k)
∂θ∂θT

+
N∑

k=1

∂y(k)
∂θ

∂y(k)
∂θT

. (14)

Remark that the computation of the Hessian matrix (14)
becomes very arduous due to the required computations
of both first and second order sensitivity functions.
However, the second order sensitivity functions can be
neglected thanks to the Gauss–Newton method (Walter
and Pronzato, 1997; Ljung, 1999; Nelles, 2001). In this
case, the Hessian is computed by only considering the
first order sensitivity functions already employed in the
gradient computation. Finally, the approximate Hessian
H̃G(θ) is given by

H̃G(θ) =
N∑

k=1

∂y(k)
∂θ

∂y(k)
∂θT

. (15)

4.2. Computation of GL(θ) and HL(θ) with a local
criterion. The gradient vector GL(θ) and the Hessian
matrix HL(θ) computations considering the local criterion
(9) are similar to the previous case. The local gradient
GL(θ) is given by

GL(θ) =
∂JL(θ)

∂θ
,

=
L∑

i=1

N∑

k=1

μi(k)εi(k)
∂yi(k)

∂θ
, (16)

and the approximation of its associated Hessian matrix
H̃L(θ) by

H̃L(θ) =
L∑

i=1

N∑

k=1

μi(k)
∂yi(k)

∂θ

∂yi(k)
∂θT

. (17)
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4.3. Computation of the sensitivity functions. Using
(1b), the sensitivity functions are defined as follows:

∂yi(k)
∂θp,q

=
∂Ci

∂θp,q
xi(k) + Ci

∂xi(k)
∂θp,q

,

i = 1, . . . , L, p = 1, . . . , L, q = 1, . . . , qi, (18)

where θp,q is a scalar parameter to be estimated, already
introduced in Section 3.1. The sensitivity of the local state
xi with respect to the parameters at the time k + 1 is
performed by the derivation of (1a) with respect to each
parameter θp,q to be identified:

∂xi(k + 1)
∂θp,q

=
∂Ai

∂θp,q
xi(k) + Ai

∂xi(k)
∂θp,q

+
∂Bi

∂θp,q
u(k) +

∂Di

∂θp,q
,

i = 1, . . . , L.

(19)

A very interesting feature in heterogeneous multiple
model identification is that the same sensitivity functions
∂yi(k)/∂θ are used for parametric estimation with a
global or a local criterion reducing in this way the
computation effort.

4.4. Parameter estimation algorithm. The
identification procedure described so far can be
summarised by the following identification algorithm.

Some practical implementation aspects of this
algorithm are discussed in the sequel. It is worth
noting that the sensitivity functions (18) and (19) are
generic forms. They can be simplified in algorithm
implementation because the parameters of each submodel
are completely independent of the parameters of the
other submodels. Consequently, the number of sensitivity
functions to be computed can be considerably reduced as
follows:

∂yi(k)
∂θp

= 0 for p �= i, (20)

i = 1, . . . , L, p = 1, . . . , L.

The practical implementation complexity of the proposed
identification algorithm is largely reduced thanks to these
simplifications.

Remark that two classic problems can be
encountered when using iterative nonlinear algorithms
(Ljung, 1999; Nelles, 2001; Walter and Pronzato, 1997).
The first one concerns the sufficiently rich input signal.
In the multiple model framework the entire operating
zones of the system must be excited by the input on
the one hand, while the decision variable ξ(k) must be
selected to trigger all submodels on the other. Let us
remember that here the decision variable is the input of
the system and therefore the identification can be well

accomplished by sufficient rich input. The second classic
problem is related to the appropriate choice of an initial
parameter guess θ0 to ensure algorithm convergence
towards a global optimum solution or to the best local
optimum. Indeed, several local optimal solutions are
often available for nonlinear optimisation problems. In
this particular case, several choices of initial parameters
may be necessary to reach the best local optimum
solution ensuring in this way the best identitication of
the nonlinear system under investigation. An interesting
procedure to judiciously choose the initial parameters is to
perform a first identification considering a hard operating
space decomposition by means of the classic least-square
algorithm using the local criterion (8). The submodel
parameters obtained in this way can be employed as a
starting point in the identification algorithm.

Algorithm 1. Heterogeneous multiple model
identification algorithm.
Require: Weighting function definition
Require: Initial parameter vector θ(0), initial state vector

x(0), initial state sensitivities ∂xi(0)/∂θp,q

Require: Maximal number of iterations mmax

Require: Maximal value of the gradient norm ε > 0
Require: 0 ≤ α ≤ 1 in the criterion JC(θ) given by (10)
Require: m = 1, Δ(1) ≈ 0 and λ(1) � 0 in (11)

1: repeat
2: Multiple model simulation from evaluation of (1)
3: Sensitivity function computation from (18) and

(19)
4: Gradient vector G computation from (12) and (16)
5: Hessian matrix H computation from (15) and (17)
6: Update the vector θ(m) from (11)
7: Evaluate J

(m)
C

8: if J
(m−1)
C < J

(m)
C then

9: Go to Stage 6, increase λ(m) and decrease Δ(m)

10: else
11: m ⇐ m + 1
12: Increase Δ(m) and decrease λ(m)

13: end if
14: until ‖G‖ < ε or mmax ≤ m

4.5. Link between local and global approaches. The
aim of this section is to investigate the similarities of the
identification approaches using either a local or a global
approach. Some algebraic manipulations are needed to
highlight the similarities between the gradient vectors
GG(θ) and GL(θ). Firstly, the global error ε(k) can be
rewritten as follows:

ε(k) =
L∑

j=1

μj(k) (yj(k) − yS(k)) , (21)
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=
L∑

j=1

μj(k)εj(k),

using the convex properties (3) of the weighting functions.
Secondly, the expression of ε(k) given by (21) can be
replaced in Eqn. (12) of GG(θ) as follows:

GG(θ) =
N∑

k=1

L∑

i=1

L∑

j=1

μi(k)μj(k)εj(k)
∂yi(k)

∂θ
. (22)

The main difference between the gradient vectors (12)
and (16) only comes from the discussed estimation error.
A global error ε(k) = y(k) − yS(k) is considered in
the first case whereas a local error εi(k) = yi(k) −
yS(k) is used in the second one. However, thanks to
algebraic manipulations the same local error as well as the
same sensitivity functions ∂yi(k)/∂θ appear in the global
gradient vector (22) and in the local one (16).

Now, the limit case where the weighting functions
are not overlapped (i.e., very hard operating space
decomposition) is considered for the sake of clarity. In this
limit case, these two gradient vectors are identical because

{
μi(k)μj(k) = 1 if i = j,

μi(k)μj(k) = 0 otherwise.
(23)

Hence, it can be expected that GL(θ) ≈ GG(θ) when
weakly overlapped weighting functions are employed.
The same comparison between Hessian matrices HG(θ)
and HL(θ), respectively given by (15) and (17), allows us
to show that HL(θ) ≈ HG(θ).

In conclusion, it can be expected that both
optimisation criteria provide similar results when weakly
overlapped weighting functions are considered because
the gradient vectors and the Hessian matrices are similar.
In fact, the optimisation directions are also very similar
in these two cases. In other words, local properties of
the submodels can be obtained using a global criterion
when the operating zones are weakly overlapped (cf.
Example 1), but global properties of the submodels cannot
be expected to be found when weighting functions are
weakly overlapped. For strongly overlapped weighting
functions, it is advisable to choose the combined criterion
(10) to weigh the submodels interpretation with respect to
the quality of the global model.

5. On the no output tracking effect

In some particular modelling situations, undesirable
discontinuities arise in the multiple model output (cf.
Example 2). Indeed, an abrupt change in the decision
variable ξ(k) may cause an abrupt jump from one
output submodel directly to another output, introducing
a discontinuity in the multiple model output (Gatzke and
Doyle III, 1999). Let us remember that the multiple

model output is given by the weighted sum of the
submodel outputs which are not necessarily close in the
operating space. Therefore, their distance may produce
a discontinuity in the multiple model output because
the submodel outputs do not respond instantly. This
phenomenon, called here the no output tracking ef-
fect, happens when the outputs of the submodels taken
into consideration are far apart. The impact of this
phenomenon decreases when the outputs are close and it
completely vanishes if all the outputs are identical at the
transition time.

This undesirable phenomenon unavoidably reduces
the quality of the identified multiple model. It acts in
the identification procedure as an internal perturbation
strongly distorting the submodel identification results.
The chosen decision variable, the operating space
decomposition and the dynamics of the submodels play
a more or less important role in the no output tracking ef-
fect. It is important to notice that this phenomenon is not
systematic and only appears in particular cases.

Considering strongly overlapped weighting
functions and a large number of operating zones is
not always an efficient way to avoid this phenomenon.
These constraints undoubtedly increase the complexity of
the multiple model and reduce some degrees of freedom
in the modelling stage, e.g., local modelling with strongly
overlapped weighting functions cannot be well achieved
(see Section 3.3). Furthermore, the previous solution
does not provide a systematic reaction to the no output
tracking effect, as shown in Example 2. Here, a modified
heterogeneous multiple model, depicted in Fig. 3, is
proposed to deal with this problem.

F1(., .)

F2(., .)

F3(., .)

ξ(k) ξ̃(k) μi(ξ̃(k))

Submodel 1

Submodel 2

Submodel L

Π

Π

Π

Σ
u(k) ũ(k) ỹ(k) y(k)

μ1(.)

μ2(.)

μL(.)

Fig. 3. Modified heterogeneous multiple model structure.

The main idea is to find a way to progressively
take into consideration the contribution of each submodel.
Three filters (with transfer functions F1, F2 and F3) are
introduced in the multiple model structure. These filters
respectively act on the input, the decision variable ξ(k)
and the output of the multiple model. The proposed mod-
ified heterogeneous multiple model is given by

ũ(k) = F1(z−1, θF1)u(k), (24a)

ξ̃(k) = F2(z−1, θF2)ξ(k), (24b)

xi(k + 1) = Ai(θi)xi(k) + Bi(θi)ũ(k) (24c)

+ Di(θi),
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yi(k) = Ci(θi)xi(k), (24d)

ỹ(k) =
L∑

i=1

μi(ξ̃(k))yi(k), (24e)

y(k) = F3(z−1, θF3)ỹ(k), (24f)

where y(k) is the modified multiple model output, z−1 is
the one step delay operator, F1(z−1, θF1), F2(z−1, θF2)
and F3(z−1, θF3) are the three additional filters and θFi is
the parameter vector of the i-th filter to be identified.

These three filters, often first or second order
low-pass ones, are integrated in the multiple model
structure and their parameters should be estimated in the
identification procedure. The new augmented unknown
parameter vector θ is then given by

θ =
[
θT
1 . . . θT

i . . . θT
L θT

F1
θT

F2
θT

F3

]T
, (25)

where each block θi has already been defined in (5)
and the blocks θF1 , θF2 and θF3 are formed by the
parameters of the three additional filters to be identified.
The identification procedure is achieved as proposed in
Section 4, including the additional sensitivity functions
of the multiple model output with respect to the filter
parameters.

It can be noticed that a systematic guideline for
selection of these three filters cannot be provided in a
straightforward way. Indeed, a systematic use of the
additional filters is not always needed to overcome the no
output tracking effect, as shown in Section 6. These filters
must be considered as supplementary degrees of freedom
to enhance the identification task with few parameters
when the no output tracking effect is detected. In many
cases, the no output tracking effect can be avoided by only
using the filter F2 (i.e., using filtered decision variables
ξ̃(k)) because abrupt jumps of the weighting functions are
avoided.

6. Identification examples

In this section, the developed method is applied to
three nonlinear system identification problems allowing to
assess the effectiveness of the method as well as its limits.
The performance of the models is assessed using the
Mean Square Error (MSE) and the Variance-Accounted-
For (VAF) indicators:

MSE =
1
N

N∑

k=1

(yS(k) − y(k))2, (26)

VAF = max
{

1 − var(yS(k) − y(k))
var(yS(k))

, 0
}
× 100, (27)

where yS(k) and y(k) are respectively the system and the
model output, and var(·) denotes the variance of a signal
(Verdult et al., 2002). These indicators are computed
using the validation data in the proposed examples.

Example 1. (Identification case) The following nonlinear
system is considered:

y(k + 1) = (0.6 − 0.1a(k))y(k) + a(k)u(k), (28a)

a(k) =
0.6 − 0.06y(k)
1 + 0.2y(k)

. (28b)

The operating space is decomposed into L = 2
operating zones according to the static characteristic of
(28). The decision variable is the system input ξ(k) =
u(k). The parameters of the weighting functions (2) are
c1 = −0.9, c2 = 0.9 and σi = 0.9. This choice ensures
the blending of submodels but is not unique and the
parameters of the weighting functions could be optimised.
The structure of the submodels is

xi(k + 1) = aixi(k) + biu(k), (29)

where ai and bi are scalar parameters to be identified
considering a global criterion (7). The identification is
carried out using a data set of 750 samples generated by
a smooth input signal with random magnitude u(k) ∈
[−0.9, 0.9]. A second data set of 750 samples is employed
for the validation purpose.

The identification results are displayed in Fig. 4. In
this figure, the nonlinear system is denoted by NLS and
the identified multiple model by MM . The upper part
of this figure shows a comparison between the nonlinear
system and the identified submodels. Clearly, each
submodel provides a local representation of the system
behaviour. In fact, the first submodel provides a good
approximation for negative input values. In contrast,
the second submodel provides good approximation for
positive input values. The global modelling of the
nonlinear system (bottom of the figure) is finally obtained
by appropriately considering the contribution of each
submodel via middle overlapped weighting functions.
The proposed multiple model represents local as well
as global behaviour of the nonlinear system and the
performance indicators are MSE = 0.0012 and VAF =
99.72%. �

Example 2. (On the no output tracking effect) The goal of
this identification example is to show the no output track-
ing effect. The following system is considered:

x(k + 1) = ax(k) + sin(γu(k))(β − u(k)), (30)

with a = 0.95, γ = 0.8π and β = 1.5.
The operating space is intentionally decomposed in

L = 6 operating zones using the system input as the
decision variable, i.e., ξ(k) = u(k). The parameters of the
weighting functions (2) are c1 = 0, c2 = 0.2, c3 = 0.4,
c4 = 0.6, c5 = 0.8, c6 = 1 and σi = 0.2. The submodel
structure is given by

xi(k + 1) = aixi(k) + biu(k) + di, (31)



112 R. Orjuela et al.

0 100 200 300 400 500 600 700 800
−2

−1

0

1

2

 

 

NLS submodel1

0 100 200 300 400 500 600 700 800
−2

−1

0

1

 

 

NLS submodel2

0 100 200 300 400 500 600 700 800
0

0.5

1

 

 

μ1
μ2

0 100 200 300 400 500 600 700 800
−2

−1

0

1

k

 

 

NLS MM

Fig. 4. System identification results using validation data.

where ai, bi and di are scalars to be identified. A
global criterion (7) can be used for the identification task
because the weighting functions are strongly overlapped.
The identification is carried out using a data set of
5000 samples generated by a piecewise input signal with
random duration and magnitude u(k) ∈ [0, 1]; a second
data set of 5000 samples is employed for the validation
purpose.

The comparison between the nonlinear system and
the multiple model behaviours is depicted in Fig. 5.
Clearly, the system behaviour is not well represented by
the identified multiple model. The performance indicators
are MSE = 9.66 and VAF = 52.22%. Indeed,
the system output is not well tracked by the multiple
model output, in particular due to “picks” causing a loss
of quality. These “picks” are undesirable and result
in the no output tracking effect previously presented in
Section 5. One can see in Fig. 5 that the no output
tracking effect remains important despite the large number
of submodels and the strongly overlapped weighting
functions voluntarily employed in this example.

The modified heterogeneous multiple model (24)
proposed in Section 5 is now employed to improve the
identification, i.e., to attenuate the no output tracking ef-
fect. Here, the structures of the filters F1, F2 and F3 are
given by

ũ(k + 1) = α1ũ(k) + (1 − α1)u(k + 1), (32a)

ξ̃(k + 1) = α2ξ̃(k) + (1 − α2)ξ(k + 1), (32b)

y(k + 1) = α3y(k) + (1 − α3)ỹ(k + 1), (32c)
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Fig. 5. No output tracking effect: system and multiple model
output validation.

where α1, α2 and α3 are supplementary parameters to
be estimated based on the ideas proposed in Section 5.
As seen in Fig. 6, the modified heterogeneous multiple
model provides an accurate representation of the system
dynamics. The performance indicators are largely
improved: MSE = 0.0029 and VAF = 99.98%. The
proposed strategy is an effective way to eliminate the no
output tracking effect and to consequently recover the
approximation abilities of the multiple model.
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Fig. 6. No output tracking effect: system and modified multiple
model output validation.

�
Example 3. (Nonlinear system identification) The
following system, firstly proposed by Narendra and
Parthasarathy (1990) for neural networks identification,
is considered a benchmark for black-box identification
technique evaluation (Verdult et al., 2002; Nie, 1994;
Boukhris et al., 1999; Wen et al., 2007):

y(k + 1)

=
u(k)

1 + y2(k − 1) + y2(k − 2)

+
y(k)y(k − 1)y(k − 2)u(k − 1) (y(k − 2) − 1)

1 + y2(k − 1) + y2(k − 2)
.

(33)
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The identification is accomplished by considering
a global criterion and an operating space uniformly
partitioned in L = 4 operating zones. The parameters
of the weighting functions (2) are c1 = −1, c2 = −0.33,
c3 = 0.33, c4 = 1 and σi = 0.4. The identification
task is accomplished using a partially modified multiple
model. Indeed, the decision variable u(k) is filtered by the
low-pass filter (32b), and consequently only the filter F2

is employed. The modified multiple model is composed
of four second-order submodels.

In this benchmark, the identification is carried out
using a data set of 800 samples generated by a piecewise
input signal with random duration and magnitude u(k) ∈
[−1, 1]. The model validation is assessed using a second
data set of 800 samples generated by an input signal given
by

u(k) =

⎧
⎪⎨

⎪⎩

sin
( 2π

250
k
)

if k ≤ 500,

0.8 sin
( 2π

250
k
)

+ 0.2 sin
(2π

25
k
)

if k > 500.

The identification is carried out by successively
considering the noise-free output case and the noisy
output case. In the latter, a normally distributed random
signal with zero mean and unit standard deviation is
employed to disturb the system output. The obtained
identification results in these two cases are respectively
shown in Figs. 7 and 8.
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Fig. 7. Model validation for identification in the noise-free case.

Table 1 shows a comparison between our results and
those found in the literature using other models. Remark
that the two performance indicators MSE and VAF are
not always computed in these works and the noise case
is not considered. It can be pointed out that the identified
multiple model yields performances comparable to those
obtained with the other methods with few parameters (four
second-order submodels). The abilities of this multiple
model to cope with nonlinear system identification are
clearly shown.
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Fig. 8. Model validation for identification in the noise case.

Table 1. Performance indicator comparisons (TS MM: Takagi–
Sugeno multiple model (homogeneous model), BP-
WARX: piecewise-affine basis function autoregressive
eXogenous models).

Model name and reference MSE VAF

Neuro-fuzzy network with 34 rules 0.00028 –
(Nie, 1994) –
TS MM, with seven 3rd order models 0.0003 –
(Boukhris et al., 1999) –
TS MM, with four 3rd order models 0.0002 99.9%
(Verdult et al., 2002)
BPWARX, with 10 BPWA functions 0.112 97.9%
(Wen et al., 2007)
Proposed method (noise-free case) 0.00067 99.7%
Proposed method 0.0053 97.7%
(noise case, SNR = 17 dB)

7. Conclusion and further directions

In this work, the abilities of the heterogeneous multiple
model to deal with the identification of nonlinear systems
are investigated. With respect to classic multiple model
structures, the heterogeneous multiple model enables to
use heterogeneous submodels with different dimensions
according to the complexity of the system inside each
operating region. The main advantage of this model is the
flexibility degree in the operating space decomposition of
the system.

An identification algorithm was presented and three
cost criteria (local, global or combined global/local) were
provided according to the expected model performance.
The relationship between these criteria was highlighted.
An effective solution to avoid the undesirable no output
tracking effect was also proposed and the results obtained
showed the effectiveness of the proposed identification
algorithm.

The suggested identification algorithm can be
extended in order to optimise the operating space
decomposition. Indeed, the weighting functions
associated to each operating region are supposed to be
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known in this work, even if they can also be optimised
as the submodel parameters using the same optimisation
procedure. In this way, the approximation abilities of
the multiple model can be enhanced but the complexity
of the optimisation problem increases because the total
number of the parameters to be identified also increases.
A solution to this problem can, however, be found via
a two level iterative algorithm. In the first level, the
proposed parameter identification can be used assuming
that the weighting functions are known. Weighting
function identification is performed in the second level
by assuming that the submodels are known. Finally, the
perspectives of this study are the extension of the proposed
identification procedure to include the optimisation of the
operating space decomposition according to the multiple
model dimension, i.e., submodel orders and their number.
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