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In the paper, the problem of extraction of complex decision rules in simple decision systems over ontological graphs is
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approach, searching the semantic spaces of concepts presented by means of ontological graphs. Concepts included in the
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1. Introduction

Rough set theory delivers useful methods for knowledge
discovery and data mining (cf. Pawlak, 1991). Starting
points for various data mining algorithms, including rough
set ones, are information (decision) tables consisting of
vector descriptions of objects. In rough set theory,
information (decision) tables are tabular representations
of mathematical entities called information (decision)
systems. In information (decision) tables, rows represent
objects whereas columns correspond to attributes
(features) of objects. Entries of the table (intersections of
rows and columns) are values of attributes (corresponding
to columns) describing objects (corresponding to rows).
In classic approaches, values in information (decision)
tables can be both symbolic and numeric. To compare
objects by means of such attribute values, a lot of
measures have been defined. First of all, there are various
similarity measures of objects. A generalized definition
of approximations of sets, based on similarity, was
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proposed, for example, by Slowinski and Vanderpooten
(1996). Some approaches use also data semantics,
e.g., the dominance-based rough set approach (Greco
et al., 2001).

Intelligent systems play an important role in modern
computer science (Tadeusiewicz, 2010b; 2011) and
related fields. The recent research in the area of
intelligent systems shows that, in many situations, data
alone are not sufficient. There is a need to add
some expert knowledge about relationships within data
expressing the meaning of data. Such knowledge
is included in ontologies. In the works of Pancerz
(2012b; 2013b), ontologies were incorporated into
information (decision) systems, i.e., attribute values
were considered in the ontological (semantic) spaces.
Similar approaches have been considered in the literature,
e.g., DAG-decision systems (Midelfart and Komorowski,
2002), the dominance-based rough set approach (DRSA)
(Greco et al., 2001), rough ontology (Ishizu et al., 2007),
etc. In our approach, we replace, in a classic definition
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of information (decision) systems, simple sets of attribute
values by ontological graphs which deliver us some
new knowledge about meanings of attribute values. For
this case, decision rules in decision systems can be
seen from different perspectives, for example, taking
into consideration synonymy, generality or some more
sophisticated properties determining meanings of attribute
values.

Formally, the ontology can be represented by means
of graph structures. The graph representing the ontology
is called the ontological graph. In such a graph, each
node represents one concept from the ontology, whereas
each edge represents a relation between two concepts.
Relations are very important components in ontology
modeling as they describe the relationships that can be
established between concepts. There have been proposed
two ways for creating information (decision) systems over
ontological graphs. In the first approach, attribute values
of a given information (decision) system are concepts
from ontologies assigned to attributes. Such a system is
said to be a simple information (decision) system over
ontological graphs. In the second approach, attribute
values of a given information (decision) system are local
ontological subgraphs of ontological graphs assigned to
attributes. Such a system is said to be a complex
information (decision) system over ontological graphs. It
means that the term “simple” should be understood as the
word describing the property of the decision system, not
the size of it. In simple decision systems over ontological
graphs, attribute values are single concepts. The opposed
system is “complex”. In complex systems, attribute values
are graph structures.

An important problem concerning decision systems
is extracting the knowledge hidden in such systems. This
knowledge can be expressed in the form of decision rules.
The topic of rule definition and extraction in various
decision systems has been widely considered in the
literature. Therefore, Pancerz (2013a) defined decision
rules and related notions in simple decision systems over
ontological graphs analogously to those defined for classic
decision systems in rough set theory.

Another look, this time based on the
dominance-based rough set approach (Greco et al., 2001),
at decision rules for simple decision systems over
ontological graphs was presented by Pancerz (2012a),
too. In that paper, elementary decision rules, similar
to that defined in the DRSA, were considered. An
elementary rule is said to be a rule with one condition
descriptor. Moreover, the exhaustive algorithm for
mining the most general elementary rules, in a given
simple decision system over ontological graphs, with
respect to their condition parts for fixed decision parts,
was proposed. That algorithm was based on the depth-first
search technique with pre-pruning.

The idea of incorporating the DRSA into decision

systems over ontological graphs, proposed by Pancerz
(2012a), is recalled in Section 3. In this paper, we
continue the discussion on decision rules consistent
with the dominance-based rough set approach. Our
investigations are extended to the decision rules
with complex condition parts, i.e., the rules having
multi-descriptor left-hand sides. However, only a special
case is taken into consideration, when descriptors
appearing on the left-hand sides of rules are linked by
the and logical connectives. The complex decision
rules in simple decision systems over ontological graphs
are considered in Section 4. In the case of complex
rules, the rule extraction becomes a more complicated
process than in classic rough set theory. The space of
possible condition descriptors appearing in the rules is
significantly greater. Descriptors can include not only
attribute values (concepts) present in decision systems,
but also values which are more general concepts than the
ones mentioned, according to defined ontological graphs.
Therefore, to solve the problem considered, we propose,
in Section 5, to use some heuristic algorithm utilizing the
ant-based clustering approach.

2. Simple decision systems over ontological
graphs

Information (decision) systems were proposed by Pawlak
(1991) as knowledge representation systems. An
information (decision) system represents a set of
objects described by attribute value vectors. Pancerz
(2012b) proposed to consider attribute values describing
objects in the ontological spaces, where ontologies
are constructed on the basis of controlled vocabularies
and the relationships of the concepts in the controlled
vocabularies (cf. definitions given by Neches et al.
(1991) and Köhler et al. (2006)). In that approach, we
use formal representations of ontologies by means of
graph structures. Such structures are called ontological
graphs. For a given ontology O, an ontological graph
includes nodes representing concepts from O and edges
representing relations between concepts fromO.

Definition 1. Let O be a given ontology. An ontological
graph is a quadruple OG = (C, E,R, ρ), where C is a
nonempty, finite set of nodes representing concepts in the
ontologyO,E ⊆ C×C is a finite set of edges representing
relations between concepts from C, R is a family of
semantic descriptions (in natural language) of types of
relations (represented by edges) between concepts, and
ρ : E → R is a function assigning a semantic description
of the relation to each edge.

Semantic relations describe the relationships that
can be established between concepts. In the literature,
a variety of taxonomies of different types of semantic
relations has been proposed (Brachman, 1983; Chaffin
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and Herrmann, 1988; Milstead, 2001; Storey, 1993;
Winston et al., 1987). In our approach, we will use the
taxonomy of types of semantic relations modeled on the
project called Wikisaurus (Wikisaurus, 2013) aiming at
creating a thesaurus of semantically related terms.

There are four main types of semantic relations
distinguished in the project: synonymy, antonymy,
hyponymy/hyperonymy, meronymy/holonymy.
Synonymy concerns concepts with a meaning that is
the same as, or very similar to, other concepts. Antonymy
concerns concepts which have the opposite meaning
to others. Both of these relations are nonhierarchical.
Hyponymy/hyperonymy determines narrower/broader
meaning. Hyponymy concerns more specific concepts
than others. Hyperonymy concerns more general concepts
than others. Meronymy and holonymy define part/whole
relations. Meronymy concerns concepts that denote
parts of the wholes that are denoted by other concepts.
Holonymy concerns concepts that denote wholes whose
parts are denoted by other concepts.

Further, we will be interested only in the
hyperonymy. This relation will be marked with R�
and (v, v′) ∈ R� is read “v is a hyperonym of v′”. This
label will be used, for simplicity, instead of a semantic
description (in natural language) of hyperonymy assigned
to edges in ontological graphs. In drawing ontological
graphs, for readability, we will omit reflexivity of
hyperonymy. However, a given concept is a hyperonym
of itself.

In this paper, we will use the definition of a simple
decision system over ontological graphs given by Pancerz
(2012b).

Definition 2. A simple decision system SDSOG over
ontological graphs is the septuple

SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd),

such that

• U is a nonempty, finite set of objects,

• C is a nonempty, finite set of condition attributes,

• D is a nonempty, finite set of decision attributes,

• {OGa}a∈C is a family of ontological graphs
associated with condition attributes from C,

• Vd =
⋃

a∈D Va, where Va is a set of values of the
decision attribute a ∈ D,

• fc : C × U → C, where C =
⋃

a∈C Ca, is an
information function such that fc(a, u) ∈ Ca for each
a ∈ C and u ∈ U , where Ca is a set of concepts from
the graph OGa,

• fd : D × U → Vd is a decision function such that
fd(a, u) ∈ Vd for each a ∈ D and u ∈ U .

Remark 1. It is not necessary for an information function
to be a total function, i.e., fc : C × U → C∗ ⊆ C.

The character of sets of attribute values differentiates
simple information (decision) systems over ontological
graphs from information (decision) systems proposed by
Pawlak (1991). Now, attribute values are not singular
(individual) values, but they are placed in the graph
structures expressing relationships between these values.

Pancerz (2014) developed complex information
systems over ontological graphs in which attribute values
are local ontological graphs of ontologies assigned to
attributes.

Example 1. (Decision system) Let SDSOG =
(U,C,D, {OGa}a∈C , Vd, fc, fd) be a simple decision
system, represented by a decision table (see Table 1), over
ontological graphs shown in Figs. 1 and 2. In this system,

U = {u1, u2, . . . , u15}

is a set of fifteen objects described with respect to the
development level. C = {Sector ,Region} is a set of
condition attributes describing an economy sector and a
continental region. D = {Level} is a set of decision
attributes, D consists of one attribute evaluating the
development level. OGSector = (CS , ES ,R, ρS) is an
ontological graph associated with the attribute Sector
(see Fig. 1). OGRegion = (CR, ER,R, ρR) is an
ontological graph associated with the attribute Region
(see Fig. 2). As mentioned earlier, only hyperonymy
is taken into consideration, i.e., R = {R�}. Vd =
{Low ,Medium,High} is a set of decision values. fc is
an information function and fd is a decision function, both
defined in the tabular form in Table 1.

Obviously, ontological graphs used in this example
are simplified in comparison to ontological graphs
expressing real-world relations between concepts.

Fig. 1. Ontological graph OGSector associated with the at-
tribute Sector.

�
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Table 1. Simple decision system over ontological graphs.

U/C ∪D Sector Region Level

u1 Forestry Northern America High

u2 Forestry Caribbean Medium

u3 Forestry Latin America Medium

u4 Forestry Middle East Low

u5 Mining Middle East High

u6 Financial Services Northern America High

u7 Legal Services Northern America High

u8 Insurance Northern America High

u9 Financial Services Latin America Medium

u10 Legal Services Latin America Medium

u11 Insurance Latin America Medium

u12 Industry Far East High

u13 Industry Asia Pacific Medium

u14 Industry Middle East Medium

u15 Mining Far East Low

Fig. 2. Ontological graph OGRegion associated with the at-
tribute Region.

Let OG = (C, E,R, ρ) be an ontological graph. In
further definitions, we will use the following notation:
[ci, cj] is a simple path in OG between ci, cj ∈ C,
E([ci, cj ]) is a set of all edges from E belonging to the
simple path [ci, cj ], andP(OG) is a set of all simple paths
in OG . In the literature, there are different definitions for
a simple path in the graph. In this paper, we follow the
definition in which a path is simple if no node or edge is
repeated, with the possible exception that the first node is
the same as the last. Therefore, the path [ci, cj ], where
ci, cj ∈ C and ci = cj can also be a simple path in OG .

Definition 3. Given an ontological graph OGa =
(Ca, Ea,R, ρa) associated with the attribute a in a simple
decision system, where R = {R�} and v ∈ Ca a hyper-
onymous meaning relation HprMRv

a is a set of all pairs

(c1, c2) ∈ Ca × Ca satisfying the following conditions:

∃
[v,c1]∈P(OGa)

(

∀
e∈E([v,c1])

ρ(e) ∈ {R�}
)

and

∃
[v,c2]∈P(OGa)

(

∀
e∈E([v,c2])

ρ(e) ∈ {R�}
)

.

If two concepts are in the hyperonymous meaning
relation, then in a more general meaning, they can be
treated as the same concept, for example, car and bus are,
in a more general meaning, vehicle .

3. Dominance-based rough set approach in
simple decision systems over ontological
graphs

Pancerz (2012a) proposed to consider simple decision
systems over ontological graphs in terms of the
dominance-based rough set approach (Greco et al., 2001).
It seems to be natural because hyperonymy can be
considered in terms of dominance relations.

Let an ontological graph OGa = (Ca, Ea,R, ρa) be
associated with the attribute a in a simple decision system
and c1, c2 ∈ Ca. It is said that c1 dominates c2, written as
D≥(c1, c2), if c2 is a hyperonym of c1 (or, in other words,
c1 is a hyponym of c2).

Let an ontological graph OGa = (Ca, Ea,R, ρa) be
associated with the attribute a in a simple decision system
and c1, c2 ∈ Ca. It is said that c1 is dominated by c2,
written as D≤(c1, c2), if c1 is a hyperonym of c2 (or, in
other words, c2 is a hyponym of c1).

Remark 2. According to the definitions given earlier, we
will further denote the hyponymy relation by D≥(c1, c2)
and the hyperonymy relation by D≤(c1, c2).
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Example 2. (Domination) Consider the ontological graph
OGRegion given in Example 1. For instance, Middle East
dominates Asia , i.e., D≥(MiddleEast ,Asia),
whereas Asia is dominated by Middle East , i.e.,
D≤(Asia,Middle East). �

In the dominance-based rough set approach (Greco
et al., 2001), an outranking relation Sq (Roy, 1985)
corresponding to a criterion q is used. In this case,
Sq(x, y) means that “x is at least as good as y with respect
to the criterion q”. In our approach, covering hyperonymy,
the meaning will be quite similar, i.e., “x is at least y with
respect to a given ontological graph OG”.

Definition 4. Consider a simple decision system

SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd)

over ontological graphs, a ∈ C and u ∈ U . An
a-dominating set with respect to u is the set

D+
fc(a,u)

= {u′ ∈ U : D≥(fc(a, u), fc(a, u′))}.

An a-dominated set with respect to u is a set

D−
fc(a,u)

= {u′ ∈ U : D≤(fc(a, u), fc(a, u′))}.

Remark 3. Consider a simple decision system

SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd)

over ontological graphs be given, a ∈ C and v ∈ Ca of
OGa. We use the following notation:

• by D+v
a we denote the set

{u ∈ U : D≥(fc(a, u), v)},

i.e., the set of all objects u in U for which fc(a, u)
dominates v,

• by D−v
a we denote the set

{u ∈ U : D≤(fc(a, u), v)},

i.e., the set of all objects u in U for which fc(a, u) is
dominated by v.

The a-dominating set with respect to u is a set of
all objects from U having concepts assigned to them by
the attribute a whose hyperonym is the concept assigned
to u by the attribute a according to an ontological graph
OGa. Analogously, the a-dominated set with respect to
u is a set of all objects from U having concepts assigned
to them by the attribute a which are hyperonyms of the
concept assigned to u by the attribute a according to an
ontological graph OGa.

4. Decision rules consistent with the
dominance principle

In this section, we use definitions related to the
dominance-based rough set approach, given, among other
things, by Greco et al. (2001), to provide notions for
decision rules in a simple decision system over ontological
graphs.

Let SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd) be
a simple decision system over ontological graphs, ad ∈ D
and Clad

= {Clt : t ∈ T }, where T = {1, . . . , n}, be
a set of classes of U determined by ad, such that u ∈ U
belongs to one and only one class Clt ∈ Clad

. Moreover,
suppose that we can define a complete preorder, i.e., a
strongly complete and transitive binary relation Sad

, for
a decision attribute ad ∈ D in SDSOG . For r, s ∈ T ,
r > smeans that each element ofClr is preferred (strictly
or weakly) to each element of Cls. For u, v ∈ U ,
(u, v) ∈ Sad

means “u is at least as good as v”.
For a family Clad

of classes, we define an upward
union of classes:

Cl≥t =
⋃

s≥t

Cls,

where Clt, Cls ∈ Clad
.

Let SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd) be
a simple decision system over ontological graphs, a ∈ C
and Cl≥t be an upward union of classes determined by a
given decision attribute from D. We define

• the a-lower approximation of Cl≥t :

a(Cl≥t ) = {u ∈ U : D+
a (u) ⊆ Cl≥t },

• the a-upper approximation of Cl≥t :

a(Cl≥t ) =
⋃

u∈Cl≥t

D+
a (u),

Let SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd) be
a simple decision system over ontological graphs. Let C =⋃

a∈C Ca, where Ca is a set of concepts from the graph
OGa associated with a given a ∈ C. For the decision
system SDSOG , we define

• condition descriptors, which are expressions (a, v)≥

over C and C, where a ∈ C and v ∈ C, read as “a is
at least v” according to OGa,

• decision descriptors, which are expressions (a, v)≥

over D and Vd, where a ∈ D and v ∈ Vd, read
as “a is at least v” according to a complete preorder
defined for a.

In a given simple decision system

SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd)
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over ontological graphs, we will consider a D≥-decision
rule in the form

(ac1 , vc1)
≥ ∧ (ac2 , vc2)

≥ ∧ · · · ∧ (ack , vck)
≥

⇒ (ad, vd)
≥,

where ac1 , ac2 , . . . , ack ∈ C, vc1 ∈ Cac1
of OGac1

, vc2 ∈
Cac2

of OGac2
, . . . , vck ∈ Cack

of OGack
, ad ∈ D,

vd ∈ Vd and φ1 ∧ φ2 ∧ · · · ∧ φk ⇒ ψ is read: ”if φ1
and φ2 and . . . and φk, then ψ”.

The above decision rule can be read in the following
way: “if ac1 is at least vc1 and ac2 is at least vc2 and . . .
and ack is at least vck , then ad is at least vd”. This rule is
true (valid, certain) in SDSOG if and only if

D
+vc1
ac1

∩D+vc2
ac2

∩ · · · ∩D+vck
ack

⊆ Cl≥vd
and

D
+vc1
ac1

∩D+vc2
ac2

∩ · · · ∩D+vck
ack


= ∅,
where Clvd denotes the class of objects u ∈ U such that
fd(ad, u) = vd.

Remark 4. If, in the above rule, k = 1, then the rule is
called a D≥-elementary decision rule, i.e., it has the form

(ac, vc)
≥ ⇒ (ad, vd)

≥,

where ac ∈ C, vc ∈ Cac of OGac , ad ∈ D, vd ∈ Vd.

Investigations into D≥-elementary decision rules in
simple decision systems over ontological graphs were
carried out by Pancerz (2012a).

From rough set theory, we know that lower
approximations generate rules true in decision systems. In
our case, each nonempty B-lower approximation of Cl≥t
generates D≥-elementary decision rules true in a given
decision system, where B = {ac1 , ac2 , . . . , ack}.

5. Generation of decision rules consistent
with the dominance principle

Pancerz (2013a) extended notions related to decision rules
in classic decision systems, given by Pawlak (1991),
to analogous notions for simple decision systems over
ontological graphs. Another look, this time based on
the dominance-based rough set approach (DRSA) (Greco
et al., 2001), at decision rules for simple decision systems
over ontological graphs was presented also by Pancerz
(2012a). However, in the second case, we considered only
the most general elementary rules true in a given simple
decision system over ontological graphs.

Let SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd) be
a simple decision system over ontological graphs. An
elementary rule (ac, vc)

≥ ⇒ (ad, vd)
≥, where ac ∈ C,

vc ∈ Cac of OGac , ad ∈ D, vd ∈ Vd, is said to be
the most general rule with respect to its condition part

for a fixed decision part (ad, vd)≥ if and only if the rule
(ac, vc)

≥ ⇒ (ad, vd)
≥ is true in SDSOG , but the rule

(ac, v
′
c)

≥ ⇒ (ad, vd)
≥, where v′c is a hyperonym of vc

according to OGac , is not true in SDSOG .
In this paper, we consider a more general case, i.e.,

decision rules have the form mentioned in Section 4.
Such a situation complicates the problem of extraction
of rules, consistent with the dominance principle, from
simple decision systems over ontological graphs. In the
remaining part of this section, we propose some heuristic
algorithm (see Algorithm 1) using the ant-based clustering
process for extraction of decision rules true in a given
simple decision system over ontological graphs. At the
beginning, we start with some auxiliary notions used in
the ant-based algorithm.

Let

r : (ac1 , vc1)
≥ ∧ (ac2 , vc2)

≥ ∧ · · · ∧ (ack , vck)
≥

⇒ (ad, vd)
≥

be a D≥-decision rule and

U�

r = (D
+vc1
ac1

∩D+vc2
ac2

∩ · · · ∩D+vck
ack

)− Cl≥vd ,
U c
r = D

+vc1
ac1

∩D+vc2
ac2

∩ · · · ∩D+vck
ack

.

For the rule r, we define its accuracy acc(r) as

acc(r) =
card(U c

r )− card(U�

r )

card(U c
r )

,

where card(X) denotes the cardinality of X .
It is easy to see that if r is true in a given simple

decision system over ontological graphs, then U�

r = ∅
and acc(r) = 1.

Let SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd)
be a simple decision system over ontological graphs,
where D = {ad}. For each ontological graph OGa =
(Ca, Ea,R, ρa), where a ∈ C, for each concept (attribute
value) v ∈ Ca, we define the goodness δv of v for a fixed
vd ∈ Vd as

δv =
card(D+v

a )− card(D+v
a − Cl≥vd)

card(D+v
a )

. (1)

It is easy to see that the goodness of a given concept v is
equal to 1 with respect to a fixed vd ∈ Vd if and only if a
D≥-elementary decision rule

(a, v)≥ ⇒ (ad, vd)
≥

is true in SDSOG .

Example 3. (Elementary rules) Let us consider the
simple decision system over ontological graphs SDSOG

given in Example 1. For a fixed decision part in the
form Cl≥Medium , the concepts from ontological graphs
OGSector and OGRegion with the goodness equal to 1 are
marked in gray in Figs. 3 and 4, respectively.

According to Figs. 3 and 4, we obtain the following
D≥-elementary decision rules true in SDSOG :
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Fig. 3. Concepts with the goodness equal to 1 (marked in gray)
in ontological graph OGSector .

Fig. 4. Concepts with the goodness equal to 1 (marked in gray)
in ontological graph OGRegion .

• (Sector ,Tertiary Economy Sector)≥ ⇒
(Level ,Medium)≥,

• (Sector , Services)≥ ⇒ (Level ,Medium)≥,

• (Sector ,Financial Services)≥ ⇒
(Level ,Medium)≥,

• (Sector ,Legal Services)≥ ⇒
(Level ,Medium)≥,

• (Sector , Insurance)≥ ⇒ (Level ,Medium)≥,

• (Sector , Industry)≥ ⇒ (Level ,Medium)≥,

• (Region,North America)≥ ⇒
(Level ,Medium)≥,

• (Region,Northern America)≥ ⇒
(Level ,Medium)≥,

• (Region,Caribbean)≥ ⇒ (Level ,Medium)≥,

• (Region,Latin America)≥ ⇒
(Level ,Medium)≥,

• (Region,Asia Pacific)≥ ⇒
(Level ,Medium)≥.

It is worth noting that we can select, from the above
D≥-elementary decision rules, the most general ones:

• (Sector ,Tertiary Economy Sector)≥ ⇒
(Level ,Medium)≥,

• (Sector , Industry)≥ ⇒ (Level ,Medium)≥,

• (Region,North America)≥ ⇒
(Level ,Medium)≥,

• (Region,Asia Pacific)≥ ⇒
(Level ,Medium)≥.

�
Let SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd)

be a simple decision system over ontological graphs.
Analogously to Pancerz (2012a), we are interested in
mining decision rules, in a given simple decision system
over ontological graphs, with respect to their condition
parts for fixed decision parts (ad, vd)

≥. In the formal
description of Algorithm 1, we can distinguish two main
parts. In the first one, goodness for all concepts occurring
in ontological graphs associated with condition attributes
in SDSOG is calculated. Next, all concepts with the
goodness equal to 1 are extracted from the graph because
they generate elementary decision rules true in SDSOG .
These elementary rules are recorded. The remaining
concepts participate in creating multi-condition descriptor
decision rules in the second part of the algorithm. This
part has a heuristic character utilizing the ant-based
clustering process. The algorithm is mainly based on
those proposed earlier by Deneubourg et al. (1991),
Lumer and Faieta (1994) as well as Handl et al. (2006).
Formulas for picking and dropping decisions are proposed
to adjust the process to our specific problem. The aim
of the ant-based clustering process is to join together
descriptors including concepts from ontological graphs
to build decision rules with complex condition parts,
i.e., consisting of descriptors linked by the and logical
connectives, but possibly with the smallest numbers of
descriptors. Such rules are called minimal. The problem
of extraction of minimal rules has been earlier considered
in the literature (e.g., Fernández et al., 2001; Skowron and
Rauszer, 1992).

The algorithm has the polynomial complexity. Let
Descr(p) denote the set of descriptors occupying a given
place p because, in our approach, a given place p can
be occupied by more than one object, i.e., some heaps
can be created. Picking and dropping decisions for
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Algorithm 1. Mining decision rules in SDSOG .

Require: SDSOG = (U,C,D, {OGa}a∈C , Vd, fc, fd): a simple decision system over ontological graphs, vd ∈ Vd – a
fixed decision value of the attribute ad ∈ D

1: Rul(SDSOG)←− ∅;
2: Descr ←− ∅;
3: for each attribute a ∈ C do
4: for each concept v ∈ Ca, where Ca is a set of concepts from OGa do
5: Calculate the goodness δv of v according to Eqn. (1);
6: if δv = 1 then
7: Create a rule r : (a, v)≥ ⇒ (ad, vd)

≥;
8: Rul(SDSOG)←− Rul(SDSOG) ∪ {r};
9: else

10: Place (a, v) randomly on a grid G;
11: Descr ←− Descr ∪ {(a, v)};
12: end if
13: end for
14: end for
15: for each antj ∈ Ants do
16: Place antj randomly on a grid place occupied by one of descriptors from Descr ;
17: Set ant j as not loaded;
18: end for
19: for k ∈ {1, . . . , N} do
20: for each antj ∈ Ants do
21: if antj is not loaded then
22: Select randomly one (a, v) dropped in a place indicated by ant j ;
23: Draw a random real number r ∈ [0, 1];
24: if r ≤ ppick (a, v) then
25: set (a, v) as picked;
26: set ant j as carrying the descriptor (a, v);
27: move ant j randomly to another place occupied by one of descriptors from Descr ;
28: else
29: move ant j randomly to another place occupied by one of descriptors from Descr ;
30: end if
31: else
32: Draw a random real number r ∈ [0, 1];
33: if r ≤ pdrop(a, v), where (a, v) is carried by antj , and there is no descriptor (a′, v′) in a place indicated by

ant j such that a = a′ then
34: move (a, v) to a place indicated by ant j ;
35: set (a, v) as dropped;
36: set ant j as not loaded;
37: end if
38: end if
39: end for
40: end for
41: for each non-empty place p of a grid G do
42: if acc(rDescr(p)) = 1 then
43: Rul(SDSOG)←− Rul(SDSOG) ∪ {rDescr(p)};
44: end if
45: end for
46: return Rul(SDSOG)
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the descriptor (a, v) can be formally expressed by the
following formulas:

ppick (a, v) =

{
0 if accr = 1,
1− accr′ otherwise,

(2)

and

pdrop(a, v) =

{
0 if accr = 1,
accr′ otherwise,

(3)

where

• r is a rule built on descriptors from Descr(p), i.e.,

r : (ac1 , vc1)
≥ ∧ (ac2 , vc2)

≥ ∧ · · · ∧ (ack , vck)
≥

⇒ (ad, vd)
≥,

• r′ is a rule built on descriptors from Descr(p) and
(a, v), i.e.,

r′ : (ac1 , vc1)≥ ∧ (ac2 , vc2)
≥ ∧ · · · ∧ (ack , vck)

≥

∧(a, v)≥ ⇒ (ad, vd)
≥,

• Descr(p) = {(ac1 , vc1), (ac2 , vc2), . . . , (ack , vck)}.
It is easy to see that, if a rule built on descriptors

occupying a given place p has the accuracy equal to 1, then
another descriptor is neither picked up nor dropped at this
place. This enables us to obtain true decision rules with
a minimal number of descriptors on the left-hand sides of
the rules.

Remark 5. In Algorithm 1, rDescr(p) denotes a rule
built on descriptors from Descr(p), i.e., if Descr(p) =
{(ac1 , vc1), (ac2 , vc2), . . . , (ack , vck)}, then

rDescr(p) : (ac1 , vc1)
≥ ∧ (ac2 , vc2)

≥ ∧ . . .
∧(ack , vck)≥ ⇒ (ad, vd)

≥.

Example 4. (Rules) Let us consider the simple
decision system over ontological graphs SDSOG given
in Example 1 and concepts with the goodness equal to
1 determined in Example 3. For mining multi-descriptor
decision rules true in SDSOG , we use the ant clustering
process with the initial set of descriptors (the remaining
descriptors, after removing those with the goodness equal
to 1, from ontological graphs OGSector and OGRegion ,
i.e., those marked in gray in Figs. 3 and 4, respectively).
After execution of the second part of Algorithm 1, we
obtain, for example, the following D≥-decision rule true
in SDSOG , for fixed (Level ,High)≥:

(Sector ,Mining)≥ ∧ (Region,Middle East)

⇒ (Level ,High)≥.

�

6. Conclusions and further work

In the paper, we have proposed a heuristic algorithm based
on the ant clustering for mining decision rules consistent
with the dominance-based rough set approach in simple
decision systems over ontological graphs. The algorithm
consists of two stages. At the first stage, the algorithm
is, in fact, deterministic and it extracts all D≥-elementary
decision rules. At the second stage, the algorithm is
properly heuristic and it extracts the D≥-decision rules,
this time, with multiple descriptors on the left-hand sides
of the rules. One can see in the paper that the presented
approach refers to computations proposed years ago by
Zadeh (1996) and called “computing with words”. In
further work, we will examine more complicated picking
and dropping decision formulas enabling us to obtain
decision rules, as general as possible, and we will consider
another heuristics (e.g., genetic algorithms) for mining
decision rules in simple decision systems over ontological
graphs, and compare the quality of decision rules on
real-life data.
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theory for multicriteria decision analysis, European Jour-
nal of Operational Research 129(1): 1–47.

Handl, J., Knowles, J. and Dorigo, M. (2006). Ant-based
clustering and topographic mapping, Artificial Life
12(1): 35–62.

Ishizu, S., Gehrmann, A., Nagai, Y. and Inukai, Y. (2007). Rough
ontology: Extension of ontologies by rough sets, in M.J.



386 K. Pancerz et al.

Smith and G. Salvendy (Eds.), Human Interface and the
Management of Information: Methods, Techniques and
Tools in Information Design, Lecture Notes in Computer
Science, Vol. 4557, Springer-Verlag, Berlin/Heidelberg,
pp. 456–462.
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