
Int. J. Appl. Math. Comput. Sci., 2001, Vol.11, No.3, 655–674 655

CONCEPT APPROXIMATIONS BASED ON

ROUGH SETS AND SIMILARITY MEASURES†

Jamil SAQUER∗, Jitender S. DEOGUN∗∗

The formal concept analysis gives a mathematical definition of a formal concept.
However, in many real-life applications, the problem under investigation cannot
be described by formal concepts. Such concepts are called the non-definable
concepts (Saquer and Deogun, 2000a). The process of finding formal concepts
that best describe non-definable concepts is called the concept approximation.
In this paper, we present two different approaches to the concept approximation.
The first approach is based on rough set theory while the other is based on a
similarity measure. We present algorithms for the two approaches.

Keywords: formal concept analysis, similarity measures, rough sets, concept

approximation

1. Introduction

The formal concept analysis (FCA) is a mathematical framework, developed by Wille
and his colleagues at Darmstadt University, which is useful for representation and an
analysis of data (Wille, 1992; 1982; 1989). The pair (A,B) of a set of objects and
a set of features where B is the maximal set of features common to the objects in
A and A is the maximal set of objects that possess all the features in B is called
the formal concept. Using the framework of FCA, formal concepts are structured
in the form of a lattice called the concept lattice. The concept lattice is a useful
tool for knowledge representation, and knowledge discovery (Godin and Missaoui,
1994; Saquer and Deogun, 2000b). The formal concept analysis has also been applied
in the area of conceptual modeling that deals with the acquisition, representation, and
organization of knowledge (Kangassalo, 1992). Several concept learning methods have
been implemented in (Carpineto and Romano, 1996; Godin and Missaoui, 1994; Ho,
1995) using ideas from the formal concept analysis.

Not every pair of a set of objects and a set of features defines a concept (Wille,
1982). Furthermore, we might be faced with a situation where we only have a single
set of features (or a single set of objects) and need to find the best concept that
approximates these features (or objects). For example, when a physician diagnoses

† This research was supported in part by the NSF EPSCoR under Grant No. EPS-0091900, and
NSF Digital Government Grant No. EIA–0091530.

∗ Computer Science Department, Southwest Missouri State University, Springfield, MO 65804,
USA, e-mail: jms481f@smsu.edu

∗∗ Computer Science and Engineering Department, University of Nebraska, Lincoln, NE 68588,
USA, e-mail: deogun@cse.unl.edu

656 J. Saquer and J.S. Deogun

a patient, he finds a disease whose symptoms are the closest to the symptoms that the
patient has. In this case we can think of the symptoms as features and the diseases
as objects. Another example is in the area of information retrieval, where a user’s
query can be understood as a set of features and the answer to the query may be
understood as the set of objects that possess these features. The answer to the query
may contain documents that do not comprise all the terms in the query. This means
that the pair of documents and terms (or objects and features) here cannot be de-
scribed as a formal concept. However, in an information retrieval system we retrieve
information which is usually presented as documents that contain part of the answer
and show the documents in order of their relevance to the user’s query. It is therefore
of fundamental importance to be able to find concept approximations regardless of
how little information is available.

The notion of concept approximation was first introduced in (Kent, 1994; 1996)
and further investigated in (Saquer and Deogun, 1999; 2000a). All these approaches
use rough sets as the underlying approximation model. In this paper we present two
different approaches to concept approximation. In the first approach, which consti-
tutes an extension of our work (Saquer and Deogun, 1999) and is based on rough set
theory, we approximate a non-definable concept by two formal concepts that repre-
sent its lower and upper approximations. The second approach is based on a similarity
between non-definable and formal concepts. We define a similarity measure to find a
formal concept that is the closest to a non-definable concept. For each approach we
show how a set of objects, a set of features, and the pair of a set of objects and a set
of features can be approximated by formal concepts.

The organization of this paper is as follows. In Section 2, we give an overview of
FCA results that are needed for this paper. In Section 3, we present a new rough set
theory-based approach to concept approximation. In Section 4, we present a similarity-
based approach to concept approximation. Finally, a conclusion is drawn in Section 5.

2. Background

Relationships between objects and features in the FCA are given in a context which
is defined as the triple (G,M, I), where G and M are sets of objects and features
(or attributes), respectively, and I ⊆ G ×M . An example of a context is given in
Table 1, where “×” is placed in the i-th row and the j-th column to indicate that
the object in row i possesses the feature in column j. If object g possesses feature
m, then we write (g,m) ∈ I or gIm. The set of all the features common to a set of
objects A is denoted by β(A) and is defined as {m ∈ M | gIm ∀g ∈ A}. Similarly,
the set of objects possessing all the features in a set B ⊆M is denoted by α(B) and
given by {g ∈ G | gIm ∀m ∈ B}. The operators α and β satisfy the assertions given
in the following lemma.

Lemma 1. (Wille, 1982) Let (G,M, I) be a context. Then the following assertions
hold:

1. A1 ⊆ A2 implies β(A1) ⊇ β(A2) for every A1, A2 ⊆ G, and
B1 ⊆ B2 implies α(B1) ⊇ α(B2) for every B1, B2 ⊆M .

Concept approximations based on rough sets and similarity measures 657

2. A ⊆ α(β(A)) and β(A) = β(α(β(A))) for all A ⊆ G, and
B ⊆ β(α(B)) and α(B) = α(β(α(B))) for all B ∈M .

Table 1. Example of a context.

a b c d e f h i j k l x

1 ×

2 × × ×

3 × ×

4 × × × × × × × ×

5 × × × × × × ×

6 × × × × × × × ×

7 × × × × ×

8 × × × × ×

9 × × × ×

10 × × × × ×

11 × ×

12 × × × × × × ×

13 × × × × × × ×

A formal concept in the context (G,M, I) is defined as a pair (A,B) where A ⊆ G,
B ⊆ M , β(A) = B and α(B) = A. A is called the extent of the formal concept
and B is called its intent. For example, the pair (A,B) where A = {4, 9, 10} and
B = {c, d, f, l} is a formal concept. On the other hand, the pair (A,B) where A =
{2, 3, 4} and B = {f, h} is not a formal concept because α(B) 6= A. A pair (A,B)
where A ⊆ G and B ⊆ M which is not a formal concept is called a non-definable
concept (Saquer and Deogun, 2000a).

Given a context (G,M, I), neither is every subset A ⊆ G an extent nor every
subset B ⊆ M an intent. From Lemma 1, it follows that A ⊆ α(β(A)) for any
A ⊆ G, and B ⊆ β(α(B)) for any B ⊆ M . A set of objects A is called feasible if
A = α(β(A)). Similarly, a set of features B is feasible if B = β(α(B)) (Saquer and
Deogun, 1999). A set of objects or features which is not feasible is called non-feasible.
If A is feasible, then clearly (A, β(A)) is a concept. Similarly, if B is feasible, then
(α(B), B) is a concept.

The Fundamental Theorem of FCA states that the set of all the formal concepts
on a given context with the ordering (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 is a complete
lattice called the concept lattice, in which the infima and suprema are given by (Ganter
and Wille, 1999; Wille, 1982):

∧

j∈J

(Aj , Bj) =

(

⋂

j∈J

Aj , β
(

α(
⋃

j∈J

Bj)
)

)

=

(

⋂

j∈J

Aj , β
(

⋂

j∈J

Aj

)

)

,

∨

j∈J

(Aj , Bj) =

(

α
(

β(
⋃

j∈J

Aj)
)

,
⋂

j∈J

Bj

)

=

(

α
(

⋂

j∈J

Bj

)

,
⋂

j∈J

Bj

)

.

658 J. Saquer and J.S. Deogun

The concept lattice of the context given in Table 1 is shown in Fig. 1, where the
concepts are labeled using reduced labeling (Ganter and Wille, 1999). The extent of
the concept C in Fig. 1 consists of the objects at C and the objects at the concepts
that can be reached from C going downward and following the descending paths
towards the bottom concept C1. Similarly, the intent of C consists of the features at
C and the features at the concepts that can be reached from C going upwards and
following the ascending paths to the top concept C23. The extent and intent of each
concept in Fig. 1 are also given in Table 4.

C1

h

C

f

1

i,x

23

k

L

j

c

d

7 10

2 e

3,11

9

6

8

4

a,b
5,12,13

Fig. 1. Concept lattice for the context given in Table 1 with reduced labeling.

3. Rough Set Theory Approach to Concept Approximation

In this section we present a rough set theory approach to approximating concepts.
This approach has many novel features and represents a significant improvement over
the existing approach given in (Kent, 1994; 1996) for many reasons. First, the relations
we use in the approximation are defined in a way that assures that the same answer
is always given, while in (Kent, 1994; 1996) the answer depends on the equivalence
relation used which is provided by an expert. Second, the equivalence relations we use
are defined automatically by the system with no intervention from the user, which
makes our approximation method completely automatic and user-independent. Third,
we use both the set of objects and the set of features for approximating non-definable
concepts. However, in (Kent, 1994; 1996) only the set of features is used, which results

Concept approximations based on rough sets and similarity measures 659

in the fact that all the pairs with same set of objects have the same approximation
regardless of the equivalence relation used. Fourth, we use the context directly for
concept approximation, while in (Kent, 1994; 1996) the context is first approximated
by lower and upper approximations, which are then used for the concept approxima-
tion. Fifth, our approach is general enough to find formal concepts that approximate
a single set of objects or a single set of features.

In the remainder of this paper, when we use the term “approximating a set
of objects (features),” we really mean finding formal concepts whose extent (intent)
approximates the given set of objects (features). We also use the term “approximating
a pair or a non-definable concept (A,B)” while we really mean finding formal concepts
whose extent approximates A and whose intent approximates B.

3.1. Approximating a Set of Objects

Given a set of objects A ⊆ G, we are interested in finding a formal concept whose
extent approximates A. We say that such a concept approximates A. We have the
following cases:

Case 1: A is feasible.Clearly, (A, β(A)) is a formal concept. Therefore, (A, β(A))
is the best approximation.

Case 2: A is not feasible. It is not easy to find formal concepts that approximate
a non-feasible set A. Our approach is to think of A as a rough set. We first
find a pair of definable sets A and A that represent the lower and upper ap-
proximations of A, respectively. We then use A and A for finding two formal
concepts that approximate A.

Let gI = {m ∈ M | gIm} denote the set of all the features that are possessed
by the object g. Define the relation R on G as follows:

g1Rg2 iff g1I = g2I, where g1, g2 ∈ G,

i.e. two objects are related if and only if they possess the same set of features.
Clearly, R is an equivalence relation on G. Therefore, it induces a partition on
G. Let G/R be the set of all equivalence classes induced by R on G (also known
as the quotient set). The equivalence classes of G/R are called the elementary
sets. Any finite union of elementary sets is called a definable set (Pawlak, 1982).
The next proposition shows that two objects belong to the same equivalence
class if and only if they have the same object concept where the object concept
of an object g is the smallest formal concept containing g and is given by
(α(β(g)), β(g)) (Ganter and Wille, 1999).

Proposition 1. For any two objects g1 and g2, g1Rg2 if and only if the object
concept of g1 equals the object concept of g2.

660 J. Saquer and J.S. Deogun

Proof.

(=⇒)

g1Rg2 =⇒ g1I = g2I

=⇒ β(g1) = β(g2)

=⇒ α(β(g1)) = α(β(g2)).

Therefore (α(β(g1)), β(g1)) = (α(β(g2)), β(g2)).

(⇐=)

α(β(g1)) = α(β(g2)) =⇒ β(α(β(g1))) = β(α(β(g2)))

=⇒ β(g1) = β(g2) (by Lemma 1)

=⇒ g1I = g2I

=⇒ g1Rg2

Example 1. Consider the context given in Table 1 and its concept lattice given in
Fig. 1. To find the equivalence classes induced by R on G, we need to find the features
that are possessed by each object g ∈ G, which is given in Table 2.

Table 2. gI for every g ∈ G.

Object g Set of features possessed by g

1I {d}

2I {d, f, h}

3I {f, h}

4I {a, b, c, d, e, f, h, l}

5I {c, d, e, f, h, i, x}

6I {e, f, h, i, j, k, l, x}

7I {f, h, i, j, x}

8I {c, d, e, f, h}

9I {c, d, f, l}

10I {c, d, e, f, l}

11I {f, h}

12I {c, d, e, f, h, i, x}

13I {c, d, e, f, h, i, x}

We notice that 3I = 11I and 5I = 12I = 13I . Therefore, G/R =
{[1], [2], [3, 11], [4], [5, 12, 13], [6], [7], [8], [9], [10]}. Table 3 lists the object concepts to
which the members of the equivalence classes of G/R belong. We notice that Ob-
jects 3 and 11 have the identical object concept and the same is true for Objects 5,
12 and 13.

Concept approximations based on rough sets and similarity measures 661

Table 3. Object concepts.

Object Concept

1 ({1, 2, 4, 5, 8, 9, 10, 12, 13}, {d})

2 ({2, 4, 5, 8, 12, 13}, {d, f, h})

3 ({2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, {f, h})

4 ({4}, {a, b, c, d, e, f, h, l})

5 ({5, 12, 13}, {c, d, e, f, h, i, x})

6 ({6}, {e, f, h, i, j, k, l, x})

7 ({6, 7}, {f, h, i, j, x})

8 ({4, 5, 8, 12, 13}, {c, d, e, f, h})

9 ({4, 9, 10}, {c, d, f, l})

10 ({4, 10}, {c, d, e, f, l})

11 ({2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, {f, h})

12 ({5, 12, 13}, {c, d, e, f, h, i, x})

13 ({5, 12, 13}, {c, d, e, f, h, i, x})

Define the lower and upper approximations of A ⊆ G with respect to R as
follows:

A = {g ∈ G | [g] ⊆ A} =
⋃

{

X ∈ G/R | X ⊆ A
}

,

A = {g ∈ G | [g] ∩A 6= ∅} =
⋃

{X ∈ G/R | X ∩ A 6= ∅}.

Now, we can find two formal concepts that approximate A. The lower and upper con-
cept approximations are respectively given by (α(β(A)), β(A)) and (α(β(A)), β(A)).
Notice that, if A is definable, we have A = A = A. In this case the lower and up-
per approximations of A coincide. Furthermore, since A = A = A ⊆ α(β(A)) =
α(β(A)) = α(β(A)), the approximation we get is an upper approximation. The prob-
lem of finding a lower approximation for a definable set will be investigated in a
forthcoming paper.

�

The pseudo-code for approximating a set of objects is given in Algorithm 1.
The input is a set A of objects and the quotient set G/R. The output is the con-
cept approximation for A. First, in Line 1 a test is made to determine if the set
A is feasible, in which case the formal concept ((A, β(A)) is returned in Line 2.
The evaluation of β(A) = {m ∈ M | gIm∀g ∈ A} requires time of the order
O(|M ||A|). Similarly, evaluating α(∗) requires time O(|G|| ∗ |). Therefore, execut-
ing Lines 1 and 2 and thus approximating a feasible set of objects requires time
O (|G||M ||A||β(A)|). If A is non-feasible, the lower and upper approximating sets
of A are found in Lines 4 and 5, respectively, which requires time O(|G/R|). A test
is made in Line 6 to determine if A is definable, in which case an upper approx-
imation is returned in Line 7. If A is not definable, the lower and upper concept
approximations of A are evaluated in Lines 9 and 10, and returned in Line 11.
The time complexities of Lines 9 and 10 are (|G||M ||A||β(A)| and (|G||M ||A||β(A)|,

662 J. Saquer and J.S. Deogun

respectively. Therefore, approximating a non-feasible set of objects requires time
O(|G/R| + |G||M |(|A||β(A)| + |A||β(A)|)) = O(|G||M |(|A||β(A)| + |A||β(A)|)) be-
cause |G/R| is bounded from above by |G|. We also notice that the size of any set
of objects is also bounded by |G|, and that of any set of features is bounded by |B|.

Therefore, the time complexity of Algorithm 1 is O
(

|G|2|M |2
)

.

Algorithm 1: Approximate a set A of objects

1. if (α(β(A)) == A) //i.e. A is feasible

2. Answer ← (A, β(A))

3. else

4. A =
⋃

{X ∈ G/R | X ⊆ A}

5. A =
⋃

{X ∈ G/R | X ∩ A 6= ∅}

6. if (A == A) //i.e. A is definable

7. Answer ←
(

α(β(A)), β(A)
)

8. else �
9. Lower ← (α(β(A)), β(A))

10. Upper ←
(

α(β(A)), β(A)
)

11. Answer ← Lower and Upper �
12. end if

Example 2. In this example we find formal concepts that approximate the sets A1 =
{3, 4, 5}, A2 = {2, 3}, A3 = {4, 9}, A4 = {4, 5, 6} and A5 = {5, 6, 8}. A1 = {4},

A1 = {3, 4, 5, 11, 12, 13}, β(A1) = {a, b, c, d, e, f, h, l}, β(A1) = {f, h}, α(β(A1)) =

{4}, and α(β(A1)) = {2, 3, 4, 5, 6, 7, 8, 11, 12, 13}. Therefore, the lower and upper ap-
proximations for A1 are ({4}, {a, b, c, d, e, f, h, l}) and ({2, 3, 4, 5, 6, 7, 8, 11, 12, 13},
{f, h}), respectively. A2 = {2}, A2 = {2, 3, 11}, β(A2) = {d, f, h}, β(A2) = {f, h},

α(β(A2)) = {2, 4, 5, 8, 12, 13}, and α(β(A2)) = {2, 3, 4, 5, 6, 7, 8, 11, 12, 13}. Therefore,
the lower and upper approximations for A2 are given by ({2, 4, 5, 8, 12, 13}, {d, f, h})
and ({2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, {f, h}). A3 = A3 = A = {4, 9}. β(A3) = {c, d, f, l},
and α(β(A3)) = {4, 9, 10}. So, the upper approximation of A3 is given by
({4, 9, 10}, {c, d, f, l}). A4 = {4, 6}, A4 = {4, 5, 6, 12, 13}, β(A4) = {e, f, h, l},

β(A4) = {e, f, h}, α(β(A4)) = {4, 6}, and α(β(A4)) = {4, 5, 6, 8, 12, 13}. There-
fore, the lower and upper approximations for A4 are given by the formal concepts
({4, 6}, {e, f, h, l}) and ({4, 5, 6, 8, 12, 13}, {e, f, h}), respectively. A5 = {6, 8}, A5 =

{5, 6, 8, 12, 13}, β(A4) = {e, f, h}, β(A4) = {e, f, h}, α(β(A4)) = {4, 5, 6, 8, 12, 13},

and α(β(A4)) = {4, 5, 6, 8, 12, 13}. Therefore, the lower and upper approximations for
A5 are equal and are given by ({4, 5, 6, 8, 12, 13}, {e, f, h}).

�

Concept approximations based on rough sets and similarity measures 663

3.2. Approximating a Set of Features

Approximating a set of features B ⊆ M works analogously to approximating a set
of objects, and therefore we omit many details in the following discussion.

Case 1: B is feasible. (α(B), B) is a formal concept. Therefore (α(B), B) is the
best approximation.

Case 2: B is not feasible. Let Im = {g ∈ G | gIm} be the set of all objects that
possess the attribute m. Define a relation R′ on M as follows:

m1R
′m2 iff Im1 = Im2 where m1,m2 ∈M,

i.e. two features are related if and only if they are possessed by the same set of
objects. The relation R′ is an equivalence relation on M . Let M/R′ denote the
set of all the equivalence classes induced by R′ on M . The equivalence classes
of M/R′ are called the elementary sets and any finite union of elementary sets
is called a definable set. The feature concept of m ∈ M is the largest concept
containing the feature m and is given by (α(m), β(α(m))) (Ganter and Wille,
1999). The following proposition gives a relationship between R′ and features
concepts. The proof is similar to that of Proposition 1.

Proposition 2. For any two features m1 and m2, m1R
′m2 if and only if the feature

concept of m1 equals the feature concept of m2.

The lower and upper approximations of B ⊆ M are respectively defined as
follows:

B = {m ∈M | [m] ⊆ B} =
⋃

{Y ∈M/R′ | Y ⊆ B},

B = {m ∈M | [m] ∩ B 6= ∅} =
⋃

{Y ∈M/R′ | Y ∩ B 6= ∅}.

The lower and upper concept approximations of a non-feasible set of features B ⊆M
are given by the formal concepts (α(B), β(α(B))) and (α(B), β(α(B))), respectively.
Notice that (α(B), β(α(B))) is a subconcept of (α(B), β(α(B))). To prove this, we
notice that B ⊆ B ⊆ B, which implies α(B) ⊆ α(B) ⊆ α(B). Therefore, the extent
of the lower approximating concept of B is a subset of the extent of the upper
approximating concept of B. However, when B is definable, we have B = B = B.
Furthermore, B ⊆ β(α(B)) = β(α(B)) = β(α(B)), so B ⊆ β(α(B)). This means
that both the approximation formulas give a lower approximation for B.

The pseudo-code for approximating a set of features is given in Algorithm 2.
It takes as input a set of features B and the quotient set M/R′, and it out-
puts the concept approximation for B. Algorithm 2 is similar to Algorithm 1. The
time complexity for Algorithm 2 is O(|G||M ||B||α(B)|) when B is feasible, and
O(|G||M |(|B||α(B)|+ |B||α(B)|)) when B is non-feasible. But since the size of any
set of objects is bounded by |G| and that of any set of features by |B|, the time

complexity for Algorithm 2 is O(|G|2|M |2).

664 J. Saquer and J.S. Deogun

Algorithm 2: Approximate a set B of features

1. if (β(α(B)) == B) //i.e. B is feasible

2. Answer ← (α(B), B)

3. else

4. B =
⋃

{Y ∈M/R′ | Y ⊆ B}

5. B =
⋃

{Y ∈M/R′ | Y ∩ B 6= ∅}

6. if (B == B) //i.e. B is definable

7. Answer ←
(

α(B), β(α(B))
)

8. else �
9. Lower ←

(

α(B), β(α(B))
)

10. Upper ← (α(B), β(α(B)))

11. Answer ← Lower and Upper �
12. end if

Example 3. Consider the context given in Table 1 and set B = {f, h, i}.
We want to find formal concepts that approximate B. We have M/R′ =
{{a, b}, {c}, {d}, {e}, {f}, {h}, {i, x}, {k}, {l}}, B = {f, h}, B = {f, h, i, x},
α(B) = {2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, α(B) = {5, 6, 7, 12, 13}, β(α(B)) = {f, h},
and β(α(B)) = {f, h, i, x}. Therefore the lower and upper approximations
of {f, h, i} are given by the formal concepts ({5, 6, 7, 12, 13}, {f, h, i, x}) and
({2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, {f, h}), respectively.

�

3.3. Approximating a Non-Definable Concept

Given a pair (A,B) where A ⊆ G and B ⊆M , we want to find a formal concept(s)
whose extent approximates A and whose intent approximates B. Such concepts are
said to approximate the pair (A,B). The following four cases need to be considered:

1. Both A and B are feasible.

2. A is feasible and B is not.

3. B is feasible and A is not.

4. Both A and B are non-feasible.

Case 1: Both A and B are feasible. We have the following two subcases.

Case 1.1: β (A)=B. If β(A) = B, then α(B) must equal A because both A
and B are feasible. Proposition 3 below establishes a similar result. Thus, the
pair (A,B) is a formal concept and no approximation is needed.

Concept approximations based on rough sets and similarity measures 665

It may be noted that Proposition 3 results in a more efficient way for testing if
both A and B are feasible, β(A) = B, and α(B) = A. This proposition is used in
developing an approach for approximating non-definable concepts, which is employed
in Algorithm 3.

Proposition 3. Let A ⊆ G and B ⊆M . If A is feasible and β(A) = B, then B is
feasible and α(B) = A.

Proof.

A feasible =⇒ α(β(A)) = A

=⇒ α(B) = A (using β(A) = B which is given)

=⇒ β(α(B)) = β(A) (applying β to both sides)

=⇒ β(α(B)) = B (using β(A) = B)

=⇒ B is feasible.

Therefore, B is feasible and α(B) = A.

Case 1.2: β (A) 6=B. If β(A) 6= B (and thus α(B) 6= A), let β(A) = A′ and
α(B) = B′. Since both A and B are feasible, we see that both (A,A′) and
(B′, B) are formal concepts in (G,M, I). Lower and upper approximations for
(A,B) are found by using the Fundamental Theorem of FCA and finding the in-
fima and suprema for (A,A′) and (B′, B). This results in the following formulas
for lower and upper approximations:

(A,B) = (A ∩ B′, β(A ∩ B′)) , (A,B) = (α(A′ ∩ B), A′ ∩B) .

Example 4. Consider the feasible sets A = {4, 5, 6, 8, 12, 13} and B = {c, d, e, f}.
We notice that β(A) = A′ = {e, f, h} 6= B and α(B) = B′ = {4, 5, 8, 10, 12, 13} 6=
A. The lower and upper approximations of (A,B) are equal to (A,B) = (A ∩

B′, β(A ∩ B′)) = ({4, 5, 8, 12, 13}, {c, d, e, f, h}), and (A,B) = (α(A′ ∩ B), A′ ∩ B) =
({4, 5, 6, 8, 10, 12, 13}, {e, f}), respectively.

�

Case 2: A is feasible and B is not. Since A is feasible, it can be approximated
by the formal concept C1 = (A, β(A)) as was done in Section 3.1.

Since B is not feasible, we treat it as a rough set and find formal concepts
approximating B as was done in Section 3.2. We also assume that B is not
definable. Let C2 and C3 denote the formal concepts that represent the lower
and upper approximations of B, respectively. From Section 3.2, we find that

C2 =
(

α(B), β(α(B))
)

, C3 = (α(B), β(α(B))) .

The lower and upper approximations for the pair (A,B) are found by the
following formulas:

(A,B) = inf{C1, C2} =
(

A ∩ α(B), β(A ∩ α(B)
)

,

(A,B) = sup{C1, C3} (α(β(A) ∩ β(α(B))), β(A) ∩ β(α(B))) ,

666 J. Saquer and J.S. Deogun

where the infimum and supremum were found using the Fundamental Theorem
of formal concept analysis (Ganter and Wille, 1999; Wille, 1982).

Example 5. Let A = {4, 5, 8, 12, 13} and B = {f, h, i}. The set A is feasi-
ble because α(β(A)) = A, while the set B is not feasible because β(α(B)) =
{f, h, i, x} 6= B. We have C1 = (A, β(A)) = ({4, 5, 8, 12, 13}, {c, d, e, f, h}).
C2 = ({5, 6, 7, 12, 13}, {f, h, i, x}) and C3 = ({2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, {f, h}).
The details of finding C2 and C3 are given in Example 3. Therefore, (A,B) =

inf{C1, C2} = ({5, 12, 13}, {c, d, e, f, h, i, x}) and (A,B) = sup{C1, C3} =
({2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, {f, h}).

�

Case 3: B is feasible and A is not. The derivations for this case are analogous
to those in the previous case, and therefore many details are omitted in the
following discussion.

The set B is approximated by the concept C1 = (α(B), B), and the set
A is approximated by the lower and upper approximation concepts C2 =
(α(β(A)), β(A) and C3 = (α(β(A)), β(A)), respectively.

The lower and upper approximations are given by

(A,B) = inf{C1, C2} = (α(β(A)) ∩ α(B), β(α(β(A)) ∩ α(B))) ,

(A,B) = sup{C1, C3} =
(

α(β(A) ∩ B), β(A) ∩ B
)

.

Case 4: Both A and B are not feasible. In this case we treat both A and
B as rough sets, and find formal concepts that represent the lower and upper
concept approximations of A and B.

Let C1 and C2 denote the lower and upper concept approximations of A,
and let C3 and C4 denote the lower and upper concept approximations of B,
respectively. From Sections 3.1 and 3.2, we find that C1 = (α(β(A)), β(A)),
C2 = (α(β(A)), β(A)), C3 = (α(B), β(α(B))), and C4 = (α(B), β(α(B))). The
lower approximation of (A,B) is given by the formal concept

(A,B) = inf{C1, C3} =
(

α(β(A)) ∩ α(B), β(α(β(A)) ∩ α(B))
)

,

and the upper approximation of (A,B) is given by the formal concept

(A,B) = sup{C2, C4} =
(

α(β(A) ∩ β(α(B))), β(A) ∩ β(α(B))
)

.

Example 6. Let A = {2, 3} and B = {f, h, i}. From Sections 3.1 and 3.2, we
find C1 = ({2, 4, 5, 8, 12, 13}, {d, f, h}), C2 = ({2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, {f, h}),
C3 = ({5, 6, 7, 12, 13}, {f, h, i, x}), and C4 = ({2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, {f, h}).
Therefore, (A,B) = inf{C1,C3} = ({5, 12, 13}, {c, d, e, f, h, i, x}) and (A,B) =
sup{C2,C4} = ({2, 3, 4, 5, 6, 7, 8, 11, 12, 13}, {f, h}).

�

Concept approximations based on rough sets and similarity measures 667

The pseudo-code for approximating a pair (A,B) is given in Algorithm 3. The
input is a set A of objects, a set B of features, the quotient set G/R, and the
quotient set M/R′. The output is the concept approximation for (A,B). In Line
1, the algorithm tests whether the set A is feasible. If this condition is true, we use
Proposition 3 in Line 2 to further test if B is also feasible, β(A) = B and α(B) = B.
If this is also true, the algorithm determines that the pair (A,B) is a formal concept
and returns (A,B) for the answer. If the condition in Line 2 fails, the algorithm tests
in Line 4 if Case 1.2 holds by testing if B is feasible. If the condition in Line 4 fails
and B is found to be non-feasible, then Case 2 holds because the set A was tested
to be feasible in Line 1, and Lines 9 through 13 will be executed. Line 15 tests if Case
3 holds and the set B is feasible while A is not. If Case 3 is true, then the concept
approximation for (A,B) is found in Lines 16 through 20. Finally, if the condition in
Line 15 fails, then both A and B are non-feasible, and Lines 22 through 28 will be
executed.

The best case time complexity for Algorithm 3 is attained when the pair (A,B)
constitutes a formal concept and is given by O (|G||M ||α(A)|). The worst case
time complexity happens when both A and B are non-feasible. In this case the
O(|G/R|) time is needed to find |A| and |A| in Lines 22 and 23. Similarly, the
O(|M/R′|) time is needed to find |B| and |B| in Lines 24 and 25. Line 26 requires
O
(

|G||M |(|A||β(A)|+ |B||α(B)|)|
)

to find the lower approximation for (A,B). Sim-

ilarly, O
(

|G||M |(|A||β(A)|+ |B||α(B)|)|
)

is needed in Line 27 to find the upper ap-
proximation of (A,B). Therefore, the worst case time complexity for Algorithm 3
is O(|G/R| + |M/R′| + |G||M |(|A||β(A)| + |A||β(A)| + |B||α(B)| + |B||α(B)|)) =
O(|G||M |(|A||β(A)| + |A||β(A)| + |B||α(B)| + |B||α(B)|) because |G/R| is at most
equal to |G| and |M/R′| is at most equal to |B|. Moreover, because the size of any
set of objects is at most |G| and the size of any set of features is at most |B|, we

conclude that the time complexity for Algorithm 3 is O(|G|2|M |2).

Algorithm 3: Approximate a non-definable concept (A,B)

1. if (α(β(A)) == A) //i.e. A is feasible

2. if (β(A) == B) //Case 1.1

3. Answer ← (A,B)

4. else if (β(α(B)) == B) //Case 1.2

5. Lower ← (A ∩ α(B), β(A) ∪B)

6. Upper ← (A ∪ α(B), β(A) ∩B)

7. Answer ← Lower and Upper

8. else //Case 2: A is feasible but B is not

9. B ←
⋃

{Y ∈M/R′ | Y ⊆ B}

10. B ←
⋃

{Y ∈M/R′ | Y ∩B 6= ∅}

11. Lower ←
(

A ∩ α(B), β(A) ∪ β(α(B))
)

12. Upper ← (A ∪ α(B), β(A) ∩ β(α(B)))

668 J. Saquer and J.S. Deogun

13. Answer ← Lower and Upper

14. end if

15. else if (β(α(B)) == B) //Case 3: B is feasible, A is not

16. A←
⋃

{X ∈ G/R | X ⊆ A}

17. A←
⋃

{X ∈ G/R | X ∩ A 6= ∅}

18. Lower ← (α(β(A)) ∩ α(B), β(A) ∪ B)

19. Upper ←
(

α(β(A)) ∪ α(B), β(A) ∩ B
)

20. Answer ← Lower and Upper

21. else //Case 4: Both A and B are not feasible

22. A←
⋃

{X ∈ G/R | X ⊆ A}

23. A←
⋃

{X ∈ G/R | X ∩ A 6= ∅}

24. B ←
⋃

{Y ∈M/R′ | Y ⊆ B}

25. B ←
⋃

{Y ∈M/R′ | Y ∩ B 6= ∅}

26. Lower ←
(

α(β(A)) ∩ α(B), β(A) ∪ β(α(B))
)

27. Upper ←
(

α(β(A)) ∪ α(B), β(A) ∩ β(α(B))
)

28. Answer ← Lower and Upper

29. end if

4. Similarity-Based Approach to Concept Approximation

In this section, we present a similarity-based approach to concept approximation. This
approach relies on a similarity between a set or a pair of sets to be approximated and
the formal concepts on a given context. We define a similarity measure fC(∗) which
we use to find a formal concept C that is most similar to the set or the pair of sets
to be approximated. The similarity-based approach to concept approximation has
the following advantages: First, the approximation is always presented in terms of
one formal concept while in the rough set based approaches the approximation may
be described in terms of two formal concepts (Kent, 1994; 1996; Saquer and Deogun,
1999). Second, the similarity-based approach is much simpler than the rough set-based
approaches. Third, the algorithms that we present for the similarity-based approach
are more efficient than the algorithms based on the rough set approach when the
size of the concept lattice is not large. The only disadvantage of the similarity-based
approach is that when the size of the concept lattice is large, the algorithms become
inefficient. In this case the rough set-based algorithms have better time complexity.

4.1. Approximating a Set of Objects and a Set of Features

Because of the duality between objects and features, approximating a set of objects
proceeds in much the same way as approximating a set of features. Therefore, we only
show how to approximate sets of features. Let B ⊆M be a set of features. Our goal
is to find a formal concept C whose intent is as similar to B as possible. Define a

Concept approximations based on rough sets and similarity measures 669

similarity measure fC(B) that indicates how similar the extent of C is to α(B) and
how similar the intent of C is to B.

fC(B) =
1

2

(

|B ∩ Intent(C)|

|B ∪ Intent(C)|
+
|α(B) ∩ Extent(C)|

|α(B) ∪ Extent(C)|

)

.

The range of fC(B) is the interval [0, 1]. Here fC(B) = 0 when B and α(B) are
disjoint from the intent and extent of C, respectively. Moreover, fC(B) = 1 when
B = Intent(C), and therefore α(B) = Extent(C). In general, the closer the value of
fC(B) is to 1, the greater the similarity between B and the intent of C. Conversely,
the closer the value of fC(B) is to 0, the smaller the similarity between B and the
intent of C. The similarity measure fC(∗) is similar to the membership function used
in fuzzy set theory (Zadeh, 1965).

To approximate a set of features B, we find a formal concept C that maximizes
the value of fC(B). In case more than one formal concept are found to approximate
B with same value of f , we say that these concepts equally approximate B. Ties
may be broken arbitrarily depending on the application. However, in applications like
medical diagnosis, we may need to present the user with all the concepts that equally
approximate B and let the user make the final judgment.

The pseudo-code for approximating a set of features is given in Algorithm 4.
The input to this algorithm is the set of all the formal concepts on a given context
(G,M, I), which we denote by L, and a set of features B ⊆M .1 Li denotes the i-th
concept in L. The output is a formal concept C that approximates B and the value
of fC(B). The idea of the algorithm is similar to that of finding a maximal element
in a set. Finding the value of fC(B) requires evaluating α(B) which requires time
of the order |B||G|. The value of α(B) is assigned to the variable Obj outside the
for loop to improve the efficiency of the algorithm. The running time complexity of
Algorithm 4 is therefore O(|L|+ |B||G|).

When the size of the concept lattice, |L|, is less than |G|2|M |2, Algorithm 4
has better performance than Algorithm 2. On the other hand, when |L| is larger

than |G|2|M |2, the time complexity, and therefore the performance, of Algorithm 2
is better than that of Algorithm 4.

Algorithm 4: Approximate a set B of features

C ← L1

Obj← α(B)

// Assign fC(B) to maxvalue

maxvalue← Evaluate-Membership(Obj,B,C)

n← |L|

for (i← 2; i ≤ n; i++)

if (Evaluate-Membership(Obj,B,Li) > maxvalue) then

1 The most efficient algorithm for finding all the formal concepts of a context is called the Next
Algorithm (Ganter, 1984). This algorithm is also described in (Ganter and Wille, 1999).

670 J. Saquer and J.S. Deogun

C ← Li

maxvalue ← Evaluate-Membership(Obj,B,C)

end if

end for

Answer ← C and maxvalue

The function Evaluate-Membership is used to compute the function fC(∗). It
takes as arguments a set of objects A, a set of features B, and a formal concept C.
It returns the degree of similarity between the set of features B and the concept C
when called with arguments α(B), B and C as is done in Algorithm 4. Similarly,
Evaluate-Membership returns the degree of similarity between the set of objects A
and the concept C when called with arguments A, β(A) and C. It also returns the
degree of similarity between the pair (A,B) and the concept C when called with
arguments A, B and C.

Algorithm 5: Evaluate-Membership(A,B,C)

Return
1

2

(

|A ∩ Extent(C)|

|A ∪ Extent(C)|
+
|B ∩ Intent(C)|

|B ∪ Intent(C)|

)

.

4.2. Approximating a Non-Definable Concept

Suppose that we are given a set of objects A and a set of features B. The objective
is to find a formal concept C such that the extent of C is as similar to A as
possible and the intent of C is as similar to B as possible. The formal concept C
is then said to approximate the non-definable concept described by the pair (A,B).
Define a similarity measure fC(A,B) that indicates how well the formal concept C
approximates the pair (A,B) as follows:

fC(A,B) =
1

2

(

|A ∩ Extent(C)|

|A ∪ Extent(C)|
+
|B ∩ Intent(C)|

|B ∪ Intent(C)|

)

.

The expression |A ∩ Extent(C)|/|A ∪ Extent(C)| indicates how similar A is to
Extent(C), and the expression |B ∩ Intent(C)|/|B ∪ Intent(C)| indicates how sim-
ilar B is to Intent(C). It is also easy to see that the range of fC(A,B) is the interval
[0, 1]. We get fC(A,B) = 0 when C and (A,B) do not have any element in common,
and fC(A,B) = 1 when (A,B) is equal to the formal concept C. The closer the
value of fC(A,B) is to 1, the greater the similarity between the pair (A,B) and the
formal concept C. Conversely, the closer the value of fC(A,B) is to 0, the smaller
the similarity between (A,B) and C. If there are two different formal concepts C1
and C2 where the extent of C1 is more similar to A than the extent of C2, the intent
of C2 is more similar to B than the intent of C1, and fC1(A,B) = fC2(A,B), then
we make no preference between C1 and C2. In this case both C1 and C2 equally
approximate the pair (A,B). However, when the pair (A,B) is very close to being
a formal concept where, for example, there is not much difference between A and
α(β(A)), then it is very rare to find two different formal concepts C1 and C2 that

Concept approximations based on rough sets and similarity measures 671

satisfy the above-mentioned case. This is so because of the relationships between the
extent and intent of a formal concept.

Algorithm 6 gives the pseudo-code for approximating a pair (A,B). The input
to Algorithm 6 is the set L of all formal concepts on a given context (G,M, I), a set
of objects A, and a set of features B. The output is a concept C that approximates
(A,B) and the value of fC(A,B) which is used as an indication of how well C
approximates (A,B). The idea of Algorithm 6 is similar to that of Algorithm 4. The
running time complexity of Algorithm 6 is O(|L|). Algorithm 6 is more efficient than

Algorithm 3 when |L| is less than |G|2|M |2, and it is less efficient otherwise.

Algorithm 6: Approximate a non-definable concept (A,B)

C ← L1

// Assign fC(A,B) to maxvalue

maxvalue← Evaluate−Membership(A,B,C)

n← |L|

for (i← 2; i ≤ n; i++)

if (Evaluate−Membership(A,B,Li) > maxvalue) then

C ← Li

maxvalue ← Evaluate−Membership(A,B,C)

end if

end for

Answer ← C and maxvalue

4.3. Numerical Example

In this section we give a numerical example of the approximation ideas discussed in
Sections 4.1 and 4.2.

Consider the context (G,M, I), given in Table 1, which provides information
about 13 objects and 12 features that the objects can have. This context has 23
formal concepts which were generated using Algorithm Next described in (Ganter
and Wille, 1999). Table 4 gives details about executing Algorithm 4 on the set of
features B = {f, h, i}, and about executing Algorithm 6 on the pair (A1, B1) =
({4, 6, 9}, {e, f, h}) which is a non-definable concept because α(B1) 6= A1. The first
column in each row is a label of the concept under consideration. The second and
third columns give the extent and intent of the concept. The fourth column contains
the value of fC({f, h, i}) which is the degree of similarity between {f, h, i} and C.
Finally, the fifth column gives the value of fC(A1, B1) which is the degree of similarity
between (A1, B1) and C.

Considering the values of fC({f, h, i}) in the fourth column, Algorithm 4 returns
({5, 6, 7, 12, 13}, {f, h, i, x}) as the formal concept approximating the set of features
{f, h, i} with a similarity value of 0.8750. Similary, considering the values in the fifth

672 J. Saquer and J.S. Deogun

column, Algorithm 6 returns the formal concept ({4, 6}, {e, f, h, l}) as a result of
approximating the non-definable concept ({4, 6, 9}, {e, f, h}) with a similarity value
of 0.6333.

Table 4. Results of executing Algorithm 4 on {f, h, i} and Algorithm 6 on
({4, 6, 9}, {e, f, h}).

Concept Extent Intent fC({f, h, i}) fC(A1, B1)

C1 ��� {a, b, c, d, e, f, h, 0.1250 0.1667

i, j, k, l, x}

C2 � 6 � {e, f, h, i, j, k, l, x} 0.2875 0.4167

C3 � 6,7 � {f, h, i, j, x} 0.5000 0.3750

C4 � 5,12,13 � {c, d, e, f, h, i, x} 0.5143 0.2857

C5 � 5,6,12,13 � {e, f, h, i, x} 0.7000 0.4833

C6 � 5,6,7,12,13 � {f, h, i, x} 0.8750 0.3714

C7 � 4 � {a, b, c, d, e, f, h, l} 0.1111 0.3333

C8 � 4,10 � {c, d, e, f, l} 0.0714 0.2679

C9 � 4,9,10 � {c, d, f, l} 0.0833 0.3214

C10 � 4,6 � {e, f, h, l} 0.2833 0.6333

C11 � 4,6,10 � {e, f, l} 0.1714 0.4500

C12 � 4,6,9,10 � {f, l} 0.1875 0.4750

C13 � 4,5,8,12,13 � {c, d, e, f, h} 0.3810 0.3214

C14 � 4,5,8,10,12,13 � {c, d, e, f} 0.2708 0.2292

C15 � 4,5,8,9,10,12,13 � {c, d, f} 0.2667 0.2083

C16 � 4,5,6,8,12,13 � {e, f, h} 0.5357 0.5179

C17 � 4,5,6,8,10,12,13 � {e, f} 0.3750 0.3750

C18 � 2,4,5,8,12,13 � {d, f, h} 0.4375 0.2625

C19 � 2,4,5,8,9,10,12, {d, f} 0.2750 0.2111

13 �
C20 � 2,3,4,5,6,7,8,11, {f, h} 0.5833 0.3409

12,13 �
C21 � 2,3,4,5,6,7,8,9,10, {f} 0.3750 0.2500

11,12,13 �
C22 � 1,2,4,5,8,9,10, {d} 0.1364 0.1000

12,13 �
C23 � 1,2,3,4,5,6,7,8,9, ��� 0.1923 0.1154

10,11,12,13 �

5. Conclusion

This paper presents two approaches to approximating concepts in the framework of
the formal concept analysis. The first approach is based on rough set theory while the

Concept approximations based on rough sets and similarity measures 673

other is based on the use of a similarity measure.

Our approaches compare favorably with the one presented in (Kent, 1994; 1996).
First, they are fully automatic and user-independent. Second, they always produce
the same answer. Third, we use both the set of objects and the set of features for
approximating non-definable concepts, which results in the fact that non-definable
concepts with the same set of objects have different and more accurate concept ap-
proximations. Fourth, our approaches are general enough to find formal concepts that
approximate a single set of objects or a single set of features in addition to approxi-
mating non-definable concepts.

Aport from all that, our similarity-based approach to concept approximation has
the following advantages: First, the approximation is always presented in terms of
one formal concept. Second, the similarity-based approach is much simpler. Third,
the algorithms that employ the similarity-based approach are more efficient when the
size of the concept lattice is not large.

For both the approaches we show how to approximate single sets of objects, single
sets of features, and non-definable concepts. The similarity-based algorithms are more
efficient than the rough set-based algorithms when the size of the concept lattice is not
large, that is, when |L| is less than |G|2|M |2, and they are not as efficient otherwise.

References

Carpineto C. and Romano G. (1996): A lattice conceptual clustering system and its applica-
tion to browsing retrieval. — Mach. Learn., Vol.24, No.2, pp.95–122.

Ganter B. (1984): Two basic algorithms in concept analysis. — FB4-Preprint No. 831, TH
Darmstadt.

Ganter B. and Wille R. (1999): Formal Concept Analysis: Mathematical Foundations. —
Berlin: Springer.

Godin R. and Missaoui R. (1994): An incremental concept formation for learning from
databases. — Theoret. Comp. Sci., Vol.133, No.2, pp.387–419.

Ho T.B. (1995): An approach to concept formation based on Formal Concept Analysis. —
IEICE Trans. Inform. Syst., Vol.78, No.5, pp.553–559.

Kangassalo H. (1992): On the concept of concept for conceptual modeling and concept de-
duction, In: Information Modeling and Knowledge Bases III (S. Ohsuga, H. Kangassalo
and H. Jaakkola, Eds.). — Amsterdam: IOS Press, pp.17–58.

Kent R. (1994): Rough concept analysis. — Proc. Int. Workshop Rough Sets and Knowledge
Discovery, Banff, Canada, pp.245–253.

Kent R. (1996): Rough concept analysis: A synthesis of rough sets and formal concept anal-
ysis. — Fund. Inform., Vol.27, No.2, pp.169–181.

Pawlak Z. (1982): Rough sets. — Int. J. Inf. Comp. Sci., Vol.11, No.5, pp.341–356.

Saquer J. and Deogun J. (1999): Formal rough concept analysis, In: New Directions in
Rough Sets, Data Mining, and Granular-Soft Computing (N. Zhong, A. Skowron and
S. Ohsuga, Eds.). — Yamaguchi, Japan: Springer, pp.91–99.

674 J. Saquer and J.S. Deogun

Saquer J. and Deogun J. (2000a): Concept approximations for formal concept analysis. —
Proc. 8-th Int. Conf. Conceptual Structures (ICCS’2000), Vol.II,Working with Concep-
tual Structures, Darmstadt, Germany, pp.73–83.

Saquer J. and Deogun J. (2000b): Using closed itemsets for discovering representative as-
sociation rules, In: Proc. 12-th Int. Symp. Methodologies for Intelligent Systems (IS-
MIS’2000) (Z. Ras and S. Ohsuga, Eds.). — Charlotte, NC: Springer, pp.495–504.

Wille R. (1992): Concept lattices and conceptual knowledge systems. — Comp. Math. Appl.,
Vol.23., No.5, pp.493–515.

Wille R. (1982): Restructuring lattice theory: An approach based on hierarchies on concepts,
In: Ordered Sets (I. Rival, Ed.). — Dordrecht: Reidel, pp.445–470.

Wille R. (1989): Knowledge acquisition by methods of formal concept analysis, In: Data
Analysis, Learning Symbolic and Numeric Knowledge (E. Diday, Ed.). — New York:
Nova Science, pp.365–380.

Zadeh L. (1965): Fuzzy sets. — Inform. Contr., Vol.8, pp.338–353.

