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Multidimensional Symmetricα-Stable (SαS) mutations are applied to phenotypic evolutionary algorithms. Such mutations
are characterized by non-spherical symmetry forα < 2 and the fact that the most probable distance of mutated points is not
in a close neighborhood of the origin, but at a certain distance from it. It is the so-called surrounding effect (Obuchowicz,
2001b; 2003b). Forα = 2, the SαS mutation reduces to the Gaussian one, and in the case ofα = 1, the Cauchy mutation
is obtained. The exploration and exploitation abilities of evolutionary algorithms, usingSαS mutations for differentα, are
analyzed by a set of simulation experiments. The obtained results prove the important influence of the surrounding effect of
symmetricα-stable mutations on both the abilities considered.
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1. Introduction

Most applications of Evolutionary Algorithms (EAs)
which employ the floating point representation of popula-
tion individuals use the Gaussian mutation as a mutation
operator (Bäck and Schwefel, 1993; Fogel, 1994; Fogelet
al., 1966; Galar, 1985; Michalewicz, 1996; Rechenberg,
1965). A new individualx is obtained by adding a nor-
mally distributed random value to each entry of a selected
parenty:

xi = yi + N(0, σi), i = 1, . . . , n. (1)

The choice is usually justified by the Central Limit The-
orem. Mutations in nature are caused by a variety of
physical and chemical factors that are not identifiable or
measurable. These factors are considered as indepen-
dent and identically distributed (i.i.d.) random perturba-
tions. The Generalized Central Limit Theorem states that
the only possible non-trivial limit of normalized sums of
i.i.d. terms is Lévy-stable (Lévy, 1925), also calledα-
stable or just stable in the mathematical literature (Fang
et al., 1990; Nolan, 2003; Samorodnitsky and Taqqu,
1994; Zolotariev, 1986). If the Lindeberg condition is
obeyed, i.e., the first two absolute moments are finite, then
the Lévy-Stable Distribution (LSD) reduces to the Gaus-
sian distribution. The lack of closed form formulas for
probability density functions (pdfs) for all but three LSDs
(Gaussian (GD), Cauchy (CD) and Lévy (LD) distribu-
tions) has been a major drawback in the use of LSDs by
practitioners. Fortunately, there exist algorithmic formu-

las for simulating Lévy-stable variables (Weron, 2001) as
well as computer programs to compute Lévy-stable den-
sities, distribution functions and quantiles (Nolan, 2003).

In recent years, the application of the CD to muta-
tion operators in evolutionary algorithms has drawn re-
searchers’ attention (Bäcket al., 1997; Kappler, 1996;
Obuchowicz, 2003b; 2003c; Rudolph, 1997; Yao and Liu,
1996; 1997; 1999). While the univariate CD has a unique
definition, there exist at least two multivariate versions of
the CD: the spherical CD and the non-spherical CD with
independent univariate Cauchy random variables in each
dimension (Fanget al., 1990; Obuchowicz, 2001b; Shu
and Hartley, 1987). In these cases, the normally dis-
tributed random valueN(0, σi) (1) is substituted by a
random variable of the one-dimensional CD. The shape
of the Cauchy pdf resembles that of the Gaussian one,
but it approaches the axis very slowly, increasing the
probability of the so-called macro-mutations and local
optimum leaving. Rudolph (1997) analyses analytically
the local convergence of simple (1+1)ES and (1+λ)ES
with Gaussian, spherical and non-spherical Cauchy muta-
tions. It was proved that the order of local convergence is
identical to Gaussian and spherical Cauchy distributions,
whereas non-spherical Cauchy mutations lead to slower
local convergence. Yao and Liu (1996; 1997; 1999) suc-
cessfully apply the non-spherical Cauchy mutation to evo-
lutionary programming and evolutionary strategy algo-
rithms in the case of solving global optimization problems
of multivariate and multi-modal functions. Obuchowicz
(2001b; 2003b; 2003c) presents comparison results of the
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saddle crossing ability of EAs with Gaussian, spherical
and non-spherical Cauchy mutations, as well as the influ-
ence of the choice of the reference frame on the effective-
ness of EAs in global optimization tasks.

The suggestion that the application of LSDs other
than the GD and CD can be very attractive for evolu-
tionary algorithms with the floating-point representation
of individuals was first introduced by Gutowski (2001),
but this idea has not be pursued so far. In that work the
author considered only some properties of LSDs without
implementations to any evolutionary algorithm.

The aim of this work is to compare the effective-
ness of EAs with mutations based on LSDs in global mul-
tidimensional optimization tasks. Implemented EAs are
based on two known types of evolutionary models: evo-
lutionary search with soft selection (ESSS), proposed by
Galar (1985; 1989), and evolutionary programming (EP),
introduced by Fogel (1994) and Fogelet al. (1966). The
main difference between these two types of EAs is that the
standard deviation of mutation is adapted in EP but not in
ESSS.

This work is organized as follows: First, LSDs are
defined in Section 2 and their properties in the one and
multivariate cases and the method of numerical generation
of Lévy-stable variables are described. The next part (Sec-
tion 3) describes EAs used in simulation experiments. The
main part containing the experimental studies is presented
in Section 4, where hill climbing, saddle crossing as well
as a set of multidimentional and multimodal optimization
problems are considered using EAs with and without the
self-adaptation mechanism of the scale parameter. Finally,
the work is concluded.

2. Lévy-Stable Distributions

2.1. Characteristic Function Representation
of the LSD

Due to the lack of closed form formulas for densities, the
LSD can be most conveniently described by its charac-
teristic function (ch.f.) φ(k) – the inverse Fourier trans-
form of the pdf. The ch.f. of the LSD is parameter-
ized by a quadruple(α, β, σ, µ) (Weron, 2001), where
α (0 < α ≤ 2) is a stability index (tail index, tail expo-
nent or characteristic exponent),β (−1 ≤ β ≤ 1) is a
skewness parameter,σ (σ > 0) is a scale parameter and
µ is a location parameter. There are a variety of formu-
las of the LSD ch.f. in the relevant literature. This fact is
caused by a combination of historical evolution and nu-
merous problems that have been analyzed using special-
ized forms of LSDs. The most popular formula of the ch.f.
of X ∼ Sα(β, σ, µ), i.e., a Lévy-stable random variable

with parametersα,β,σ and µ is given by (Weron, 1996):

φ(k) =



exp

(
− σα|k|α

{
1− iβ sign(k)

× tan
(
− πα

2

)}
+ iµk

)
if α 6= 1,

exp

(
− σ|k|

{
1 + iβ sign(k)

× 2
π

log |k|
}

+ iµk

)
if α = 1,

(2)

or, in a form more convenient for numerical purposes
(Nolan, 2003),

φ0(k) =



exp

(
− σα|k|α

{
1 + iβ sign(k)

× tan
(πα

2

)[
(σ|k|)1−α − 1

]}
+ iµ0k

)
if α 6= 1,

exp

(
− σ|k|

{
1− iβ sign(k)

× 2
π

log(σ|k|)
}

+ iµ0k

)
if α = 1.

(3)

The S0
α(β, σ, µ0) parameterization (3) is a variant

of Zolotariev’s (M)-parameterization (Zolotariev, 1986),
with the ch.f. and pdf jointly continuous in all four param-
eters. The relation between location parameters in both
representations is

µ =


µ0 − βσ tan

(πα

2

)
if α 6= 1,

µ0 −
2βσ

π
log(σ) if α = 1.

Unfortunately, there are only three LSDs which have
analytical forms of pdfs, i.e.,
the GD (X ∼ S2(0, σ, µ) = N(µ, σ)):

fG(x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
, −∞ < x <∞,

(4)

the CD (X ∼ S1(0, σ, µ) = C(µ, σ)):

fC(x) =
1
π

σ

σ2 + (x− µ)2
, −∞ < x <∞, (5)

and the LD (X ∼ S1/2(1, σ, µ) = Levy(µ, σ)):

fL(x) =
√

σ

2π

1
(x− µ)3/2

exp
(
− σ

2(x− µ)

)
,

µ < x <∞. (6)
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Fig. 1. Probability density functions of the standardized GD
(N(0, 1)) – solid line, CD (C(0, 1)) – dotted line, and
LD (Levy(0, 1)) – dashed line.

Figure 1 presents the pdfs of the standardized GD
(N(0, 1)), CD (C(0, 1)), and LD (Levy(0, 1)).

2.2. Selected Properties of the LSD

The classical Central Limit Theorem says that the nor-
malized sum of i.i.d. random variables with finite variance
converges to a normal distribution. The Generalized Cen-
tral Limit Theorem shows that if the finite variance as-
sumption is dropped, the only possible resulting limits are
stable.

Theorem 1. Generalized Central Limit Theorem
(Lévy, 1925).Let X1, X2, X3, . . . be an i.i.d. sequence of
random variables. There exist constantsan > 0, bn ∈ R

Fig. 2. Fractal nature of the sum of two-dimensional Lévy-stable random vectors(Xi ∼ (S1/2(0, 1, 0), S1/2(0, 1, 0)) | i = 1, 2, . . . ).

and a non-degenerate random variableZ with

an (X1 + X2 + . . . + Xn)− bn −→ Z

if and only if Z is Lévy-stable for some0 < α ≤ 2.

A basic property of stable laws is that sums of Lévy-
stable random variables are Lévy-stable. One of the ef-
fects connected with this fact is illustrated in Fig. 2, where
the sum of two-dimensional Lévy-stable random vectors
is presented. It is easy to see that the obtained graph
has a ‘fractal’ nature. The existence of ‘long jumps’ as
well as ‘short steps’ is independent on the graph scale. In
the case of EAs this property makes it possible to obtain
their good exploration and exploitation characteristics. In
the independent case, the exact parameters of the sum of
Lévy-stables random variables can be calculated using the
propositions below (Nolan, 2003).

Proposition 1. The S0
α(β, σ, µ0) parameterization (3)

has the following properties:

1. If X ∼ S0
α(β, σ, µ0), then

∀a 6= 0, b ∈ R,

aX + b ∼ S0
α

(
sign(a)β, |a|σ, aµ0 + b

)
.

2. The characteristic functions, densities and distribu-
tion functions are jointly continuous in all four pa-
rameters(α, β, σ, µ0).

3. If X1 ∼ S0
α(β1, σ1, µ01) and X2 ∼ S0

α(β2, σ2, µ02)
are independent, thenX1 + X2 ∼ S0

α(β, σ, µ0),
where

β =
β1σ

α
1 + β2σ

α
2

σα
1 + σα

2

, σα = σα
1 + σα

2 ,
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µ0 =



µ01 + µ02 + tan
(πα

2

) [
βσ − β1σ1

− β2σ2

]
if α 6= 1,

µ01 + µ02 +
2
π

[
βσ ln(σ)− β1σ1 ln(σ1)

− β2σ2 ln(σ2)
]

if α = 1.

The formulaσα = σα
1 +σα

2 above is a generalization
of the rule for adding variances of independent random
variables. It holds for both parameterizations.

Proposition 2. The Sα(β, σ, µ) parameterization (2) has
the following properties:

1. If X ∼ Sα(β, σ, µ), then

∀a 6= 0, b ∈ R,

aX+b∼


Sα

(
sign(a)β, |a|σ, aµ + b

)
if α 6= 1,

S1

(
sign(a)β, |a|σ, aµ + b

− βσ
2
π

a ln(a)) if α = 1.

2. The characteristic functions, densities and distribu-
tion functions are continuous away fromα = 1, but
discontinuous in any neighborhood ofα = 1.

3. If X1 ∼ Sα(β1, σ1, µ1) and X2 ∼ Sα(β2, σ2, µ2)
are independent, thenX1 + X2 ∼ Sα(β, σ, µ),
where

β =
β1σ

α
1 + β2σ

α
2

σα
1 + σα

2

,

σα = σα
1 + σα

2 , µ = µ1 + µ2.

A consequence of heavy tails of LSDs is that not all
moments exist. In most statistical problems, the first mo-
ment E(X) and variance Var(X) = E(X2)− (E(X))2

are routinely used to describe a distribution. In the case of
LSDs such a representation is not useful since we have

∀0 < α < 2,

E(Xp) =
∫ ∞

−∞
xpf(x) dx < +∞

⇐⇒ 0 < p < α. (7)

Thus, the second moment exists only forα = 2, the first
moment exists for1 < α ≤ 2 and is equal to the location
parameterµ (2).

2.3. Simulation of Lévy-Stable Variables

If U,U1, U2 ∼ U(0, 1) are uniformly distributed random
variables on the interval(0, 1), then there are simple ways
to generate stable random variables:

• for the normal case, the formulas

X1 = µ + σ
√
−2 ln(U1) cos(2πU2),

X2 = µ + σ
√
−2 ln(U1) sin(2πU2)

give two independentN(µ, σ) random variables,

• for the Cauchy case, the formula

X = σ tan(π(U − 1/2)) + µ

is C(µ, σ), and

• for the Lévy case, the formula

X = σ
1

Z2
+ µ

is Levy(µ, σ), whereZ ∼ N(0, 1).

In the general case, the complexity of the problem
of simulating sequences of Lévy-stable random variables
results from the fact that there is no analytical form for
the inverse of the cumulative distribution function (cdf)
apart from the GD, CD and LD. The first breakthrough
was made by Kanter (1975), who gave a direct method
for simulating Sα(1, 1, 0) random variables, forα < 1.
In general cases the following result of Chamberset al.
(1976) gives a method for simulating any Lévy-stable ran-
dom variable (Nolan, 2003).

Theorem 2. Simulating Lévy-stable random variables.
Let V and W be independent withV ∼ U(−π

2 , π
2 ), W

exponentially distributed with the mean1, 0 < α ≤ 2.

1. The symmetric random variable

Z =


sin(αV )

(cos(V ))1/α

[
cos((α− 1)V )

W

](1−α)/α

if α 6= 1,

tan(V ) if α = 1

has anSα(0, 1, 0) = SαS distribution.

2. In the non-symmetric case, for any−1 ≤ β ≤ 1, de-
fineBα,β = arctan(β tan(πα/2))/α whenα 6= 1.
Then

Z =



sin(α(Bα,β + V ))
(cos(αBα,β) cos(V ))1/α

×
[
cos(αBα,β + (α− 1)V )

W

](1−α)/α

if α 6= 1,

2
π

[(π

2
+ βV

)
tan(V )

− β ln
( π

2 W cos(V )
π
2 + βV

)]
if α = 1

has anSα(β, 1, 0) distribution.
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It is easy to getV andW from independent uniform
random variablesU1, U2 ∼ U(0, 1): set V = π(U1 − 1

2 )
and W = − ln(U2). Given the formulas for the sim-
ulation of standard Lévy-stable random variables (Theo-
rem 2), a Lévy-stable random variableX ∼ Sα(β, σ, µ)
for all admissible values of the parametersα, β, σ and
µ has the form

X =

 σZ + µ if α 6= 1,

σZ +
2
π

βσ ln(σ) + µ if α = 1,
(8)

whereZ ∼ Sα(β, 1, 0).

2.4. Multivariate LSD

In this work only non-skewed (β = 0) LSDs will be ap-
plied to mutation operators of EAs. It is easy to see that
the representations (2) and (3) are equivalent in this case.
Thus, Z ∼ Sα(0, σ, µ) = SαS(σ, µ) (symmetric α-
stable) can be expressed by

Z = µ + σX, (9)

where X ∼ SαS(1, 0) = SαS has the standardized
symmetricα-stable distribution. The ch.f. ofX is given
by

φ(k) = exp (−|k|α) . (10)

For α = 1, it is a ch.f. of the standardized CD, and for
α = 2, it becomes the ch.f. of the standardized GD. If
X = (Xj ∼ SαS | j = 1, 2, . . . , n) ∼ SαS is a sample
from a stable law, its ch.f. is given by

φ(k) = exp (−‖k‖αα) , (11)

where‖a‖α = (
∑n

j=1 |aj |α)1/α denotes thelα-norm.

If the ch.f. of X is of the form (11), we say thatX
possesses anα-symmetric multivariate distribution(Fang
et al., 1990). Forα = 2, the 2-symmetric multivariate dis-
tribution reduces to a spherical distribution. In other cases
(α < 2) the α-symmetric multivariate distribution is only
invariant under the group of permutations. LetP be the
permutation group, i.e., ifH ∈ P, then HT H = I and
the elements ofH are only 0 or 1. IfX ∼ SαS, then
HX ∼ SαS. Figures 3–7 present selected 2-D and 3-D
pdfs of α-symmetric multivariate distributions. The lack
of spherical symmetry influences the relation between the
effectiveness of an EA in a multimodal optimization task
and reference frame selection. This fact, called thesym-
metry effect, was studied by Obuchowicz (2003b; 2003c),
who analysed the non-spherical Cauchy mutation applied
to the ESSS (Galar, 1985) and Evolutionary Programming
(EP) (Fogel, 1994; Fogelet al., 1966) algorithms. In
(Obuchowicz, 2003b; 2003c) the 5D Rastringin and Ack-
ley functions were chosen as testing functions. Both func-
tions considered are multimodal, but Rastringin’s function

(a) (b)

Fig. 3. 2-D probability density function (a) and its
contour map (b) ofSαS for α = 2 (GD).

(a) (b)

Fig. 4. 2-D probability density function (a) and its
contour map (b) ofSαS for α = 1.5.

(a) (b)

Fig. 5. 2-D probability density function (a) and its
contour map (b) ofSαS for α = 1 (CD).

(a) (b)

Fig. 6. 2-D probability density function (a) and its
contour map (b) ofSαS for α = 0.5.
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(a) (b)

(c) (d)

Fig. 7. Surfaces of equal values of 3-D pdfs (fα(x) = 0.001)
of SαS for α = 2 (a), α = 1.5 (b), α = 1 (c), and
α = 0.5 (d).

characterizes the higher amplitude of changes and its val-
leys are deeper. Local optima of both functions are located
in the nodes of the 5D-cubic net whose edges are paral-
lel to the axes of the reference frame. Additionally, two
other functions were taken into consideration. They were
obtained from the 5D Rastringin and Ackley functions af-
ter a rotation of the reference frame in the plane(x1, x2)
through an angle equal toπ/4, and in the plane(x2, x3)
through an angle equal toπ/4, too. The dependence of
the EP algorithm with the Cauchy mutation on the choice
of the reference frame manifested in slower convergence
to the global optimum of the rotated testing functions in
comparison with the non-rotated functions.

Another problem which seems to be imperceptible in
the studies ofα-symmetric multivariate distributions ap-
plied to mutation operations is related to the probability
that the distance from the mutated pointx and its off-
spring y will be in the range‖x − y‖ ∈ [r, r + dr].
Figure 8 shows histograms of the distances between the
origin and 106 points mutated with chosen distributions
SαS for some space dimensionsn. Although the pdfs of
α-symmetric multivariate distributions have their maxima
at origins, it is easy to prove (c.f. (Obuchowicz, 2001a;
2001b)) that the most probable distance of the offspring
is near zero only in the case of a one-dimensional muta-
tion. In the case of ann-dimensional mutation, the most
probable distance increases withn, in the case of a Gaus-
sian mutation it is proportional to the norm of the stan-
dard deviation vector and to

√
n− 1. This fact, called

the surrounding effect(Obuchowicz, 2001b), formed the
basis for a simulation analysis of the ESSS and EP algo-

rithms with Gaussian and Cauchy mutations (Obuchow-
icz, 2003b; 2003c). The surrounding effect decreases the
exploitation properties of an EA while increasing the di-
mension of the search space. This fact is also observed in
the experiments described in Section 4.

3. Evolutionary Algorithms Used
in Simulations

Two classes of evolutionary algorithms are used in sim-
ulation experiments. The first one is based on probably
the simplest selection-mutation model of the Darwinian
evolution, proposed and implemented (the ESSS algo-
rithm) by Galar (1985). The searching process is exe-
cuted in a multi-dimensional real space, on which some
non-negative function, called thefitness, is defined. At
the beginning, a population of points is randomly cho-
sen from the searching space, and is iteratively changed
by selection and mutation operators. As a selection oper-
ator the well-known proportional selection is used. Se-
lected elements are mutated by adding a normally dis-
tributed random vector with a constant standard deviation
vector. The second class is the well-known evolutionary
programming model proposed by Fogel (1992) and Fogel
et al. (1966; 1991). Apart from the different selection
technique, the EP algorithm, unlike ESSS, possesses the
adaptation mechanism of standard deviations of the muta-
tion operator.

3.1. Evolutionary Search with Soft Selection

The assumptions described above can be formalized by
the following algorithm: A real,n-dimensional search
space (an adaptation landscape)Rn is given. A non-
negative functionΦ to be maximized, called thefitness, is
also defined on this adaptation landscape. First, an initial
population P (0) of η elements is randomly generated,
e.g., by addingη times a normally distributed random
vector to a given initial pointx0

0 ∈ Rn. The fitness index
q0
k = Φ(x0

k) is calculated for each elementx0
k of the

population. The searching process consists in generating
a sequence ofη-element populations. A new population
P (t+1) is created based only on the previous population
P (t). In order to generate a new elementxt+1

k , a par-
ent element is selected and mutated. Both selection and
mutation are random processes. Each elementxt

k can be
chosen as a parent with a probability proportional to its
fitnessqt

k (the well-knownroulette method). A new ele-
ment xt+1

k is obtained by adding a normally distributed
random value to each entry of the selected parent:(

xt+1
k

)
i
=
(
xt

hk

)
i
+ N(0, σ) i = 1, . . . , n, (12)

where the standard deviationσ is a parameter to be se-
lected.
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Fig. 8. Histograms of the distances between the origin and106 points mutated with distributionsSαS for α = 2 (a), α = 1.5 (b),
α = 1 (c), andα = 0.5 (d) (n = 2 – solid line, n = 4 – dashed line,n = 8 – dotted line, andn = 16 – dash-dotted line).

Numerical tests of the ESSS algorithm (Galar, 1989)
proved essential advantages of soft selection in compari-
son withhard selection, in which only the best individuals
are chosen, and only local optima are attained. The ESSS
algorithm does not constitute an optimization algorithm in
the sense of reaching extrema with desired accuracy. The
evolution process is not asymptotically convergent to an
optimum, and the interpolation effectiveness of soft selec-
tion is rather weak. Evolution leads next generations to an
elevated response surface rather than to maxima. In spite
of that, search advantages of the ESSS algorithm suggest
that this algorithm can be of real practical use in numerical
packages for global optimization, especially when com-
bined with local optimization algorithms.

Let ESSSα denote the ESSS algorithm with the mu-
tation based on theSαS distribution with a givenα
(Tab. 1). Four types of the ESSS algorithm, ESSS2,
ESSS1.5, ESSS1, and ESSS0.5, are considered in this
work. The pdfs and cdfs ofSαS distributions used in
the experiments are presented in Fig. 9.

The roulette method used as the selection operator
possesses one main disadvantage. If disproportions be-
tween the element fitness values are much lower than the
fitness values in the current population, then the distribu-
tion of the roulette method is similar to the uniform dis-
tribution. Thus, an evolutionary process is almost inde-
pendent of the fitness function and reduces to some kind
of random walk. In this work, the approach proposed in



A. Obuchowicz and P. Prętki296

Table 1. Outline of the ESSSα algorithm

Input data

η – population size;

tmax – maximum number of iterations (epochs);

σ – standard deviation of mutation;

Φ : Rn → R+ – non-negative fitness function,n – number of features;

x0
0 – initial point.

1. Initialize

(a) P (0) =
(
x0

1, x
0
2, . . . , x

0
η

)
:

(
x0

k

)
i
=

(
x0

0

)
i
+ SαS(0, σ); i = 1, 2, . . . , n; k = 1, 2, . . . , η;

(b) q0
0 = Φ

(
x0

0

)
.

2. Repeat

(a)Estimation

Φ
(
P (t)

)
=

(
qt
1, q

t
2, . . . , q

t
η

)
, whereqt

k = Φ
(
xt

k

)
, k = 1, 2, . . . , η.

(b) Choice of the best element in the history(
xt

0, x
t
1, x

t
2, . . . , x

t
η

)
→ xt+1

0 such thatqt+1
0 = max{qt

k}, k = 0, 1, . . . , η.

(c) Selection

(
h1, h2, . . . , hη

)
, wherehk = min

{
h :

h∑
l=1

qt
l

η∑
l=1

qt
l

> ζk

}

and {ζk}ηk=1 are random numbers uniformly distributed in[0, 1).

(d) Mutation

P (t)→ P (t + 1);(
xt+1

k

)
i
=

(
xt

hk

)
i
+ SαS(0, σ), i = 1, 2, . . . , n; k = 1, 2, . . . , η.

Until t > tmax.

(a) (b)

Fig. 9. Pdfs (a) and cdfs (b) ofSαS distributions withα = 2 (the Gaussian distribution) – solid line,
α = 1.5 – dotted line,α = 1 (the Cauchy distribution) – dashed line,α = 0.5 – dash-dotted line.
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(Obuchowicz, 2003a) is applied. Letf : Rn → R be
a function to be minimized. Then the fitness function is
defined as follows:

Φ (x) = f t
max − f (x) +

1
η2

, (13)

where f t
max = max f (xt

k | k = 1, . . . , η) is the maxi-
mal value of f over all elements in the current popula-
tion. The last term in (13) is proportional to the proba-
bility of the worst element selection. This probability is
very small but non-zero. The only limitation of this part is
that it has to be significantly smaller than1/η – the prob-
ability of element selection in the case of uniform random
selection. The fitness functionΦ is non-negative and its
relative values in the current population make the roulette
method effective.

3.2. Evolutionary Programming

Evolutionary programming was devised by L.G. Fogelet
al. (1966) in the mid 1960s for the evolution of finite state
machines in order to solve prediction tasks. EP was ex-
tended by Fogel (1992) and Fogelet al. (1991) to work on
real-valued object variables based on normally distributed
mutations. This algorithm is called the meta-EP (Fogelet
al., 1991) or the Classical EP (CEP) (Yao and Liu, 1999).

In meta-EP, an individual is represented by the pair
a = (x,σ), where x ∈ Rn is a real-valued pheno-
type, σ ∈ Rn

+ is a self-adapted standard deviation vec-
tor for the Gaussian mutation. For initialization, EP as-
sumes bounded subspacesΩx =

∏n
i=1[ui, vi] ⊂ Rn and

Ωσ =
∏n

i=1[0, c] ⊂ Rn
+ with ui < vi and c > 0. How-

ever, the search domain is extended toRn ∪ Rn
+ during

the algorithm processing. As a mutation operator, a Gaus-
sian mutation with a standard deviation vector assigned to
an individual is used. All elements in the current popu-
lation are mutated. Individuals from both parent and off-
spring populations participate in the process of selecting
a new generation. For each individualak, q individuals
are chosen at random fromP (t) ∪ P ′(t) and compared
with ak with respect to their fitness values. Herewk is
the number expressing how many of theq individuals are
worse thanak. Then η individuals having the highest
scorewk are selected from2η parents and offspring to
form a new populationP (t + 1).

An analysis of the classical EP algorithm (Fogel,
1992) gives a proof of the global convergence with prob-
ability 1 for the resulting algorithm, and the result is de-
rived by defining a Markov chain over the discrete state
space that is obtained from reduction of the abstract search
spaceRn to the finite set of numbers representable on a
digital computer.

In order to introduce non-Gaussian mutations into
the meta-EP algorithm, let EPα denote the meta-EP al-

gorithm with the mutation based on theSαS distribution
with a givenα (Tab. 2). As a base meta-EP algorithm the
description included in (Bäck and Schwefel, 1993; Yao
and Liu, 1999) is chosen. However, Yaoet al. (1999)
introduce into their version of meta-EP (CEP) the self-
adaptation schema of the standard deviation of the Gaus-
sian mutation borrowed from another well-known phe-
notype evolution algorithm: evolutionary strategies (ES)
(Bäck and Schwefel, 1993; Bäcket al., 1997; Schwefel,
1981). This version of enriched meta-EP is used in this
work. The self-adaptation scheme of the scale parameter
(marked by the asterix in Table 2) is an extention of that
proposed for ES.

It is worth noticing that the application of the self-
adaptation scheme influences the distribution of muta-
tion. Figure 10 compares the pdfs ofSαS(0, 1) and
SαS(0, 1) exp(SαS(0, 1)), the latter representing a sim-
plified self-adapted random mutation. The mass of prob-
ability density is more concentrated around the central
point and the tails are slightly heavier in the case of the
SαS(0, 1) exp(SαS(0, 1)) distribution. This fact can
manifest itself by increased the numbers of ‘short steps’
and ‘long jumps’ at the cost of ‘mean steps’.

4. Simulation Experiments

4.1. Study of Hill Climbing Using (1+1)ES

4.1.1. Problem Statement

Before the ESSSα and EPα algorithms are used, let us
consider the simple modification (1+1)ESα of the evolu-
tionary strategy (1+1)ES (Rechenberg, 1965). The pop-
ulation at the iterationt is reduced to only one element
xt, from which an offspringyt is generated by a muta-
tion operator. The mutation is defined by

yt = xt + σZ, (14)

whereZ ∼ SαS for a givenα, σ is an input parameter.
A better element (in the sense of the fitness function) from
the parentxt and the offspringyt is chosen as a new
base elementxt+1, i.e.,

xt+1 =

{
xt if Φ(xt) > Φ(yt),

yt otherwise.
(15)

Replacing t ← t + 1, the operations (14) and (15) are
repeated iteratively until a given stopping criterion is met.

The aim of this section is to analyze the exploitation
effectiveness of the above (1+1)ESα algorithm. Let us
consider the spherical function

fsph(x) = ‖x‖2 (16)
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Table 2. Outline of the EPα algorithm

I. Initiation

A. Random generation

P (0) =
{
ak(0) =

(
xk(0), σk(0)

)
| k = 1, 2, . . . , η

}
.

xk(0) = RANDOM(Ωx), σk(0) = RANDOM(Ωσ), Ωx ⊂ Rn, Ωσ ⊂ Rn
+.

B. Estimation

P (0)→ Φ
(
P (0)

)
=

{
qk(0) = Φ

(
xk(0)

)
| k = 1, 2, . . . , η

}
.

C. t = 1.

II.Repeat:

A. Mutation

P ′(t) = mτ,τ ′
(
P (t)

)
=

{
a′

k(t) | k = 1, 2, . . . , η′}.

x′
ki(t) = xki + SαSi(0, σki), σ′

ki = σki exp
(
τ ′SαS(0, 1) + τSαSi(0, 1)

)
, (*) i = 1, 2, . . . , n,

SαSi(0, 1) indicates that the random number is generated anew for each componenti.

B. Estimation

P ′(t)→ Φ
(
P ′(t)

)
=

{
q′

k(t) = Φ
(
x′

k(t)
)
| k = 1, 2, . . . , η

}
.

C. Selection of a new generation

P (t + 1) = sn
θn

(
P (t) ∪ P ′(t)

)
=

{
ak(t + 1) | k = 1, 2, . . . , η

}
.

∀ak ∈ P (t) ∪ P ′(t), ak →
{
akl = RANDOM

(
P (t) ∪ P ′(t)

)
| l = 1, 2, . . . , q

}
,

wk =
∑q

l=1 θ
(
Φ(xk)− Φ(xkl)

)
, θ(α) =

{
0 for α < 0

1 for α ≥ 0
,

P (t + 1)← η individuals with the best scorewk.

D. t = t + 1.

Until
(
ι
(
P (t)

)
= true

)
.

as an objective function to be minimized. The experiment
consists in starting the (1+1)ESα algorithm many times
from different starting points and calculating the percent-
age of successful mutation operationsζ, i.e., we are inter-
ested in percentages of mutations resulting in better off-
spring than their base points.

4.1.2. Experiment and Results

The simulations were performed for the 4D sphere
function (16). Four starting points were selected:
a1 = (100, 0, 0, 0), a2 = (100/

√
2, 100/

√
2, 0, 0),

a3 = (100/
√

3, 100/
√

3, 100/
√

3, 0), and a4 =
(50, 50, 50, 50). It is worth noticing that‖ai‖ = 100, i =
1, 2, 3, 4. Four algorithms from the (1+1)ESα class are
used in this experiment: (1+1)ES2, (1+1)ES1.5, (1+1)ES1,

and (1+1)ES0.5. The scale parameter for all algorithms is
the same:σ = 0.1. Each algorithm is started from each
starting point 500 times.

Figure 11 shows the percentage of successful mu-
tations obtained for all algorithms used and all starting
points. Let ζα,i be the percentage of successful muta-
tions of (1+1)ESα (α = 2, 1.5, 1, 0.5) started from the
point ai (i = 1, 2, 3, 4).

Observation 1. It is easy to see thatζ2,i ≈ 50% does not
depend on the starting point.

Observation 2. If α decreases, thenζα,i rapidly de-
creases and the disproportion between the results for dif-
ferent starting points increases. The percentageζα,i is
smaller for starting points located far from the axes of the
reference frame.
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Fig. 10. Pdfs of SαS(0, 1) (solid line) andSαS(0, 1) exp(SαS(0, 1)) (dashed line)
for α = 2 (a), α = 1.5 (b), α = 1 (c), andα = 0.5 (d).

Let t̄α,i be the average number of iterations needed
to locate the optimum (the stopping criterionfsph < 0.5)
taken over 500 runs of the (1+1)ESα algorithm (α =
2, 1.5, 1, 0.5) started from the pointai (i = 1, 2, 3, 4) (see
Fig. 12).

Observation 3. It is surprising that, in spite of the depen-
dence ofζα,i on α and ai, both t̄2,i and t̄0.5,i seem to
be almost independent of the starting point. Moreover, one
can suspect that̄t0.5,4 < t̄0.5,1 (whenζ0.5,4 � ζ0.5,1, see
Observation 2); however, the difference between both the
numbers is in the limit of the statistical error. The largest
dependence of̄tα,i on ai is obtained forα = 1.5.

4.1.3. Conclusions

The independence ofζ2,i from the selecting starting point
(see Observation 1) follows from the fact that the GD pos-
sesses a spherical symmetry and the level curve of its pdf
(described byσ = 0.1) is much smaller than the level
curve of thefsph slope.

The results described in Observation 2 are caused
by the α-symmetry of SαS used in mutation, which
prefers directions parallel to the axes of the reference
frame. Thus, whena1, which is located on the axis of
the reference frame, is chosen as a starting point, then
the mutation operator possesses the highest probability of
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Fig. 11. Percentage of successful mutations in (1+1)ESα

started from different points (a1 – stars,a2 – squares,
a3 – diamonds,a4 – circles) vs.α.
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Fig. 12. Average number of iterations needed to locate the opti-
mum neighborhood (fsph < 0.5) for (1+1)ESα started
from different points (a1 – stars,a2 – squares,a3 –
diamonds,a4 – circles) vs.α.

allocating offspring in an area of better values offsph .
This probability rapidly decreases when the order of the
diagonal on which the starting point is allocated increases.
The disproportion of the results for given (1+1)ESα and a
different starting point increases with a decrease inα.

Observation 3 suggests that there are two competing
mechanisms influencinḡtα,i. The first, described above,
is the relation between the selection of the starting point
and ζα,i. The second is connected with heavy tails of
SαS. For low values ofα, however, most of the muta-
tions result in worse offspring, but an average “jump” of
a successful mutation is much longer than in the case of
higher α.

4.2. Optimization of Unimodal Functions

4.2.1. Problem Formulation

Consider two unimodal functions: the sphere function
fsph(x) (16) and generalized Rosenbrock function

fGR(x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
, (17)

wheren is the search space dimension.

The ESSSα and EPα (α = 2, 1.5, 1, 0.5) algorithms
are considered in this section. The goal of this experiment
is to analyze exploitation effectiveness of the examined
algorithms in the sense of the best point convergence to
an optimum.

4.2.2. Experiment and Results

Four algorithms from the ESSSα class are used in this ex-
periment: ESSS2, ESSS1.5, ESSS1, and ESSS0.5. All of
them are applied in order to adapt to the 2D, 5D, 10D
and 20D landscapes defined by the functionsfsph(x)
(16) and fGR(x) (17). The initial population is ob-
tained by η = 20 mutations of the starting pointx0

0 =
(30/
√

n, . . . , 30/
√

n) (‖x0
0‖ = 30). The scale parameter

for all algorithms is the same:σ = 0.05. Each algorithm
is started 500 times for each set of initial parameters. The
maximum number of epochs is set astmax = 5000 for
fsph(x) (16) and tmax = 10000 for fGR(x) (17). Fig-
ures 13 and 14 present the convergence of the best element
in the current population to the optimum for differentα
and n in the case offsph(x) and fGR(x), respectively.

Observation 4. In both cases offsph(x) and fGR(x),
ESSSα algorithms with low values ofα more quickly con-
verge to the optimum, but they localize the optimum with
worse accuracy, i.e., the population becomes stabilized on
higher values of the objective function. The accuracy de-
creases while the search space dimension increases. In
the limit of the lowestα and high dimension, the sta-
bilized population places their elements further from the
optimum point thanx0

0 (it is clearly seen for ESSS0.5).

Before the cause of the observed facts is explained,
let us introduce the following helpful experiment: Con-
sider the sphere functionfsph(x) (16). All parameters
are the same as in the previous experiment except for the
starting point which is now located at the optimum point
x0

0 = (0, . . . , 0). Figures 15 and 16 illustrate how far from
the optimum point the population fluctuates in its stable
state.
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Fig. 13. Spherical functionfsph(x) (16) optimized by the ESSSα algorithm. The best value offsph(x) in the population
vs. iterations (results averaged over 500 algorithm runs) in the 2D (a), 5D (b), 10D (c), and 20D (d) search spaces.
(α = 2 – solid line, α = 1.5 – dashed line,α = 1 – dash-dotted line, andα = 0.5 – dotted line).

Observation 5. It is easy to see that the population in
the stable state fluctuates around the optimum further and
further with an increase in the space dimension. These
distances rapidly grow with a decrease in the index of sta-
bility α.

In order to analyse whether the same effect as those
described in Observations 4 and 5 will be obtained in
the case of EAs with the self-adaptation mechanism of
the scale parameter, let us consider the following experi-
ment: Four algorithms from the EPα class are used: EP2,
EP1.5, EP1, and EP0.5. All of them are applied in order to
adapt to the 2D and 20D landscapes defined by the func-
tions fsph(x) (16). The initial population ofη = 20
individuals is selected fromΩx =

∏n
i=1[−10, 10] and

Ωσ =
∏n

i=1[0, 0.05]. The number of sparring partners

is q = 5. The maximum number of epochs is set as
tmax = 1000. Each algorithm is started 50 times for each
set of initial parameters. Figure 17 presents the conver-
gence of the best element in the current population to the
optimum for differentα and n (the results are averaged
over 50 algorithm runs). The relations between the aver-
age scale parameter in the current population vs. iterations
for a chosen algorithm run are shown in Figs. 18 and 19.

Observation 6. The convergence of the EPα algorithm
to the local optimum (Fig. 17) is quite different than in the
case of ESSSα (Fig. 13). The EPα algorithm with high
values ofα converges to the optimum more quickly. Un-
like ESSSα, where some stable state is detected, the pop-
ulation in EPα (slower and slower with time) continually
converges to the local optimum.
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Fig. 14. Generalized Rosenbrock functionfGR(x) (17) optimized by the ESSSα algorithm. The best value offGR(x) in
the population vs. iterations (results averaged over 500 algorithm runs) in the 2D (a), 5D (b), 10D (c), and 20D (d)
search spaces. (α = 2 – solid line, α = 1.5 – dashed line,α = 1 – dash-dotted line, andα = 0.5 – dotted line).

Observation 7. Two facts can be observed in
Figs. 18 and 19. The average scale parameter (taken
over all elements in the actual population) rapidly
decreases to very small values in the case of lowα and
high dimensions, and shows more chaotic behavior in
comparison with highα.

4.2.3. Conclusions

The results presented in Observations 4 and 5 are caused
by two mechanisms. The first one is connected with the
existence of heavy tails of theSαS pdfs; they improve
the convergence to the optimum neighborhood with a de-
crease inα. But the optimum approximation error be-
comes worse with a decrease inα because of the sur-

rounding effect described in Section 2.4. This effect of
multivariate LSDs does not allow us to locate offspring in
the close vicinity of the the base point. Some kind ofdead
surrounding, where the allocation of offspring is almost
impossible, is created. The radius of thedead surround-
ing increases with the search space dimensionn and a
decrease in the index of stabilityα.

The effect ofdead surroundingis reduced by the self-
adaptation mechanism of a scale parameter of mutation
(Observations 6 and 7). But the necessity of dead sur-
rounding reduction results in a rapid decrease in a scale
parameter to very small values, especially in the case of
low α and high dimensions. This fact, among other
things, causes a low convergence to the optimum of the
EPα algorithm with low values ofα.
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(a) (b)

Fig. 15. ESSS2 process forfsph(x) started at the optimum point. The best value of the objective function in the current pop-
ulation (a), and the distance between the best point in the population and the optimum point (b) vs. iterations (results
averaged over 100 algorithms runs,n = 2, 5, 10, 20, 40, 60, 80, 100 from the bottom to top curves, respectively).

(a) (b)

Fig. 16. ESSS0.5 process forfsph(x) started at the optimum point. The best value of the objective function in the current pop-
ulation (a), and the distance between the best point in the population and the optimum point (b) vs. iterations (results
averaged over 100 algorithms runs,n = 2, 5, 10, 20, 40, 60, 80, 100 from the bottom to top curves, respectively).

4.3. Saddle-Crossing Ability

4.3.1. Problem Statement

The saddle-crossing ability problem was defined by Galar
(1989) and was then extensively studied for ESSS2,
ESSS1, EP2, and EP1 (ESSS and EP algorithms with
Gaussian an Cauchy mutations, respectively) by Obu-
chowicz (2003b; 2003c). As the fitness function the sum
of two Gaussian peaks (Fig. 20(a)) is adapted:

Φsc(x) = exp

(
−5

n∑
i=1

x2
i

)

+
1
2

exp

(
−5
(
(1− x1)2 +

n∑
i=2

x2
i

))
, (18)

wheren is the landscape dimension. The lowest peak has
its optimum at the point(1, 0, . . . , 0). The global opti-
mum is located at the point(0, 0, . . . , 0).

The aim of this experiment is a simulation analy-
sis of the saddle-crossing ability, which is measured by
the number of iterations needed to cross a saddle be-
tween the lower and higher peaks. The starting population
is allocated in the neighborhood of the lower optimum
x0

0 = (1, 0, . . . , 0). The searching process is stopped
when at most half of the elements of the current popula-
tion are located on the global peak higher than the lowest
local optimum (it is called thesuccessful run), i.e.,

Φsc(xk) > φlim > Φsc(x0
0)

for most k of k = 1, 2, . . . , η, (19)

or the maximum number of iterationstmax is exceeded.
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Fig. 17. Spherical functionfsph(x) (16) optimized by the EPα algorithm. The best value offsph(x) in the popula-
tion vs. iterations (results averaged over 50 algorithm runs) in the 2D (a) and 20D (b) search spaces. (α = 2
– solid line, α = 1.5 – dashed line,α = 1 – dash-dotted line, andα = 0.5 – dotted line).
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Fig. 18. Spherical functionfsph(x) (16) optimized by the EPα
algorithm. The average scale parameterσ in the cur-
rent population vs. iterations in the 2D search space.
(α = 2 – solid line, α = 1.5 – dashed line,α = 1 –
dash-dotted line, andα = 0.5 – dotted line).

Each algorithm is started a given number of samples.
Two parameters are chosen as measures of algorithm ef-
fectiveness in this experiment. The first one is the percent-
ageζ of runs in which the process is stopped beforetmax

iterations, i.e., the condition (19) is fulfilled. The second
one is the average numbert̄ of iterations which is needed
to cross the saddle by a given algorithm.

4.3.2. Experiment and Results

In the first part of this experiment, four algorithms from
the ESSSα class are applied: ESSS2, ESSS1.5, ESSS1,

and ESSS0.5. The following input parameters (the same
for all algorithms) are used: the population sizeη = 20,
the scale parameterσ = 0.05, the maximum number of
iterationstmax = 105, the limit fitnessφlim = 0.6. Each
algorithm is started 500 times for each set of initial pa-
rameters. The results are presented in Fig. 20(b).

Observation 8. In the case of very low dimensions, the
effectiveness of saddle crossing is best for the lowest value
of α = 0.5 and decreases when the index of stabilityα
increases.

Observation 9. The high efficiency of ESSSα with low
values ofα and low dimensions rapidly decreases when
the search space dimension increases. In the limit of high
dimensions, the ordering of ESSSα algorithms with re-
spect to their saddle-crossing ability is reversed.

Observation 10. The dependence between the ESSSα

saddle-crossing ability and the search space dimensionn
described in Observation 9 changes in the case of ESSS2.
Here t̄ for the ESSS2 algorithm is very high forn = 1
and decreases with the space dimension to some level
achieved forn ≈ 6. Such an “equilibrium” is kept until
n ≈ 14. For n > 14, the dependence betweent̄ and the
search space dimensionn is the same as that described
in Observation 9.

In the second part of this experiment, four algorithms
from the EPα class are applied: EP2, EP1.5, EP1, and
EP0.5. The initial population ofη = 20 individuals is
selected fromΩx = [0.8, 1.2] ×

∏n
i=2[−0.2, 0.2] and

Ωσ =
∏n

i=1[0, 0.01]. The number of sparring partners
is q = 5. The maximum number of epochs is set as
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Fig. 19. Spherical functionfsph(x) (16) optimized by the EPα algorithm. The average scale parameterσ in the current
population vs. iterations in the 20D search space forα = 2 (a), α = 1.5 (b), α = 1 (c), andα = 0.5 (d).

tmax = 1000, the limit fitnessφlim = 0.6. Each algo-
rithm is started 100 times for each set of initial parameters.
The results are summared in Fig. 21.

Observation 11. The EP2 algorithm has some problems
with saddle crossing intmax (Fig. 21(a)). The percentage
is 80% < pc ≤ 100% for α = 1.5 and α = 1. However,
the efficiency of EP0.5 is much lower than that of EP1.

Observation 12. When only the successful runs of the all
algorithms are taken into consideration,̄t is low for al-
gorithms of lowζ – the EP2 and EP0.5 (Fig. 21(b)).

4.3.3. Conclusions

It is not surprising that the effectiveness of saddle crossing
is better for algorithms with a low value ofα in the case

of low dimensions (Observation 8). Both optimum points
in (18) are located on the same axis of the reference frame
and the probability ofSαS mutations in this direction
increases with a decrease inα.

The range of mutations increases withn according
to thesurrounding effect. This fact allows ESSS2 to be-
come more effective with an increase inn for relatively
low dimensions (Observation 10). This effect can be also
visible for other algorithms from the ESSSα class when
smaller values of the scale parameterσ will be used.

The observed rapid decrease in saddle-crossing ef-
fectiveness for a higher dimension (Observation 9) is
caused by two mechanisms. The proportion between the
n-dimensional solid angle containing all directions of suc-
cessful mutations (i.e., those which can produce offspring
located in the global peak) and the fulln-dimensional
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Fig. 20. Two-dimensional version of the sum of two Gaussian peaks (18) (a). The average number of iterationst̄ (taken over 500
algorithm runs) needed to cross the saddle vs. the dimension of the search space (b) (ESSS2 – circles and solid line, ESSS1.5
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Fig. 21. Percentagesζ of the successful runs (a) and the mean numbert̄ of iterations needed to cross the saddle taken over all
successful runs (b) vs. the dimension of the search space, (EP2 – circles and solid line, EP1.5 – crosses and dashed line, EP1

– squares and dotted line, EP0.5 – stars and dash-dotted line.)

solid angle rapidly decreases whenn increases. Then the
probability of a successful mutation decreases, too. The
second mechanism is connected with thesurrounding ef-
fect. For relatively small dimensions this effect improves
the saddle-crossing ability (Observation 10), but forn
high enough the global optimum can be covered by the
dead surrounding(see Section 4.2.3).

In the case of algorithms from the EPα class, the
problem of dead surroundingis overcome by the self-
adaptation mechanism of the scale parameter. Another
property becomes clear. Algorithms were started with

relatively small initial values of scale parameters (they are
randomly selected fromΩσ =

∏n
i=1[0, 0.01]). In the case

of the EP2 and EP0.5 algorithms, either they cross a sad-
dle in a relatively short time or they do not cross a saddle
at all (Observations 11 and 12). If there are no success-
ful mutations in the beginning of the algorithm run, then
the self-adaptation and selection lead to decreasing val-
ues of σ, and the population is trapped around the local
optimum. In the case of the EP2 algorithm, the low num-
ber of successful mutations is caused by a low probability
of macro-mutations. However, the mutation pdf in EP0.5
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possesses the heaviest tails in comparison with other ex-
amined algorithms, the EP0.5 processing is characterized
by the most rapid decrease of the scale parameterσ in
time (Observation 7), and this is the cause of the untimely
convergence to the local optimum.

4.4. Optimization of Selected Multimodal Functions

4.4.1. Problem Statement

The aim of this section is to analyze the convergence of the
ESSSα and EPα algorithms to the global optimum of se-
lected global optimization tasks. Three well-known multi-
modal global optimization benchmarks are chosen for this
experiment:

(a) Ackley’s function:

fA(x) = 20 + e− 20 exp
(
−‖x‖

5n

)
− exp

(
1
n

n∑
i=1

cos (2πxi)

)
, (20)

(b) generalized Rastringin function:

fR(x) =
n∑

i=1

(
x2

i − 10 cos (2πxi) + 10
)
, (21)

(c) generalized Griewank function:

fG(x) =
‖x‖2

4000
−

n∏
i=1

cos(xi)√
i

. (22)

Each of the above functions has its global optimum
at xopt = (0, . . . , 0) and fA(xopt) = fR(xopt) =
fG(xopt) = 0.

The stopping condition of all the algorithms consid-
ered in this experiment is

min
{
‖xt

i‖ | i = 1, 2, . . . , η
}

< 0.001, (23)

or the maximum number of iterationstmax is exceeded.

4.4.2. Experiment and Results

In the first step of this experiment, four algorithms from
the ESSSα class are used: ESSS2, ESSS1.5, ESSS1, and
ESSS0.5. All of them are applied in order to adapt to the
2D, 5D, 10D and 20D landscapes defined by the functions
fA(x) (20), fR(x) (21), and fG(x) (22). The initial
population is obtained byη = 20 mutations of the start-
ing point x0

0 = (30, 30, 0, . . . , 0). The scale parameter
for all algorithms is the same:σ = 0.05. Each algorithm
is started 50 times for each set of initial parameters. The

maximum number of epochs is set astmax = 100000.
Figures 22–24 present the convergence of the best ele-
ment in the current population to the optimum for different
α and n.

Observation 13. In the case of all objective functions, the
effectiveness of ESSS0.5 is quite good for 2D. This algo-
rithm crosses saddles faster than others; however, it does
not localize the global optimum as precisely as ESSS1.5

and ESSS1. The effectiveness of ESSS0.5 rapidly de-
creases when the landscape dimensionn increases. The
population stibilizes on a worse level of quality than the
initial point x0

0.

Observation 14. The behavior of the population in
ESSS2 is quite different than in ESSS0.5. This population
has serious problems while leaving the initial valley of the
objective function. The saddle-crossing ability of ESSS2

increases with an increase inn. However, it converges to
the global optimum slower than ESSS1.5 and ESSS1, but
localizes this point much better than others in the case of
Ackley’s and Rastringin’s 5D, 10D and 20D functions.

Observation 15. The ESSS1.5 and ESSS1 algorithms rec-
oncile the properties described in Observations 13 and 14,
and keep good efficiency in all cases. However, the
downward tandency of their effectiveness appears for 20D
landscapes.

In the second step of this experiment, sixteen
algorithms from the EPα class are used (α =
2.0, 1.9, 1.8, . . . , 0.6, 0.5). The initial population ofη =
20 individuals is selected fromΩx =

∏2
i=1[29, 31] ×∏n

i=3[−0.05, 0.05] and Ωσ =
∏n

i=1[0, 0.05]. The num-
ber of sparring partners isq = 5. The maximum number
of epochs is set astmax = 100000. Each algorithm is
started 50 times for each set of initial parameters. How-
ever, all algorithms are applied in order to adapt to the
2D, 5D, 10D and 20D landscapes defined by the func-
tions fA(x) (20), fR(x) (21), and fG(x) (22). Only
the results for Rastringin’s functionfR(x) (21) are pre-
sented in Figs. 25–28, because the results obtained for all
the functions considered demonstrate similar properties.

Observation 16. The percentage of successful runsζ de-
creases when the dimension of the search space increases.
This fact is independent ofα and the choice of the objec-
tive function.

Observation 17. The effectiveness of the classical evo-
lutionary programming algorithm (EP2) locates it among
the worst algorithms out of all considered. The best re-
sults are obtained for1 ≤ α ≤ 1.5 for each analysed
dimension of the search space. Forα < 1, the percentage
of successful runs decreases. The application of EPα for
α < 0.5 does not lead to any successful run.
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Fig. 22. Ackley’s function fA(x) (20) optimized by the ESSSα algorithm. The best value offA(x) in the population vs. iterations
(results averaged over 50 algorithms runs) in the 2D (a), 5D (b), 10D (c), and 20D (d) search spaces. (α = 2 – solid line,
α = 1.5 – dashed line,α = 1 – dash-dotted line, andα = 0.5 – dotted line).

Observation 18. This observation is similar to Observa-
tion 12, i.e.,̄t has low values for lowζ.

4.4.3. Conclusions

Observations 13–15 show that the surounding effect is one
of the most important mechanisms influencing the effi-
ciency of EAs in multimodal global optimization. The
existence of the wide dead surrounding of ESSS0.5 makes
this algorithm unsuccessful. The same effect accelerates
the saddle-crossing ability of ESSS2 with an increase
in n (Observation 14). All of the observations suggest
that the range of the surrounding effect is very sensi-
tive to changes in the landscape dimensionn, the scale

parameterσ, and the index of stabilityα. Thus, the input
parameter allocation process requires additional studies.

Like in previously considered experiments, the self-
adaptation mechanism of EPα algorithms allows us to
eliminate dead surrounding. But the surrounding effect
indirectly influences the effectiveness of algorithms of the
EPα class, especially in the case of low values ofα (Ob-
servation 17). In these cases, the necessity of reducing
dead surrounding results in a rapid decrease inσ to a
very low values and the EPα process is trapped around
a local optimum. Thus, EPα algorithms with lowα ei-
ther find the global optimum very quickly or cannot find
it at all (Observation 18). In the case of highα, the effec-
tiveness of EPα is low because of the low probability of
macro-mutations.
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Fig. 23. Generalized Rastringin functionfR(x) (21) optimized by the ESSSα algorithm. The best value offR(x) in the population
vs. iterations (results averaged over 50 algorithms runs) in the 2D (a), 5D (b), 10D (c), and 20D (d) search spaces. (α = 2 –
solid line, α = 1.5 – dashed line,α = 1 – dash-dotted line, andα = 0.5 – dotted line).

4.5. Symmetry Problem

Let us consider the following series of three-dimensional
fitness functions:

Φl(x) =
1
2

exp
(
− 5‖x‖2

)
+ exp

(
− 5‖x−ml‖2

)
, l = 1, 2, 3, 4, (24)

where
m1 = (1, 0, 0, 0),

m2 = (1/
√

2, 1/
√

2, 0, 0),

m3 = (1/
√

3, 1/
√

3, 1/
√

3, 0),

m4 = (1/2, 1/2, 1/2, 1/2)

are global optimum locations. The lower local optimum is
located in the center of the reference frame. The distances
between both the local and global optima are the same in
all Φl and equal to unity.

The goal is the same as in Section 4.3: to cross the
saddle between both peaks when the initial population is
chosen around the local optimumx0

0 = (0, 0, 0). The
searching process is stopped when the first element of the
current population is located on the global peak higher
than the lowest local optimum, i.e.,∃k, Φsc(xk) >
φlim > Φsc(x0

0).

Two algorithms from the ESSSα class are applied
in this experiment: ESSS1 and ESSS0.5. The following
input parameters (the same for all algorithms) are used:
the population sizeη = 20, the scale parameterσ = 0.02,
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Fig. 24. Generalized Griewank functionfG(x) (22) optimized by the ESSSα algorithm. The best value offG(x) in the population
vs. iterations (results averaged over 50 algorithms runs) in the 2D (a), 5D (b), 10D (c), and 20D (d) search spaces. (α = 2 –
solid line, α = 1.5 – dashed line,α = 1 – dash-dotted line, andα = 0.5 – dotted line).

the maximum number of iterationstmax = 105, the limit
fitnessφlim = 0.6. Each algorithm is started 300 times for
each set of initial parameters. The results are presented in
Fig. 29.

In the second step of this experiment, sixteen
algorithms from the EPα class (α = 2.0, 1.9, 1.8,
. . . , 0.6, 0.5) are used in order to allocate the global peak
of Φl, l = 1, 2, 3, 4. The initial population ofη = 20
individuals is selected fromΩx =

∏n
i=1[−0.05, 0.05]

and Ωσ =
∏n

i=1[0, 0.05], the number of sparring part-
ners beingq = 5. The maximum number of epochs is
tmax = 10000, and the limit fitness isφlim = 0.6. Each
algorithm is started 100 times for each objective function.
The results are presented in Figs. 30–33.

Observation 19. It is easy to see that the efficiency of all
algorithms considered strongly depends on the direction
of locating the global peak.

4.5.1. Conclusions

The last experiment reveals the influence of the selection
of the reference frame on the global optimization effec-
tiveness of evolutionary algorithms which use theSαS
mutation withα� 2.

5. Summary

The multi-dimensional Gaussian mutation is the most
popular mutation technique in evolutionary algorithms



Phenotypic evolution with a mutation based on symmetric α-stable distributions 311

2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5
0

10

20

30

40

50

60

70

80

90

100

2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5
0

2000

4000

6000

8000

10000

12000

(a) (b)

Fig. 25. Percentagesζ of the EPα successful runs (a) and the mean numbert̄ of iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indexα for the 2D Rastringin function.
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Fig. 26. Percentagesζ of the EPα successful runs (a) and the mean numbert̄ of iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indexα for the 5D Rastringin function.

based on the floating point representation of individuals.
In the case of ann-dimensional mutation, the most prob-
able distance is equal to the norm of the standard devi-
ation vector, which increases with the landscape dimen-
sion whenever the standard deviation of each entry is fit-
ted (thesurrounding effect). In recent years, the multi-
dimensional Cauchy mutation has attracted a lot of atten-
tion. Evolutionary algorithms which use the Cauchy mu-
tation seem to be more effective in comparison with al-
gorithms with the Gaussian mutation in the case of most
global optimization problems. But the multi-dimensional
Cauchy density function obtained as a product ofn inde-
pendent one-dimensional Cauchy density functions is not
isotropic (thesymmetry effect). The convergence of the

density function to zero is different for different directions
in the n-dimensional real space.

Both of the distributions mentioned above belong
to the class of multivariate symmetricα-stable distribu-
tions. The success of the Cauchy mutation approach sug-
gests that the application of other multivariate distribu-
tions from theSαS class can be very attractive for evo-
lutionary algorithms with the floating-point representation
of individuals.

In this paper both of the properties under considera-
tion, thesurrounding effectand thesymmetry effect, have
been analysed using a set of simulating experiments. As
examples of evolutionary algorithms, (1+1)ESα, ESSSα,
and EPα were used.
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Fig. 27. Percentagesζ of the EPα successful runs (a) and the mean numbert̄ of iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indexα for the 10D Rastringin function.
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Fig. 28. Percentagesζ of the EPα successful runs (a) and the mean numbert̄ of iterations needed to allocate the global optimum
taken over all successful runs (b) vs. the stability indexα for the 20D Rastringin function.

Convergence to the optimum of the sphere function
was analysed in the first experiment, where four algo-
rithms of the (1+1)ESα class were tested. All algorithms
were started from a set of initial points located in different
directions from the optimum. The performed simulations
prove the influence of the symmetry effect on the conver-
gence rate of EAs based onSαS mutations withα < 2.
The strength of this influence is inversely proportional to
the stability indexα.

The search for the optima of unimodal functions
was the goal of the second experiment, too. The em-
phasis was put on the dependence of the convergence of

selected ESSSα algorithms on both the stablity indexα
and the search space dimensionn. As functions to be
minimized, the sphere and Rosenbrock functions were
chosen. However, the existence of the heavy tails of the
SαS pdfs of low values ofα allows the ESSSα algo-
rithm to converge quickly to the optimum neighborhood.
The main mechanism influencing the algorithms’ effec-
tiveness was the surrounding effect. The probability of
offspring allocation near the origin by the multivariate
SαS mutation is low. Thus, the fluctuating population
stabilizes at some distance from the optimum. This dis-
tance rapidly increases with the search space dimension.
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Fig. 29. Mean number of epochs needed to cross the saddle vs.
the global optimum location (ESSS1 – circles, ESSS0.5

– stars).

So, in the limit of the lowestα and high dimension the
stabilized population locates its elements far from the op-
timum point. The surrounding effect is not directly ob-
served when algorithms of the EPα class are applied. It
is reduced by theσ self-adaptation mechanism, which
is implemented in these algorithms. The dead surround-
ing radius is proportional toσ. Thus, the self-adaptation
mechanism controls bothσ and the dead surrounding ra-
dius. This fact, among other things, causes slow conver-
gence to the optimum of the EPα algorithm with low val-
ues of α, for which wide dead surroundings have to be
reduced by very low values of scale parametersσ.

The third experiment presents the influence of the
landscape dimension on the exploration efficiency of the
algorithms. The measure of the efficiency is the mean
number of generations needed to cross a saddle between
two Gaussian peaks. It is not surprising that, in the case
of low dimensions, ESSSα algorithms with a low value of
α (with heavy tails of distributions used in mutations) are
more effective than algorithms with a higher value of the
stability index. The surrounding effect is the cause of two,
seemingly contradictory, properties of ESSSα algorithms.
For low dimensions it accelerates the algorithms’ saddle-
crossing capability. But the efficiency of ESSSα rapidly
decreases when the landscape dimension increases. The
Gaussian peaks of the fitness function become too nar-
row for these algorithms and offspring are located far from
them. Because the surrounding effect appears strongly for
low values ofα, ESSS2 with the standard Gaussian mu-
tation becomes the most effective algorithm in the case of
high search space dimensions. In the case of algorithms
of the EPα class, the worst results are obtained for the
EP2 and EP0.5 algorithms. However, the low efficiency
of EP2 algorithm is caused by a low probability of macro-

mutations, and the small number of successes of EP0.5 is
caused by the rapid decrease in the scale parameterσ in
time, and this algorithm untimely converges to the local
optimum.

In the next experiment, all algorithms considered
are applied to the global optimization problem of three
well-known multivariate and multimodal optimization
tasks: Ackley’s, the generalized Rastringin and general-
ized Griewank functions. The analysis of the obtained
results proves that the surrounding effect is one of the
most important mechanisms influencing the effectiveness
of evolutionary algorithms, just like the symmetry effect,
which is analysed in the last experiment. These simula-
tions suggest that the most attractive algorithms for global
optimization problem are EPα for 1 ≤ α ≤ 1.5.

This work proves thatSαS mutations are strongly
influenced by two mechanisms: the surrounding effect
and the heavy tails of their distributions. In the case of
ESSSα algorithms (without the self-adaptation ofσ) the
surrounding effect is a dominant mechanism affecting on
the algorithm efficiency in a global optimization task, es-
pecially in the case of low values ofα.

There is a strong dependence between the stability
index α and the scale parameterσ in order to improve
the effectiveness of EAs usingSαS mutations. This rela-
tion, as well as the possibility of using the self-adaptation
mechanism ofα, need detailed studies, which are the goal
for our futher research.
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Heidelberg: Physica–Verlag, pp. 133–142.

Obuchowicz A. (2003a):Population in an ecological niche:
Simulation of natural exploration. — Bull. Polish Acad.
Sci., Tech. Sci., Vol. 51, No. 1, pp. 59–104.

Obuchowicz A. (2003b):Multidimensional mutations in evolu-
tionary algorithms based on real-valued representation. —
Int. J. Syst. Sci., Vol. 34, No. 7, pp. 469–483.

Obuchowicz A. (2003c):Evolutionary Algorithms in Global
Optimization and Dynamic System Diagnosis. — Zielona
Góra: Lubuskie Scientific Society.

Rechenberg I. (1965):Cybernetic solution path of an experi-
mental problem. — Roy. Aircr. Establ., Libr. Transl. 1122,
Farnborough, Hants., UK.

Rudolph G. (1997):Local convergence rates of simple evolu-
tionary algorithms with Cauchy mutations. — IEEE Trans.
Evolut. Comput., Vol. 1, No. 4, pp. 249–258.

Schwefel H.-P. (1981):Numerical Optimization of Computer
Models. — Chichester: Wiley.

Samorodnitsky G. and Taqqu M.S. (1994):Stable Non-Gaussian
Random Processes. — New York: Chapman & Hall.

Shu A. and Hartley R. (1987):Fast simulated annaeling. —
Phys. Lett. A, Vol. 122, Nos. 3/4, pp. 605–614.



A. Obuchowicz and P. Prętki316
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