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OPTIMAL RANDOM SAMPLING FOR SPECTRUM ESTIMATION
IN DASP APPLICATIONS
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In this paper we analyse a class of DASP (Digital Alias-free Signal Processing) methods for spectrum estimation of sampled
signals. These methods consist in sampling the processed signals at randomly selected time instants. We construct esti-
mators of Fourier transforms of the analysed signals. The estimators are unbiased inside arbitrarily wide frequency ranges,
regardless of how sparsely the signal samples are collected. In order to facilitate quality assessment of the estimators, we
calculate their standard deviations. The optimal sampling scheme that minimises the variance of the resulting estimator is
derived. The further analysis presented in this paper shows how sampling instant jitter deteriorates the quality of spectrum
estimation. A couple of numerical examples illustrate the main thesis of the paper.
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1. Introduction

Traditional Digital Signal Processing (DSP) consists in
sampling the processed signals at evenly distributed time
instants. Nonuniform sampling is often perceived as un-
welcome nuisance that appears when signals are measured
on “when available” rather than “when needed” bases
as it frequently happens in astronomy, medicine or geo-
sciences. It also has to be dealt with when, e.g., owing
to some imperfections in the data acquisition system, jit-
ter is added to sampling instants, or when samples are lost
from otherwise perfectly uniformly distributed sequences.
In all these and other similar cases nonuniform sampling
is seen as a problem that needs to be tackled. There
are a number of papers that deal with adverse effects of
nonuniform sampling. The classical Lomb periodogram
(Lomb, 1976) and its modifications (Scargle, 1982; 1989)
are efficient tools for finding a sinusoidal component in
signals sampled at arbitrary time instants. A more gen-
eral problem of reconstructing waveforms and/or spectra
of nonuniformly sampled signals has been addressed by
many authors over the last forty years. Interesting ex-
amples comprise (Chen and Allebach, 1987; Kida and
Mochizuki, 1992; Wingham, 1992; Yen, 1956), where
various aspects of that topic, including a search for op-
timal solutions, are considered. A method of measuring
point-wise quality of signal reconstruction from arbitrarily
distributed finite sets of samples was formulated in (Tar-
czyński, 1997; Tarczyński and Cain, 1997). Algorithms
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for recovering signals when some samples from uniform
sequences are missing were proposed in (Ferreira, 1992).
Topics related to FIR and to some extent IIR filtering
of nonuniformly sampled signals have been investigated.
The question of optimal weighted-least-squares-type fil-
tering of signals in which some of the uniformly dis-
tributed samples are lost is tackled in (Tarczyński and Val-
imaki, 1996). FIR filtering of nonuniformly sampled sig-
nals is investigated in (Tarczyński et al., 1997).

The theory of nonuniformly sampled signals is by no
means confined to the fundamental signal processing top-
ics mentioned above. It is being developed in a wider con-
text attracting research activities not only from the signal
processing community, but also mathematics, information
systems, natural sciences and others. A few monographs
(Benedetto and Ferreira, 2001; Marvasti, 1987; 2001) give
overviews of the topic.

Nonuniform sampling does not have to be merely a
source of adversity in DSP. It turns out that, if properly
used, it may help to resolve a range of engineering prob-
lems which, because of either technical or economic con-
straints, cannot be tackled with the use of the classical
DSP techniques. One of the features of nonuniform sam-
pling is that for many signal processing problems it fa-
cilitates DSP solutions in much wider frequency ranges
than would be possible when similar-rate uniform sam-
pling were used. Here we refer to the techniques ex-
ploiting this effect as Digital Alias-free Signal Processing
(DASP). This paper investigates some DASP methodolo-
gies of estimating the spectrum of the sampled signals.
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2. Digital Alias-free Signal Processing

Aliasing is one of the main factors that limit the bandwidth
of uniform-sampling-based DSP. For any two frequencies
whose sum or difference is an integer multiple of the sam-
pling frequency, it is possible to construct a pair of sinu-
soids that, after sampling, are not distinguishable from
each other since their samples are identical. Such pairs
of signals are called aliases. This term is sometimes ex-
tended to signal frequencies. In order to avoid the ambigu-
ity associated with aliasing, the sampling rate is normally
chosen so that there are no aliases in the set of frequencies
within which the signals are processed. The traditional
solution is to sample the signals at or above the Nyquist
rate, i.e., at least twice the highest frequency present in
their spectra. This approach is recommendable for base-
band signals. However, for bandpass and multiband sig-
nals it leads to excessive sampling well above the Landau
rate (Landau, 1967)—the theoretically lowest sampling
rate that still permits perfect reconstruction of the sampled
signal. The Landau rate equals twice the effective band-
width of the signal, which is defined as the total width
of bandpass components. In many cases sampling at the
Landau rate requires that the samples be taken at nonuni-
formly distributed time instants. If the Spectrum Support
Function (SSF) of the signal is known fairly accurately
before sampling starts, then it is possible to construct a
Periodic Nonuniform Sampling (PNS) scheme that per-
mits perfect reconstruction of the signal while the average
sampling rate is maintained arbitrarily close to the Landau
rate (Herley and Wong, 1999; Venkataramani and Bresler,
2001). A more challenging task is to deal with signals
whose exact SSF is not known. The construction of sub-
Nyquist sampling schemes for such cases is the domain
of DASP. Of course, complex sampling schemes are not
very useful if they are not accompanied by suitable signal
processing algorithms. Therefore, DASP is not confined
to sampling techniques. It provides solutions that encom-
pass all practical problems associated with this approach.

Although DASP can be described as an emerging
methodology, its main ideas are not entirely new for DSP.
One of the first DASP-type approaches was reported in
(Shapiro and Silverman, 1960). In their paper, as well as
in (Beutler, 1970; Masry, 1978), the authors argued that
using a suitably chosen but arbitrarily slow random sam-
pling it is possible to obtain Power Spectral Density (PSD)
of ergodic signals. In these cases sampling rates could be
not only sub-Nyquist, but also sub-Landau. This result
does not contradict what we said earlier about the Lan-
dau rate. PSD does not provide full information about the
signal. In particular, it does not allow reconstructing the
signal (strictly speaking—signal realisation). This obser-
vation conveniently indicates that not all signal processing
tasks need full reconstructability of the processed signals.

More practice-orientated approaches towards DASP,
which include successful implementations, were initiated
in (Bilinskis and Mikelsons, 1992). Their approaches are
based mostly on additive random sampling. They target
spectrum estimation and waveform reconstruction prob-
lems for signals with discrete spectra. A possibility of re-
constructing the spectra of multi-band signals whose exact
SSF is unknown is indicated in (Feng and Bresler, 1996).
Unlike Bilinskis, they use deterministic PNS schemes,
rather than random sampling. They refer to their method
as blind-spectrum estimation.

In this paper we further refine the ideas that were
originally presented in (Tarczyński and Allay, 2004) on
DASP methods for estimating the spectrum of the pro-
cessed signals. We consider here a class of methods for
estimating the spectrum from finite sets of randomly dis-
tributed samples. In the previous paper only two specific
sampling schemes were considered. Here we investigate
the whole class of similar sampling schemes and look for
the optimal one, which provides the most accurate esti-
mate of the signal spectrum.

3. Unbiased Spectrum Estimators

In this paper we define the spectrum of a deterministic
signal x(t) as its Fourier transform

X(f) =
∫ ∞

−∞
x(t) exp(−j2πft) dt. (1)

Since the practical use of (1) is obstructed by the need
of the availability of the analysed signal over an infinitely
long interval, the expression (1) is often replaced with a
windowed version:

XW (f) =
∫ T

0

w(t)x(t) exp(−j2πft) dt, (2)

where T is the length and w(t) the shape of the window.
Our task is to use samples of the signal x(t) to estimate
the spectrum (2).

As we have mentioned earlier, we are going to col-
lect signal samples at randomly selected time instants.
There are a few methods of generating random sampling
schemes. Jitter and additive random sampling are among
the most popular ones (Bilinskis and Mikelsons, 1992).
The sampling schemes exploited in this paper belong to a
class that we call totally random sampling schemes. The
sampling instants tn are identically distributed random
variables independent of each other. Their probability
density function (p.d.f.) p(t) takes nonzero values only
inside the interval [0, T ]. Therefore,

∫ T

0

p(t) dt = 1. (3)
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The spectrum (2) of x(t) is estimated using the following
formula:

Xe(f) =
1
N

N∑
n=1

x(tn)v(tn) exp(−j2πftn), (4)

where N is the number of signal samples. The function
v(t) is selected in such a way that Xe(f) is an unbiased
estimate of X(f). The expected value of Xe(f) can be
calculated as follows:

E {Xe(f)} =
1
N

N∑
n=1

∫ T

0

x(t)v(t)p(t) exp(−j2πft) dt

=
∫ T

0

x(t)v(t)p(t) exp(−j2πft) dt. (5)

By imposing

v(t) =
w(t)
p(t)

(6)

we get

E {Xe(f)} =
∫ T

0

x(t)w(t) exp(−j2πft) dt

= XW (f). (7)

Therefore, when (6) is satisfied, Xe(f) is an unbiased
estimator of XW (f). This observation is true for all fre-
quencies f and is not affected in any way by the average
density of samples (sampling frequency) fS = N/T .

Now we are going to investigate the accuracy of the
estimator (4). Since Xe(f) is an unbiased estimator, its
standard deviation σXe(f) is a good indicator of the ac-
curacy of spectrum estimation. The variance can be cal-
culated using σ2

Xe
(f) = E{|Xe(f)|2} − |XW (f)|2. The

first term on the right-hand side is given by

E
{
|Xe(f)|2

}

=
1

N2

N∑
n=1

N∑
k=1

E
{

x(tn)v(tn) exp(−j2πftn)

× x(tk)v(tk) exp(j2πftk)
}

.

Treating separately the cases n = k and n �= k, we get

E
{
|Xe(f)|2

}

=
1

N2

[
N∑

n=1

E
{
x2(tn)v2(tn)

}

+
N∑

n=1

N∑
k=1
k �=n

E
{

x(tn)v(tn) exp(−j2πftn)
}

× E
{
x(tk)v(tk) exp(j2πftk)

}]
.

This leads to

E
{
|Xe(f)|2

}

=
1
N

∫ T

0

x2(t)v2(t)p(t) dt +
N − 1

N
|XW (f)|2 . (8)

Substituting (6) in to (8), we get

E
{
|Xe(f)|2

}

=
1
N

∫ T

0

x2(t)
w2(t)
p(t)

dt +
N − 1

N
|XW (f)|2 .

Let

ES =
∫ T

0

x2(t)
w2(t)
p(t)

dt (9)

be the weighted energy of the signal. The variance of the
estimator can be expressed as

σ2
Xe

(f) =
ES − |XW (f)|2

N
, (10)

and its standard deviation as

σXe(f) =

√
ES − |XW (f)|2

N
. (11)

An interesting observation resulting from this analy-
sis is that the spectrum estimator is more accurate at fre-
quencies where the signal is stronger. The largest errors
are likely to occur at frequencies where the spectrum of
the signal is zero. The standard deviation of the spectrum
estimator never exceeds

σXe,max =

√
ES

N
. (12)

4. Optimal Sampling Scheme

It follows from (4) and (6) that for a given window w(t)
and a totally random sampling scheme characterised by
p(t), the unbiased estimator of the signal spectrum is

Xe(f) =
1
N

N∑
n=1

x(tn)
w(tn)
p(tn)

exp(−j2πftn). (13)

Here, p(t) can be selected arbitrarily except that it should
not be zero inside the interval [0, T ]. Two special cases
were discussed in (Tarczyński and Allay, 2004) when

p(t) = 1/T and p(t) = w(t)
/∫ T

0 w(τ) dτ . Here we

consider all admissible shapes of p(t) and look for the
one that minimises the standard deviation σXe(f). Note
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that out of the three variables, which according to (11)
influence σXe (f) : ES , N and XW (f), only ES is af-
fected by the selection of p(t). Therefore, when choosing
p(t), we can aim at minimising ES , rather than σXe(f).
Clearly, we accept only those solutions to the optimisation
problem that satisfy p(t) ≥ 0. Using (9) as the cost and
(3) as the equality constraint, we construct the Lagrange
function

L(p(t), λ) =
∫ T

0

x2(t)
w2(t)
p(t)

dt+λ

(∫ T

0

p(t) dt−1

)
.

(14)

By calculating the functional derivative (Weisstein,
2003) of (14) with respect to p(τ) and equating it to zero,
or alternatively by applying to (14) the Euler-Lagrange
condition, we get

∂L(p(t), λ)
∂p(τ)

= −x2(τ)w2(τ)
p2(τ)

+ λ = 0.

The nonnegative solution to this equation is given by

p(τ) =
|x(τ)w(τ)|√

λ
.

Substituting this expression into (3) and solving this
for λ, we find out that

λ =

[∫ T

0

|x(t)w(t)| dt

]2

.

Hence

p(t) =
|x(t)w(t)|∫ T

0
|x(τ)w(τ)| dτ

. (15)

The formula (15) gives the optimal p.d.f. of the sam-
pling instants. The standard deviation of the optimal esti-
mator is given by

σXe,optim(f)=

√√√√ 1
N

{[∫ T

0

|x(t)w(t)| dt

]2
−|XW (f)|2

}
.

(16)

It is quite unfortunate, though not completely unex-
pected, that the optimal p.d.f. (15) is a function of the
analysed signal itself. Since in practical applications x(t)
is rarely known at the stage of designing the sampling se-
quence, we suggest that approximated versions of (15) be
used. For example, in some applications (like radar or
digital communications), signals are transmitted in a form
of pulses for which the shapes of bounding envelopes are
known. In such cases the envelopes, rather than the sig-
nals itself, could be used to obtain p(t). A numerical ex-
ample in Section 6 of this paper shows a use of an enve-
lope instead of a signal. If no prior information about the

processed signal is available, then we recommend that in
(15) x(t) be replaced with a constant value. Then only
the shape of the window w(t) is used to calculate p(t).

5. Effect of Input Clock Jitter on the Quality
of Spectrum Estimation

So far we have assumed that when using (13) we know
exactly the time instants at which the signal samples
were collected. In many practical applications, partic-
ularly when processing high frequency signals, this as-
sumption may not be satisfied with sufficient accuracy.
Let tn be a nominal sampling instant and τn an actual
sampling instant. The difference between both sequences
εn = τn − tn is referred to as input clock jitter or simply
jitter. We assume that εn are identically distributed ran-
dom variables independent of each other and of the nomi-
nal sampling instants tn. The probability density function
of the jitter is denoted by pε(ε). As we will see later, in
the presence of jitter it is impossible to find a weight func-
tion v(t) such that any estimator in the like of (4) is un-
biased. In order to avoid the bias, we have to use a weight
that is a function of time and frequency v̂(t, f). This gives
us a new estimator:

X̂e(f) =
1
N

N∑
n=1

x(τn)v̂(tn, f) exp(−j2πftn). (17)

Its expected value is

E
[
X̂e(f)

]
=
∫ ∞

−∞

∫ T

0

x(t + ε)v̂(t, f)

× exp(−j2πft)p(t)pε(ε) dt dε.

Let us substitute t = τ − ε. Then we have

E
[
X̂e(f)

]

=
∫ ∞

−∞
pε(ε) exp(j2πfε)

∫ T+ε

ε

x(τ) exp(−j2πfτ)

× p(τ − ε)v̂(τ − ε, f) dτ dε.

When the jitter is sufficiently small, we get∫ T+ε

ε

x(τ) exp(−j2πfτ)p(τ − ε)v̂(τ − ε, f) dτ

∼=
∫ T

0

x(τ) exp(−j2πfτ)p(τ)v̂(τ, f) dτ .

Therefore,

E
[
X̂e(f)

]

=
∫ T

0

x(τ) exp(−j2πfτ)v̂(τ, f)p(τ)χε(2πf) dτ,

(18)
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where

χε(ω) =
∫ ∞

−∞
pε(ε) exp(jωε) dε

is the characteristic function of the jitter. The estima-
tor (18) is unbiased if w(t) = v̂(t, f)p(t)χε(2πf). There-
fore the weight function should be

v̂(t, f) =
w(t)

p(t)χε(2πf)
. (19)

Substituting (19) into (17), we get

X̂e(f)

=
1

Nχε(2πf)

N∑
n=1

x(τn)
w(tn)
p(tn)

exp(−j2πftn). (20)

To calculate the standard deviation of X̂e(f), we start
with deriving the expected value

E

{∣∣∣X̂e(f)
∣∣∣2} =

N∑
n=1

E
{
x2(τn)w2(tn)

/
p2(tn)

}
N2 |χε(2πf)|2

− N − 1
N

|XW (f)|2 .

For sufficiently small jitter, we can use the following ap-
proximation:∫ T

0

x2(t + ε)
w2(t)
p(t)

dt ∼=
∫ T

0

x2(t)
w2(t)
p(t)

dt.

Hence

E

{
x2(τn)

w2(tn)
p2(tn)

}
=
∫ ∞

−∞
pε(ε)

∫ T

0

x2(t + ε)
w2(t)
p(t)

dt dε

∼=
∫ ∞

−∞
pε(ε) dε

∫ T

0

x2(t)
w2(t)
p(t)

dt

= ES .

Finally,

σ2
X̂e

(f) = E

{∣∣∣X̂e(f)
∣∣∣2}− |X(f)|2

=
ES

/
|χε(2πf)|2 − |XW (f)|2

N
. (21)

Similarly to the jitter-free case, out of the few terms that
shape the variance (21), only ES is affected by p(t). The
optimal p(t) is given by (15). Consequently, the variance
of the optimal estimator is

σ̂Xe,optim(f)=

√√√√√√√√
1
N

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ T∫
0

|x(t)w(t)| dt
]2

|χε(2πf)|2 −|XW (f)|2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(22)

6. Numerical Examples

In this section we present two numerical examples that il-
lustrate the main concepts advocated in this paper. We
estimate the spectrum of a signal whose waveform is de-
scribed by x(t) = exp(−106t)c(t). Here c(t) is a
narrow-band signal whose instantaneous amplitude is ap-
proximately constant inside the observation window of
the length T = 10μs. We assume that the spectrum (2)
is to be calculated with the use of a rectangular window
w(t) = 1. If we were to use (15) to select p(t), we would
need to know the exact shape of x(t). In practical anal-
yses this is rarely the case. Therefore we use an approxi-
mate version of the formula that exploits the fact that we
know the envelope of the signal waveform:

p1(t) = 106 exp(−106t)
1 − exp(−10)

. (23)

We compare the results of spectrum estimation obtained
with the use of (23) with the case when the p.d.f. of sam-
pling instants is distributed uniformly inside the observa-
tion window:

p2(t) = 105. (24)

In each of the two experiments we collect 150 sam-
ples of the signal. The resultant average sample rate is
fS = 15 MHz. In uniform-sampling-based DSP such a
rate would allow performing spectral analysis only up to
7.5 MHz. In our experiment we can set the bandwidth as
wide as we wish. There is no natural limit. In the pre-
sented simulations we have arbitrarily chosen the band-
width of 40 MHz. Figure 1 shows the magnitudes of the
estimated spectra for both approaches. We also show the
magnitude of the target spectrum XW (f) and the level of
the maximum standard deviation σXe,max (12). It is visi-
ble from the plots that by using information about the dis-
tribution of the signal power inside the observation win-
dow we can design a system that provides more accurate
estimates of the signal spectrum. Additionally, in Fig. 2,
we present the results of estimating the spectrum of signal
using uniform sampling with fS = 15 MHz. The results
are clearly affected by aliasing, and hence then are of little
practical value for the user.

In the next example we show how input clock jitter
affects the quality of spectral analysis. We use the same
scenario as before except that now we impose jitter on
sampling instants. The jitter has a triangular p.d.f., zero
mean and the standard deviation 0.01 μs. We estimate the
spectrum twice. In the first case we ignore the jitter, let-
ting the estimate be biased. In the second case we correct
the results as recommended by (17) and (19). Figure 3
shows simulation results for both cases. For the sake of
better resolution, we show the plots only for the frequen-
cies between 10 and 20 MHz. It can be seen that the use
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Fig. 1. DASP Spectrum estimation: (a) p.d.f. described by (23)
and (b) by (24). In each case five independent experi-
ments have been simulated (dashed lines). Thick con-
tinuous lines show the target spectrum (2) and the maxi-
mum standard deviation (12).
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Fig. 2. Spectrum estimation from low-rate
uniformly sampled data.
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Fig. 3. Spectrum estimation from jittered data. In each case
five independent experiments have been simulated
(dashed lines). Thick continuous lines show the tar-
get spectrum (2). (a) Biased estimation when the
jitter is ignored, (b) unbiased estimation when the
jitter is compensated for.

of the weight (19) removes the bias, but at the price of
increased estimation errors, particularly at higher frequen-
cies. This observation is not surprising. If we compare the
weights (6) and (19) we note that in the jittered case we
divide the weight by the characteristic function χ(2πf).
Since |χ(2πf)| ≤ 1, the estimator takes “inflated” values.
This hardly affects the results at low frequencies where
χ(2πf) ≈ 1 . However, the situation deteriorates at higher
frequencies when the value of χ(2πf) decreases.

7. Conclusions

We have presented new results for alias-free spectrum es-
timation from data collected using low-rate random sam-
pling schemes. The results provide an extension of the



Optimal random sampling for spectrum estimation in DASP applications 469

earlier work (Tarczyński and Allay, 2004). We have de-
rived the optimal p.d.f. of sampling instants that allows
minimising spectrum estimation errors. We have also de-
rived a closed-form formula for the standard deviation of
the estimator. Even a simpler, frequency-independent ex-
pression provides an upper limit for the standard devia-
tion. We have shown that the quality of spectrum estima-
tion deteriorates when sampling instants are subjected to
jitter. When the jitter is simply ignored, the estimator be-
comes biased. It is possible to modify the estimator so that
the bias is removed nearly completely. The undesired side
effect of such an action, which still diminishes the quality
of spectrum estimation, is an increased standard deviation
of the estimator and, consequently, larger estimation er-
rors.
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