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We review the polynomial matrix compensator equation XlDr + YlNr = Dk (COMP), e.g. (Callier and Desoer, 1982,
Kučera, 1979; 1991), where (a) the right-coprime polynomial matrix pair (Nr, Dr) is given by the strictly proper rational
plant right matrix-fraction P = NrD

−1
r , (b) Dk is a given nonsingular stable closed-loop characteristic polynomial matrix,

and (c) (Xl, Yl) is a polynomial matrix solution pair resulting possibly in a (stabilizing) rational compensator given by the
left fraction C = X−1

l Yl. We recall first the class of all polynomial matrix pairs (Xl, Yl) solving (COMP) and then single
out those pairs which result in a proper rational compensator. An important role is hereby played by the assumptions that
(a) the plant denominator Dr is column-reduced, and (b) the closed-loop characteristic matrix Dk is row-column-reduced,
e.g., monically diagonally degree-dominant. This allows us to get all solution pairs (Xl, Yl) giving a proper compensator
with a row-reduced denominator Xl having (sufficiently large) row degrees prescribed a priori. Two examples enhance the
tutorial value of the paper, revealing also a novel computational method.

Keywords: linear time-invariant feedback control systems, polynomial matrix systems, row-column-reduced polynomial
matrices, feedback compensator design, flexible belt device

1. Introduction and Problem Formulation

In the sequel linear time-invariant continuous-time sys-
tems will be described by their proper rational transfer
matrices. R(s) (resp. R[s]) denotes the field of rational
functions (the ring of polynomials) with real coefficients,
RH∞ is the ring of rational proper-stable functions in s
(‘stable’ means that all poles are in the open left complex
half-plane), while m := {1, 2, . . . , m}. We are given a
strictly proper plant P (s) ∈ Rpo(s)p×m. Our task is to
find a proper compensator C(s) ∈ Rp(s)m×p such that
the closed-loop unity feedback system S(P, C) of Fig. 1
is input-output stable, see e.g., (Callier and Desoer, 1982,
Sec. 4.3; Vidyasagar, 1985, Sec. 5.1), or, equivalently, the
input-error transfer function of S(P, C), viz.

Heu(P, C) =

[
(Ip + PC)−1 −P (Im + CP )−1

C(Ip + PC)−1 (Im + CP )−1

]
,

(1)
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Fig. 1. Unity feedback system S(P, C).

belongs to Mat(RH∞). For matrix fractions over RH∞
leading to state-space solutions, see, e.g., (Francis, 1987,
Sec. 4.4; Vidyasagar, 1985, Secs. 4.2 and 5.2). For
polynomial matrix fractions, results appeared, e.g., in
(Callier and Desoer, 1982; Emre, 1980; Kučera and Za-
galak, 1999; Rosenbrock and Hayton, 1978; Zagalak and
Kučera, 1985).

We report here the usual procedure in this context
and a new extension. The extension relies on a result
(Callier and Desoer, 1982, pp. 187–192), which finally
gives a parametrized class of proper compensator solu-
tions (Theorem 3 below; Callier, 2000; 2001), which is
essentially similar to Theorem 2 (Kučera and Zagalak,
1999) and is contained in earlier parametrizations (Callier
and Desoer, 1982, Comm. 95, pp. 193–195; Emre, 1980,
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Rem. 3.4).

The problem we handle is as follows: Represent
P (s) ∈ Rpo(s)p×m as a coprime right polynomial ma-
trix fraction, viz.

P (s) = Nr(s)D−1
r (s), (2)

and represent C(s) ∈ R(s)m×p as a left polynomial ma-
trix fraction, viz.

C(s) = X−1
l (s)Yl(s). (3)

Give an m × m square closed-loop characteristic poly-
nomial matrix Dk(s) having all its zeros in the open left
complex half-plane.1 Then (i) get all solutions (Xl, Yl) ∈
Mat(R[s]) of the polynomial matrix compensator equa-
tion

XlDr + YlNr = Dk, (COMP)

and (ii) pick an appropriate solution such that we get a
proper compensator, viz.

C = X−1
l Yl ∈ Rp(s)m×p. (4)

The answer to Task (i) is well known, and not obvious for
Task (ii).

The paper is organized as follows: Section 1 is the
present introduction. The next three sections revise and
slightly extend the existing theory. Section 2 handles
polynomial solutions of (COMP). Section 3 discusses def-
initions for controlling the degrees of the entries of a poly-
nomial matrix, which in Section 4 lead to three theorems
for obtaining proper compensators by solving (COMP).
To enhance the tutorial value of the paper, two example
sections are added to illustrate the application of the the-
ory. In Section 5 we succesfully design a tracking com-
pensator for a control laboratory device, viz. a flexible belt
coupled drives system (see Fig. 2). In Section 6 a com-
parison with other methods is drawn on a simple exam-
ple chosen for straightforward numerical evidence using
pencil-and-paper computations, reporting hereby a novel
two-sided computational method. Finally, Section 7 fin-
ishes the paper with a conclusion.

2. Polynomial Solutions of (COMP)

For more details, see (Callier and Desoer, 1982,
Thm. 6.2.39). The usual procedure starts with coprime
right and left polynomial matrix fractions of the plant
transfer matrix, i.e.,

P (s) = Nr(s)D−1
r (s)

= D−1
l (s)Nl(s) ∈ Rpo(s)p×m, (5)

1 This requirement is important for obtaining feedback system input-
output stability; it is not necessary for the solvability of (COMP).

for which one finds four polynomial matrices Ur(s),
Vr(s), Ul(s) and Vl(s) such that with

U :=

[
Dr −Ul

Nr Vl

]
,

one gets

U−1 =

[
Vr Ur

−Nl Dl

]
.

The identity

U−1U = UU−1 = Im+p (6)

is called the Generalized Bézout Identity of the plant. All
solutions (Xl, Yl) ∈ Mat(R[s]) of (COMP) are then
given by

[
Xl Yl

]
=

[
Dk Nk

] [
Vr Ur

−Nl Dl

]
, (7)

where Nk ∈ R[s]m×p is a free polynomial matrix. Hence
noting that (Xlp, Ylp) = (DkVr, DkUr) is a particular
solution of (COMP), all its solutions are given by

Xl = Xlp − NkNl, Yl = Ylp + NkDl. (8)

It then follows easily that (8) is valid for any particular
solution (Xlp, Ylp) ∈ Mat(R[s]) of (COMP).

Remark 1. The solution space of (COMP) is affine in the
free parameter Nk, with

rank
[

Xl Yl

]
= rank

[
Dk Nk

]
(9)

for (Xlp, Ylp) = (DkVr, DkUr). Moreover, as Ylp =
−NkDl + Yl, it is possible to get −Nk and Yl as the
quotient and remainder of the division on the right of Ylp

by Dl, such that one gets that YlD
−1
l is strictly proper.

However, this does not guarantee that Xl given in (8) is
nonsingular and that C = X−1

l Yl is proper. This is usu-
ally obtained by the degree control of polynomial matri-
ces, i.e., by limiting the degrees of their entries.

3. Degree Control of Polynomial Matrices

In the sequel, δrj [D] (resp. δcj[D]) denotes the j-th row
(resp. column) degree of a polynomial matrix D, while
δij [D] is the degree of the (ij)-th entry. We are in-
spired here, see, e.g., (Callier and Desoer, 1982, Chap. 2;
Kailath, 1980, Sec. 6.3; Wolovich, 1974, Sec. 2.5) by the
fact that right (left) polynomial matrix fractions are in-
variant under multiplication on the right (or left) by a uni-
modular polynomial matrix. For example, if (Nr, Dr) is
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a right polynomial matrix fraction of P (s) ∈ R(s)p×m,
then so is (NrR, DrR), where R is any unimodular ma-
trix. Moreover, right-coprimeness is invariant under this
transformation. This allows simultaneous elementary col-
umn operations on the numerator and denominator such
that the latter gets column-reduced. A similar comment
is valid for left fractions, left multiplication by a unimod-
ular matrix, and elementary row operations leading to a
row-reduced left denominator.

Definition 1. An m × m polynomial matrix D is said
to be column-reduced if it has m column degrees kj :=
δcj[D] such that the limit

Dh := lim
s→∞D(s) diag

[
s−kj

]m

j=1
(10)

exists and is nonsingular.

Comment 1. An equivalent requirement is that
D−(s) := D(s) diag

[
s−kj

]m

j=1
is a biproper ratio-

nal matrix. One gets Dh = D−(∞) and Dh is called
the highest column degree coefficient matrix of D(s).
In (Wolovich, 1974, p. 27), “column-reduced” is termed
“column-proper.”

Definition 2. An m × m polynomial matrix D is said
to be row-reduced if it has m row degrees ri := δri[D]
such that the limit

Dh := lim
s→∞ diag

[
s−ri

]m

i=1
D(s) (11)

exists and is nonsingular.

Comment 2. An equivalent requirement is that
D−(s) := diag [s−ri ]mi=1 D(s) is a biproper ratio-
nal matrix. One gets Dh = D−(∞) and Dh is called
the highest row degree coefficient matrix of D(s). In
(Wolovich, 1974), “row-reduced” is termed “row-proper.”

Remark 2. Column degrees and column-reducedness are
appropriate tools for revealing that a right polynomial ma-
trix fraction is proper. Indeed, it is well known, see e.g.,
(Callier and Desoer, 1982, p. 70; Kailath, 1980, p. 385),
that with (N(s), D(s)) ∈ Mat(R[s]) and D(s) column-
reduced, G(s) := N(s)D−1(s) ∈ R(s)p×m is proper
(resp. strictly proper) iff for all j ∈ m, δcj [N ] ≤ δcj[D]
(resp. δcj [N ] < δcj[D]). A similar comment can be
made for left fractions, row degrees and row-reducedness.
What is paramount here is the fact that the degree of an
entry of a polynomial matrix is limited column-wise by
its column-maximum or row-wise by its row-maximum,
viz. by the corresponding column degree or row degree.
This way of control is less appropriate when the matrix
Dk in (COMP) is a sum having a dominant term, which
is a product of a row-reduced matrix Xl and a column-
reduced matrix Dr.

Theorem 1 below shows that the following is appro-
priate.

Definition 3. (Callier and Desoer, 1982, p. 116) An
m × m polynomial matrix D is said to be row-column-
reduced if there exist m nonnegative integers ri, called
row powers, and m nonnegative integers kj , called col-
umn powers, such that the limit

Dh := lim
s→∞ diag

[
s−ri

]m

i=1
D(s) diag

[
s−kj

]m

j=1
(12)

exists and is nonsingular.

Comment 3. An equivalent requirement is that
D−(s) := diag [s−ri ]mi=1 D(s) diag

[
s−kj

]m

j=1
is a

biproper rational matrix. One gets Dh = D−(∞) and
Dh is called the highest degree coefficient matrix of
D(s). Another interpretation of the definition is that for
all (i, j) ∈ m × m, δij [D] ≤ ri + kj with nonsingular
degree-contact (nonsingular Dh). What is important here
is the fact that the degrees of the entries are bilaterally
controlled, i.e. with row and column powers; these powers
are generically not unique, as will be observed below.

In the sequel c.r., r.r., and r.c.r. are abbreviations for
column-reduced, row-reduced, and row-column-reduced.
There are many r.c.r. nonsingular polynomial matrices.
Rosenbrock has already considered the idea of the defini-
tion for Dh = I . Note here, see, e.g., (Callier and Desoer,
1982, Sec. 2.4; Kailath, 1980, Sec. 6.3) that any nonsin-
gular polynomial matrix D can be reduced to its Smith
form S by elementary row and column operations, i.e.,
D = LSR with L and R unimodular matrices.

Fact 1. (Rosenbrock and Hayton, 1978, Lem. 1) Denote
Smith forms as S = diag[φi]mi=1 with δ[φ1] ≥ δ[φ2] ≥
· · · ≥ δ[φm]. Consider m nonnegative integers ri such
that r1 ≥ r2 ≥ · · · ≥ rm, and m nonnegative integers
kj such that k1 ≥ k2 ≥ · · · ≥ km.

Then, there exists a nonsingular r.c.r. polynomial ma-
trix D having the Smith form S and having row powers
ri, column powers kj , and Dh = I , if and only if

k∑
i=1

δ[φi] ≥
k∑

i=1

(ri + ki), for k ∈ m, (13)

with equality for k = m.

It follows from this fact that many nonsingular poly-
nomial matrices can be made r.c.r. by elementary opera-
tions. The star case of row-column-reducedness is, how-
ever, probably reflected by the following case contained
in the proof of Fact 1.
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Definition 4. An m×m polynomial matrix D is said to
be monically diagonally degree dominant with diagonal
degrees γi (i ∈ m) if every diagonal entry of D is monic
and for (i, j) ∈ m × m with i �= j and γi := δii[D],

δij [D] < min (γi, γj). (14)

Comment 4. Here, without loss of generality, by sym-
metric permutations, γ1 ≥ γ2 ≥ · · · ≥ γm, giving, e.g., a
degree matrix ⎡

⎢⎣ 5 3 2
2 4 2
1 2 3

⎤
⎥⎦ .

Observe that this is easily obtained: get a “diagonal degree
ridge” with “top degrees on the diagonal.”

Fact 2. Let D be an m × m nonsingular polynomial
matrix. Consider m nonnegative integers γi such that
γ1 ≥ γ2 ≥ · · · ≥ γm. Then the following assertions are
equivalent:

(a) D is c.r. with column degrees γi and Dh = I ,
simultaneously D is r.r. with row degrees γi and
Dh = I .

(b) D is monically diagonally degree dominant with di-
agonal degrees γi, i ∈ m.

(c) D is r.c.r. with row powers ri, column powers kj

and Dh = I , for all pairs of m-tuples of nonnega-
tive integers ri and kj such that r1 ≥ r2 ≥ · · · ≥
rm, and k1 ≥ k2 ≥ · · · ≥ km, and γi = ri + ki for
all i ∈ m.

Proof. We show the chain of implications (a) ⇒ (b) ⇒
(c) ⇒ (a). The first implication is straightforward. For
the second one, observe that here: (i) for all i = j, dii

is monic with δii[D] = γi = ri + ki, (ii) for all i > j,
δij [D] < γi = ri + ki ≤ ri + kj , and (iii) for all i < j,
δij [D] < γj = rj + kj ≤ ri + kj . Hence (c) follows. The
last implication follows by setting successively in (c) all
ri equal to zero, and then all kj equal to zero.

Comment 5. (i) Case (a) was discovered in (Zagalak and
Kučera, 1985, Lem. 3) as being essential in the proof of
Fact 1, and is used in (Kučera and Zagalak, 1999, Sec. 3).

(ii) In Statement (c) it should be stressed that “for all
pairs” is essential, as it implies that D must be r.c.r. for
many possibilities of row and column powers, giving flex-
ibility in applications, e.g., if (γ1, γ2) = (5, 3), then D
has to be r.c.r. with Dh = I for twelve pairs of two-tuples
of row and column powers starting with (0, 0) (5, 3),
(1, 0) (4, 3), (1, 1) (4, 2), . . . and ending with . . . , (4, 2)

(1, 1), (4, 3) (1, 0), (5, 3) (0, 0). Moreover, if in (c)
“for all pairs” is replaced by “for one pair”, then (c) is
not equivalent to (a), as can be readily seen from the fol-
lowing example:

D(s) =

⎡
⎢⎣ s6 s3 s3

0 s4 s2

s3 s2 s2

⎤
⎥⎦ . (15)

Here D is r.c.r. with Dh = I and row powers (3, 2, 1)
and column powers (3, 2, 1), but neither c.r., nor r.r.

4. Proper Compensators

Proper compensators are obtained from (COMP) by the
appropriate degree control of the polynomial matrix data
and solutions. An important observation about the solu-
tions is: if C := X−1

l Yl exists and is proper, then, with-
out loss of generality, Xl is r.r.

Theorem 1. (Callier and Desoer, 1982, p. 187) Consider
P (s) = Nr(s)D−1

r (s) ∈ Rpo(s)p×m, where the pair
(Nr, Dr) ∈ Mat(R[s]) is right-coprime and Dr is c.r.
with column degrees kj (j ∈ m) and highest column de-
gree coefficient matrix Drh. Let Dk(s) ∈ R[s]m×m be
nonsingular and consider (COMP), i.e. XlDr + YlNr =
Dk.

Then (COMP) has a polynomial matrix solution
(Xl, Yl) such that

(i) Xl is r.r. with row degrees ri (i ∈ m) and highest
row degree coefficient matrix Xlh, and

(ii) C(s) := X−1
l Yl ∈ Rp(s)m×p,

if and only if

(a) Dk is r.c.r. with row powers ri (i ∈ m) and column
powers kj (j ∈ m), and

(b) for the given Dk, (Xl, Yl) is a polynomial matrix
solution of (COMP) such that the row degrees of Yl

satisfy δri[Yl] ≤ ri for all i ∈ m.

Moreover, under these conditions, there holds Dkh =
XlhDrh.

Comment 6. Theorem 1 is closely related to (Rosenbrock
and Hayton, 1978, Cor. 1 of Thm. 5) and (Emre, 1980,
Thm. 3.1). Extending the analysis in (Callier and Desoer,
1982, p. 183), it can be shown that, under the assump-
tions and conditions of Theorem 1, the feedback system



Proper feedback compensators for a strictly proper plant by polynomial equations 497

S(P, C) of Fig. 1 has a polynomial matrix system de-
scription, e.g., (Callier and Desoer, 1982),

S(P, C) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dk

(
d
dt

)
ξ(t)

=
[

Yl

(
d
dt

)
Xl

(
d
dt

) ][
u1(t)
u2(t)

]
,

[
y1(t)
y2(t)

]
=

⎡
⎢⎢⎣

Dr

(
d
dt

)

Nr

(
d
dt

)
⎤
⎥⎥⎦ ξ(t)

+

[
0 −Im

0 0

] [
u1(t)
u2(t)

]
.

(16)

The system S(P, C) is well formed (Callier and Des-
oer, 1982, Sec. 3.3) and has its zero-input dynamics
fixed a priori by the data Dr, Nr, and Dk; its zero-
state dynamics are ultimately fixed by a solution Xl,
Yl of (COMP). Moreover, when all degree control pa-
rameters are positive, it is possible to get (A, B, C, D),
a Fuhrmann-inspired state-space realization (Fuhrmann,
1976, Sec. VI), where the plant and the characteristic ma-
trix Dk fix A and C, and the compensator fixes B
and D. The order n of the system S(P, C) equals the
number of independent initial conditions ξj(0−)(k), j ∈
m, k = {0, 1, . . .} needed to determine a solution ξ(t)
of the homogeneous equation Dk( d

dt)ξ(t) = 0 obtained
in (16) by putting u1 = 0, u2 = 0, t ≥ 0.

In view of Theorem 1 and earlier comments, the im-
portant existence question is: Assuming that Condition (a)
holds, when does (b) hold? The answer is: by choosing
the row powers ri of the closed-loop characteristic de-
nominator Dk sufficiently large. Indeed, one has the fol-
lowing result, whose proof is given for the reader’s conve-
nience.

Theorem 2 (Particular proper compensator). (Callier
and Desoer, 1982, p. 190) Let P (s) ∈ Rpo(s)p×m have
coprime right and left polynomial matrix fractions read-
ing

P (s) = Nr(s)Dr(s)−1 = Dl(s)−1Nl(s), (17)

with Dr c.r. with column degrees kj (j ∈ m) and Dl

r.r. with row degrees μi (i ∈ p). Let μ := maxi∈p μi,
i.e., μ is the greatest observability index of the plant, cf.
(Kailath, 1980, p. 431). Let

(a) Dk ∈ R[s]m×m be r.c.r. with row powers ri and
column powers kj , and

(b) ri ≥ μ − 1 for all i ∈ m.

Then for the given data Dk, Nr and Dr, (COMP) has a
polynomial matrix solution (Xl, Yl) such that δri[Yl] ≤
ri for all i ∈ m. Hence (by Theorem 1) Xl is r.r. with
row degrees ri and C(s) = Xl(s)−1Yl(s) ∈ Rp(s)p×m.

Proof. All polynomial matrix solutions of (COMP) are
given by the pairs (Xl, Yl) given by (8), where Nk ∈
Mat(R[s]) is a free parameter. In Ylp = −NkDl + Yl,
choose −Nk and Yl to be the quotient and remainder of
the division of Ylp on the right by Dl. Then YlD

−1
l is

strictly proper such that δcj[Yl] < δcj[Dl] for all j ∈
p. Hence for all i ∈ m δri[Yl] ≤ maxi∈m δri[Yl] =
maxj∈p δcj [Yl] < maxj∈p δcj[Dl] = maxi∈p δri[Dl] :=
μ. Thus for all i ∈ m one gets δri[Yl] ≤ μ − 1 ≤ ri.

Comment 7. The idea of the proof of Theorem 2 is used
in the proof of (Rosenbrock and Hayton, 1978, Thm. 6).
However, one does not need to resort to the division of
Ylp on the right by Dl to obtain an existence result; see,
e.g., (Emre, 1980, Thm. 4.1; Kraffer and Zagalak, 2002,
Lem. 4.2; Antoniou and Vardulakis, 2005) for another
method.

The following result constitutes, together with Theo-
rem 2, a generalization of Theorem 2 in (Kučera and Za-
galak, 1999) (modulo dualization and the fact that row-
column-reducedness of Dk is used instead of the more
restricted assumption that Dk is simultaneously row- and
column-reduced, see Fact 2). It forms a parametrized class
of solutions to (COMP) leading to a proper compensator.
Its simple proof here is based on Theorem 1.

Theorem 3 (Parametrization of proper compensators).
Let the assumptions of Theorem 1 hold with P (s) hav-
ing coprime right and left polynomial matrix fractions
as in (17), and let Dk satisfy Condition (a) of Theo-
rem 1 with row powers ri (i ∈ m). Moreover, assume
that a particular solution (Xlo, Ylo) of (COMP) exists
such that Xlo is r.r. with row degrees ri (i ∈ m), and
Co := X−1

lo Ylo ∈ Rp(s)m×p.

Then all polynomial matrix solutions (Xl, Yl) of
(COMP) such that Xl is r.r. with row degrees ri (i ∈ m),
and C := X−1

l Yl ∈ Rp(s)m×p are given by

Xl = Xlo − NkNl, Yl = Ylo + NkDl, (18)

where Nk ∈ R[s]m×p has the property that for all i ∈ m
and for all j ∈ p,

δij [Nk] ≤ ri − μj = ri − δrj [Dl]. (19)

Proof. Define Δµ(s) := diag [sµi ]pi=1 and Δr(s) :=
diag [sri ]mi=1. Note that by Theorem 1, Δ−1

r Ylo is proper.
Observe also that condition (b) of Theorem 1 is equiva-
lent to requiring that Δ−1

r Yl be proper. Finally, as Dl
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Fig. 2. Laboratory flexible belt coupled drive system.

θ1, ω1, M1 θ2, ω2, M2

is r.r. with row-degrees μi, one gets by Comm. 2 that
Dl = ΔµDl−, where Dl− is biproper. Hence upon sub-
stituting this in the second equation of (18) premultiplied
by Δ−1

r , one gets Δ−1
r Yl = Δ−1

r Ylo + Δ−1
r NkΔµDl−,

where Δ−1
r Ylo is proper and Dl− is biproper. Thus

Δ−1
r Yl is proper iff Δ−1

r NkΔµ is proper. The result fol-
lows from this and Theorem 1.

Comment 8. The parametrization in (18) is only rela-
tively new as it is contained in earlier affine parametriza-
tions generated by Emre (1980, Rem. 3.4) and Callier
and Desoer (1982, Comm. 95, pp. 193–195), i.e., solv-
ing algebraic linear systems with fewer equations than un-
knowns: the solution contains free parameters which can
be adapted to those of Theorem 3. This is also the case for
(Antoniou and Vardulakis, 2005, Thm. 8) and in a similar
fashion for (Kraffer and Zagalak, 2002), which handles
essentially the case ri = μ − 1 for all i ∈ m.

5. Control Laboratory Tracking Device
Example

Our first example concerns a control laboratory device,
viz. the flexible belt coupled drives system of Fig. 2. The
system has three actuators, two motors and a tensioner,
equipped with pulleys, which are centered at the vertices
of an isosceles triangle of varying height. A continuous
flexible belt is moved by these pulleys. The lower two
pulleys (driven pulleys) have fixed centers and are driven
by two identical voltage controlled electric DC servomo-
tors, with common drive voltage ud = u1 = u2. The

upper pulley (jockey pulley) has a center that can be ver-
tically displaced by a tensioner bar, controlled by a volt-
age driven electromagnet and containing a spring-dashpot
system whose spring may be simplified to a linear spring.
The actuators operate simultaneously to control the speed
of the belt and its tension. The vertical displacement of
the center of the jockey pulley and thus of the tensioner is
a measure of the tension in the belt. It is assumed that the
belt speeds at the driven pulleys are the circumferential
speeds of these pulleys due to the servomotors, and that
the belt speed is the average of the belt speeds at the driven
pulleys. The outputs of interest are the belt speed and the
vertical position of the tensioner. Assuming that the belt
angle α is constant, a linear initial model (ProTyS, Inc.,
2003; Hagadoorn and Readman, 2004) is given by

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(20)

a minimal state-space realization specified by

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.0310 −0.0310 0 0

−44286 −3.0786 0 34197 0

44286 0 −3.0786 −34197 0

0 0 0 0 1.0000

514.80 0 0 −1128.4 −66.667

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(21)
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B =

⎡
⎢⎢⎢⎢⎣

0 0
2076.4 0
2076.4 0

0 0
0 −51.000

⎤
⎥⎥⎥⎥⎦ , (22)

C =
[

0 0.0008060 0.0008060 0 0
0 0 0 −66.000 0

]
.

(23)

In the sequel we shall use the notation of Fig. 2 as
much as possible. The states contained in x are suc-
cessively: horizontal belt length change due to the elec-
tric drives xh = r(θ1 − θ2) [m], left motor angular ve-
locity ω1 = dθ1/dt [rad/s], right motor angular velocity
ω2 = dθ2/dt [rad/s], tensioner vertical position xk [m]
and tensioner vertical speed vk [m/s]. The inputs in u
are successively: common drive voltage ud and electro-
magnet voltage uk. The outputs in y are: belt speed
r(ω1 + ω2)/2 and tensioner vertical position xk. Both
u and y are measured in computer units [–].

The dynamic responses of the currents of the drive
circuits of the motors and electromagnet are much faster
than those of the mechanical variables, whence the induc-
tances of the former circuits are neglected. This gives for
the motor torques Mi = βud − βeωi (i = 1, 2), where
β is the drive voltage constant and βe is a constant due to
the back electromotive force (Messner and Tilbury, 1999).
Moreover, for the vertical force applied by the electromag-
net Fm = βkuk, where βk is the electromagnet volt-
age constant. An important parameter is the oblique belt
length change, which, assuming that the belt position at
the jockey pulley is r(θ1 + θ2)/2, gives for the left case
r[(θ1+θ2)/2−θ1]+(cosα)xk = −(1/2)xh+(cosα)xk ,
and the same result for the right case. The most important
state differential equations are the second, third and last
one (for the notation see above and Fig. 2). They concern:
(i) the balances of the torques applied to the left and right
driven pulleys, namely,

J
dω1

dt
= −(B + βe)ω1 −

(1
2
kg1 + kg2

)
rxh

+ kg1r(cos α)xk + βud,

J
dω2

dt
= −(B + βe)ω2 +

(1
2
kg1 + kg2

)
rxh

− kg1r(cos α)xk + βud,

and (ii) the balance of the vertical forces applied to the
tensioner, namely,

mk
dvk

dt
= −Bkvk − (kk + 2kg1 cos2 α)xk

+ kg1(cosα)xh − βkuk,

where kg1 and kg2 are belt stiffness constants.

Our task is to design a proper compensator such that
the closed-loop unity feedback system can track reference
signals. These concern here the outputs, viz., belt speed
and tensioner vertical position of the model given above
represented by a strictly proper plant P(s) ∈ Rpo(s)2×2,
i.e.,

P(s) = C(sI −A)−1B. (24)

Design specifications include the capability of re-
sponding to setpoint values that may change from time
to time (step changes). In absolute value physical capa-
bilities and limitations on actuators require the drive input
and tensioner voltages to stay below 0.8 [–] and 0.4 [–],
respectively, for the belt speed and tensioner position be-
low 0.25 [–] and 0.35 [–], respectively.

A conventional solution to the task relies on a state
space approach, viz., linear quadratic optimal control
(Athans and Falb, 1966), involving a state-variable feed-
back control law and an asymptotic estimator for provid-
ing an estimate of the state-variables not present in the
output, and where, moreover, preliminary use of integral
control is needed because our plant has no integral action
of its own.

Our solution to the task relies on polynomial equa-
tions and is inspired by the conventional approach, but
achieved by the design of a compensator, which is di-
rectly obtained; the estimator and integral control occur
implicitly and are not done separately. As in state space
design, one uses constant, positive weights for tuning. An
important advantage of the present technique is that the
arbitrariness is reduced to fewer degrees of freedom than
those required to select the weights in a higher-order state
space system.

Near physical symmetry with respect to the ver-
tical axis through the tensioner bar in Fig. 2 reveals
that a simplified model can be obtained from the ini-
tial model (20)–(24). First, we replace the state vec-
tor (xh, ω1, ω2, xk, vk)T by (xh, (ω1 + ω2)/2, (ω1 −
ω2)/2, xk, vk)T. During tests it is then observed that the
states xh = r(θ1 − θ2) and (ω1 − ω2)/2 remain small
within the range of design specifications, whence they
may be set to zero and removed. Thus we get a final sim-
plified model in terms of a minimal state-space realization
(A, B, C) specified by[

A B

C 0

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−3.0786 0 0 2076.4 0
0 0 1.000 0 0
0 −1128.4 −66.667 0 −51.000

0.0008060 0 0 0 0
0 −66.000 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(25)
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The states are here successively: average driven pul-
ley angular velocity (ω1 + ω2)/2 [rad/s], tensioner verti-
cal position xk [m], and tensioner vertical speed vk [m/s].
The inputs are: common drive input voltage ud, and elec-
tromagnet voltage uk, and the outputs are: average belt
speed r(ω1 + ω2)/2 and tensioner vertical position xk .
Both inputs and outputs are in computer units [–].

The simplified model can be represented by the co-
prime right polynomial matrix fraction

P (s) = Nr(s)Dr(s)−1, (26)

where the polynomial matrices Nr and Dr are given by

[
Nr(s)
Dr(s)

]
=

⎡
⎢⎢⎢⎣

1.6736 0
0 3366.0

s + 3.0786 0
0 s2 + 66.667s + 1128.4

⎤
⎥⎥⎥⎦ .

(27)

For future reference, record that the column degrees of
Dr are (k1, k2) = (1, 2), the right and left fractions of
P coincide (the transfer function is diagonal), and its ob-
servability index equals two, the largest row degree in the
left denominator (Kailath, 1980).

We choose now an appropriate matrix Dk for the
plant (26)–(27) to set up an appropriate compensator
equation (COMP).

Guided by LQ-optimal control methods, we compute
first the polynomial matrix

W (s)

=

[
0.70711s+2.7459 0

0 2.2361s2+172.49s+4206.7

]
,

(28)

whose zeros are exclusively in the open left half-plane.
The matrix W is obtained from spectral factorization
given by

WT(−s)W (s)=
[

NT
r (−s) DT

r (−s)
]
S

[
Nr(s)
Dr(s)

]
,

(29)
where S is a positive-definite matrix, a design parameter
weighting the importance of inputs and outputs relative to
the partial states of NrD

−1
r . The weight S is selected as

S = diag(1, 1, 0.5, 5). (30)

The spectral factor W is r.c.r. with row and column pow-
ers given by (r1, r2) = (0, 0) and (k1, k2) = (1, 2).
Hence, as was to be expected, by Theorem 1 with Dk =
W only a constant compensator can be obtained from the
equation (COMP), and we have to find a matrix Dk that

is r.c.r. with identical column powers and strictly larger
row powers for obtaining a dynamical compensator that
(i) contains a full rank integrator, capable of tracking in-
put reference signals, and (ii) provides for “good observer
dynamics.”

Our final choice is the polynomial matrix

Dk(s) =

[
dk
11(s) 0
0 dk

22(s)

]
, (31)

where dk
11(s) = s2 + 7.8832s + 15.533 and dk

22(s) =
s4+95.138s3+3325.8s2+38183s+105350. It is obtained
by scaling the diagonal elements to monic polynomials of
the diagonal matrix QW , where Q is a “good augmented
dynamics” scaling factor selected as

Q(s) =

[
s + 4 0

0 (s + 4)(s + 14)

]
, (32)

and W is the spectral factor in (28).

The matrix Dk is trivially monically diagonally
dominant with diagonal degrees (2, 4), and r.c.r. with row
and column powers (r1, r2) = (1, 2) and (k1, k2) =
(1, 2).

For the data (Dr, Nr, Dk) in (27) and (31), by
Theorems 1 and 2, proper compensators (Xl, Yl) with
δri[Xl] = ri (i = 1, 2) for (r1, r2) = (1, 2) exist. A
particular proper compensator is given by

C(s) =

[
s + 4.8047 0

0 s2 + 28.471s + 299.30

]−1

×
[

0.44302 0
0 −4.1287s− 69.037

]
. (33)

This compensator, obtained by the method in (Kraffer and
Zagalak, 2002, Lem. 4.2), is not unique. Non-uniqueness
is a generic property, not valid given our data should the
row powers of Dk equal the lower bound μ − 1 = 1
given by Theorem 2. As one of the row powers Dk, given
above, exceeds the lower bound, extra degrees of free-
dom are generated that are available to accommodate the
open-loop system consisting of the compensator C and
the plant P such that [I + PC]−1(0) = 0, i.e., as a sys-
tem which is able to track steps under unity feedback.

For the data (Dr, Nr, Dk) in (27) and (31), the
affine set of all proper compensators, with δri[Xl] = ri

(i = 1, 2), may be centered on the compensator given
by (33). Since here (r1, r2) = (1, 2) and (μ1, μ2) =
(1, 2), a parametrization of this set is given by Theorem 3
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by

Xl(s) =

[
s + 4.8047 0

0 s2 + 28.471s + 299.30

]

− Nk(s)

[
1.6736 0

0 3366.0

]
, (34)

Yl(s) =

[
0.44302 0

0 −4.1287s− 69.037

]

+Nk(s)

[
s+3.0786 0

0 s2+66.667s+1128.4

]
, (35)

where the free parameter Nk has the form

Nk(s) =

[
n1 0

m21s + n21 n2

]
, (36)

all coefficients being free.

In order to obtain a simple, i.e., diagonal compen-
sator, we set m21 = n21 = 0 and satisfy the tracking ob-
jective by finding a diagonal constant value of Nk such
that [I + PC]−1(0) = 0, here Xl(0) = 0. As a conse-
quence, the value of Nk is unique,

Nk =

[
2.8709 0

0 0.08892

]
, (37)

and specifies the compensator given by

Xl(s) =

[
s 0
0 s2 + 28.471s

]
, (38)

Yl(s)

=

[
2.8709s+9.2811 0

0 0.08892s2+1.7993s+31.299

]
.

(39)

As was to be expected by the internal model principle, the
compensator contains a full rank integrator, and, except
for its pole at zero, is stable. Moreover, it is minimum
phase. This is considered good for practical applications.

Having designed our tracking compensator using the
simplified model in (26)–(27), we return to the initial
model (20)–(24) to verify the corresponding closed-loop
design performance.

The results are shown in Fig. 3. Verification using the
actual physical system is shown in Fig. 4. In both figures
the upper three curves concern tensioner variables, and the
lower three concern belt speed variables. The nonzero dis-
placement of the tensioner at the start of the run in Fig. 4

is due to (unmodeled) static friction. The results are satis-
factory.

The steps of the method to design a tracking com-
pensator were as follows: (a) select a convenient repre-
sentation of the plant-sensor-actuator, in the form of a co-
prime right polynomial matrix fraction, (b) develop the
right hand-side matrix for (COMP) that corresponds to
satisfactory dynamic response, based on a suitable bal-
ance of weighted spectral factorization and additionally
selected poles, and (c) customize the solution of (COMP)
such that the open-loop system satisfies the internal model
principle, that is, endow the system with the ability to gen-
erate, and hence also to track, a given class of signals.

6. Example for Comparison with Other
Methods

For educational purposes and for straightforward numer-
ical evidence, we introduce a simple example, which is
amenable to hand calculations. Consider the following
unstable plant with a strictly proper transfer matrix:

P (s) =

⎡
⎢⎢⎣

s + 1
s(s − 2)

0

1
s(s − 1)

1
s − 1

⎤
⎥⎥⎦ , (40)

with coprime right and left polynomial matrix fractions as
in (17) respectively given by

Dr(s) =

[
s(s − 2) 0

1 s − 1

]
,

Nr(s) =

[
s + 1 0

1 1

]
,

(41)

and

Dl(s) =

[
0 s(s − 1)

2 − s s − 1

]
,

Nl(s) =

[
1 s

−1 1

]
.

(42)

Dr is c.r. with Dh = I and column degrees k1 = 2
and k2 = 1. Dl is r.r. with row degrees μ1 = 2 and
μ2 = 1. Therefore, μ := 2. Hence by Theorems 1 and 2
an appropriate choice of the row and column powers of
a r.c.r. characteristic matrix Dk of (COMP) is k1 = 2,
k2 = 1, and r1 = 1, r2 = 1. Having Fact 2 and Comm. 6
in mind, we choose then

Dk(s) =

[
(s+4)(s2+4s+8) 0

0 (s+6)(s+8)

]
. (43)
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Fig. 3. Initial model verification.
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Fig. 4. Physical system verification.
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It is then possible by Section 2 to consider the polynomial
matrix solutions of (COMP) as in (8) with

3Xlp(s) =

[
0 s3 + 8s2 + 24s + 32
0 −s2 − 14s − 48

]
, (44)

and

3Ylp(s)

=

[
s3+8s2+24s+32 −s4−7s3−16s2−8s+32
−s2 − 14s − 48 s3 + 16s2 + 76s + 96

]
.

(45)

A proper compensator generating solution is ob-
tained as in the proof of Theorem 2 by dividing Ylp on
the right by Dl, giving

3Ylo(s) =

[
120 12s− 12
−80 77s + 112

]
,

3Nko(s) =

[
s2 + 7s + 14 s2 + 10s + 44
−s − 16 −s − 16

]
,

(46)

and

3Xlo(s) =

[
3s + 30 −12

0 3s − 32

]
. (47)

Applying Theorem 3 one finds that the degree limi-
tations on the entries of Nk in (18) result in

Nk(s) =

[
0 n12

0 n22

]
, (48)

where n12 and n22 are two real free parameters. Hence
for the given plant and Dk all the solutions of Theorem 3
generating a proper compensator are given by

Xl(s)=

⎡
⎢⎣ s + (10 + n12) −(4 + n12)

n22 s −
(32

3
+ n22

)
⎤
⎥⎦ , (49)

and

Yl(s)

=

⎡
⎢⎣−n12s + (40 + 2n12) (4 + n12)s − (4 + n12)

−n22s+
(
2n22− 80

3

) (77
3

+n22

)
s+

(112
3

−n22

)
⎤
⎥⎦.

(50)

Observe that for n12 = −4 and 3n22 = −32, the
second column of Xl is zero at zero, whence the value
of (Ip + PC)−1 is zero at zero, and the feedback sys-
tem S(P, C) of Fig. 1 will asymptotically track steps and

reject disturbances of the same form at the output of the
plant.

We compare now with the parametrization generated
by Callier and Desoer (1982, Comm. 95, pp. 193–195).
For the data given here, Theorem 1 asks to search the so-
lutions (Xl, Yl) of (COMP) of the form

Xl(s) =

[
s + x11

0 x12
0

x21
0 s + x22

0

]
,

Yl(s) =

[
y11
1 s + y11

0 y12
1 s + y12

0

y21
1 s + y21

0 y22
1 s + y22

0

]
.

(51)

Observe now that our Dr has three characteristic values
s1 = 0, s2 = 1, and s3 = 2, with corresponding char-
acteristic vectors lT1 = [ 1 1 ]T, lT2 = [ 0 1 ]T, and

lT3 = [ 1 −1 ]T. Moreover, Dr(−1) is nonsingular.
Now, as part of a solution of (COMP), Yl is such that
Dr must divide Dk − YlNr on the right, which is here
equivalent to the interpolation conditions

Dk(si)li = Yl(si)Nr(si)li for i ∈ 3. (52)

Hence the eight unknown coefficients of Yl must sat-
isfy six linear equations. Solving the latter allows us to
parametrize six coefficients as an affine function of two
free coefficients, viz. y12

1 and y22
1 . Finally, the matrix

identity
Xl = (Dk − YlNr) D−1

r (53)

at s = −1 gives four scalar linear equations, permitting to
parametrize the four unknown coefficients of Xl as affine
functions of y12

1 and y22
1 . There result successively

Yl(s)

=

⎡
⎢⎣ (4 − y12

1 )s + (32 + 2y12
1 ) y12

1 s − y12
1(77

3
− y22

1 )s − (78 − 2y22
1

)
y22
1 s + (63 − y22

1 )

⎤
⎥⎦

(54)

and

Xl(s) =

⎡
⎢⎣ s + (6 + y12

1 ) −y12
1(

− 77
3

+ y22
1

)
s + (15 − y22

1 )

⎤
⎥⎦ . (55)

This parametrization agrees with (49)–(50) for y12
1 = 4+

n12 and 3y22
1 = 77+3n22, and needs for the case at hand

fewer numerical computations. For more on interpolation
methods, see (Antsaklis and Gao, 1993).

Similar results follow by the Fuhrmann-realization
inspired method of (Emre, 1980, Rem. 3.4). The idea is to
relate (COMP) to the rational matrix equation

Xl + YlNrD
−1
r = DkD−1

r , (56)
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which can be solved over polynomial matrices. The
parametrization of Yl is obtained by equating the strictly
proper parts of YlNrD

−1
r and DkD−1

r , as described by

[
Y0 Y1 · · · Yµ−1

]
⎡
⎢⎢⎢⎢⎣

C

CA
...

CAµ−1

⎤
⎥⎥⎥⎥⎦ = C̄, (57)

where (A, B, C) is the realization of NrD
−1
r while

(A, B, C̄) is the realization of the strictly proper part of
DkD−1

r and

Yl(s) = Y0 + Y1s + · · · + Yµ−1s
µ−1. (58)

Recall that μ := 2. Hence the eight unknown co-
efficients of the (2 × 2)-matrices Y0 and Y1 must sat-
isfy six linear equations. Solving the latter allows us to
parametrize six coefficients as an affine function of two
free coefficients, viz. y12

1 and y22
1 of Y1. We succes-

sively get

⎡
⎢⎣ A B

C 0
C̄ 0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 1 0
1 0 0 0 0
0 −1 1 0 1
1 1 0 0 0
0 1 1 0 0

44 32 0 0 0
−1 −15 63 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (59)

and

Yl(s)

=

⎡
⎢⎣ (4 − y12

1 )s + (32 + 2y12
1 ) y12

1 s − y12
1(77

3
−y22

1 )s−(78−2y22
1

)
y22
1 s+(63−y22

1 )

⎤
⎥⎦ .

(60)

This parametrization is identical to (54). Note here that to
every Yl there corresponds a unique Xl, i.e., (55). For
more on realization methods, see (Emre, 1980).

Now, the parametrization (54)–(55) can also be
obtained by Kraffer and Zagalak (2002, Algorithm,
Sec. 5.3), and Antoniou and Vardulakis (2005, Algorithm,
p. 21). However, more interesting is the following bi-
lateral degree control method, or “two-sided method” for
short, which (up to our knowledge) is new.

Choose, according to the row and column powers of
Dk, the left and right polynomial basis matrices Sl(s)

and Sr(s) given by

Sl(s) :=

[
1 s 0 0
0 0 1 s

]
, Sr(s) :=

⎡
⎢⎢⎢⎢⎢⎣

1 0
s 0
s2 0
0 1
0 s

⎤
⎥⎥⎥⎥⎥⎦ ,

(61)
and define

Ω(s) :=
[

Xl(s) Yl(s)
]
, (62a)

F (s) :=

[
Dr(s)
Nr(s)

]
. (62b)

Here F (·) is c.r. with column-degrees k1 = 2 and k2 =
1, and Ω(·) is r.r. with row-degrees r1 = r2 = 1, and
by (62), Eqn. (COMP) becomes

Ω(s)F (s) = Dk(s). (63)

Now Ω(·) and F (·) have a unique matrix represen-
tation with

Xl(s) :=

[
x11

1 s + x11
0 x12

1 s + x12
0

x21
1 s + x21

0 x22
1 s + x22

0

]
,

(64)

Yl(s) :=

[
y11
1 s + y11

0 y12
1 s + y12

0

y21
1 s + y21

0 y22
1 s + y22

0

]
,

Ω(s) = Sl(s)Ω, (65)

where

Ω = (ωij) =

⎡
⎢⎢⎢⎢⎣

x11
0 x12

0 y11
0 y12

0

x11
1 x12

1 y11
1 y12

1

x21
0 x22

0 y21
0 y22

0

x21
1 x22

1 y21
1 y22

1

⎤
⎥⎥⎥⎥⎦ .

Moreover,
F (s) = FSr(s), (66)

where

F =

⎡
⎢⎢⎢⎣

0 −2 1 0 0
1 0 0 −1 1
1 1 0 0 0
1 0 0 1 0

⎤
⎥⎥⎥⎦ .

The matrix representation of Dk(·) given by

Dk(s) = Sl(s)DSr(s), (67)

where

D =

⎡
⎢⎢⎢⎣

32 24 − n1 8 − n2 0 −n3

n1 n2 1 n3 0
0 −n4 −n5 48 14 − n6

n4 n5 0 n6 1

⎤
⎥⎥⎥⎦ ,
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is, however, nonunique with 6 real free parameters ni,
i ∈ 6, because the (2×2)-zero polynomial matrix has the
two-sided representation

0 = Sl(s)NSr(s), (68)

where

N =

⎡
⎢⎢⎢⎣

0 −n1 −n2 0 −n3

n1 n2 0 n3 0
0 −n4 −n5 0 −n6

n4 n5 0 n6 0

⎤
⎥⎥⎥⎦ .

Finally, by (63), and (65)–(67), Eqn. (COMP) reduces to
the system of linear equations

ΩF = D, (69)

which for given F and D must be solved for Ω, where,
by Theorem A of Appendix, F has a full row rank, i.e.,
rankF = 4.

Now the data of the problem meet the assumptions of
Theorem 2, whence (for some values of the parameters)
System (69) must have a solution. To find the latter, one
resorts to elementary column operations on (69), whereby
F is reduced to its column echelon form, revealing zero
column(s). That is, there exists a nonsingular matrix T
such that FT = [ F1 0 ], where F1 is lower trian-
gular nonsingular. Performing the column operations on
the compound matrix [ FT DT ]T, we get

[
F

D

]
T =

[
F1 0
D1 D2

]
. (70)

A necessary and sufficient condition for the solvability of
Equation (69) is D2 = 0, giving a linear system of equa-
tions in the parameters ni, revealing hereby the final free
parameters.

For the problem at hand we find[
F1 0
D1 D2

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0

8−n2 −n3 32 + n3 −n3 8 − n1 − 2n2 − n3

1 0 n1 n3 2 − n1 + n2 + n3

−n5 14−n6−14+n6 62−n6 76−n4−2n5−2n6

0 1 n4 − 1 1 + n6 2 − n4 + n5 + n6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(71)

where upon setting D2 = 0,

n1 = 4, n2 = 2 − n3, n4 =
80
3

, n5 =
74
3

− n6,

(72)
that is, the six parameters ni have been reduced to two,
namely, n3 and n6.

The substitution of the relations (72) in D1 and
omitting the zero column(s), followed by subtracting the
fourth column from the third column (which reduces F1

to the identity matrix), gives the bottom block

Ω=

⎡
⎢⎢⎢⎢⎢⎢⎣

6 + n3 −n3 32 + 2n3 −n3

1 0 4 − n3 n3

−74
3

+n6 14−n6 −76+2n6 62−n6

0 1
74
3

− n6 1 + n6

⎤
⎥⎥⎥⎥⎥⎥⎦

, (73)

where Ω is the parametrized solution of (69). Finally by
(62a), (64), and (65) the solution of (COMP) is found to
be the (54)–(55) modulo n3 = y21

1 and n6 = y22
1 − 1.

Comment 9. The two-sided method works well by using
a linear system of equations whose dimension is smaller
than those of (Antoniou and Vardulakis, 2005; Kraffer
and Zagalak, 2002), at the small cost of introducing ini-
tially more parameters (due to the nonunique represen-
tation of the zero polynomial matrix), which afterwards
are reduced to the final free parameters. The two-sided
method gives also with fewer calculations the solutions
of the examples in (Antoniou and Vardulakis, 2005; Kraf-
fer and Zagalak, 2002). Moreover, it works for the gen-
eral case that Dk is row-column-reduced: no special case
needed as in the former papers.

7. Conclusion

Theorem 3 confirms that, in a polynomial matrix con-
text with data- and parameter-degree control, it is pos-
sible to characterize all proper feedback compensators
C = X−1

l Yl whose denominator Xl is row-reduced with
sufficiently large prescribed row degrees ri.

This result can be shown to be consistent with
a similar result using matrix fractions over RH∞ in
(Vidyasagar, 1985, Sec. 5.2). Hence it should be useful for
appropriate plant feedback stabilization in an optimization
or tracking context, see also (Callier and Desoer, 1982,
Sec. 7.3; Kučera and Zagalak, 1999). It is obvious that the
results can be dualized for the case that the plant is given
as a left polynomial matrix fraction.

The theoretical part was complemented by two ex-
amples to illustrate the theory for (i) the design of a track-
ing compensator for a control laboratory device (flexi-
ble belt coupled drives system), and (ii) comparison with
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other methods, one of which is new. These examples show
that a systematic procedure for a good choice of the right-
hand side characteristic matrix Dk of Equation (COMP)
by feedback control considerations is in order, and thus a
task for future research.
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Appendix

Theorem A. Let the assumptions of Theorem 1 hold and
let P (·) have a full generic row rank p. Consider the right
coprime fraction P (·) = Nr(·)Dr(·)−1 with Dr(·) c.r.
Let kj , j ∈ m be the column degrees of Dr. Consider

F (s) :=

[
Dr(s)

Nr(s)

]

and let

Sr(s) := block diag

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1
s
...

skj

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

j∈m

.

Let F be the (m + p) × (
∑m

j=1 kj + m) real matrix
defined by F (s) = FSr(s).



Proper feedback compensators for a strictly proper plant by polynomial equations 507

Then F has full row rank, i.e., rankF = m + p.

Proof. According to Antoniou and Vardulakis (2005,
Cor. 4), Bitmead et al. (1978, Thm. 1), Kailath (1980,
footnote, p. 413),

rankF = m + p −
∑

i:µi<1

(1 − μi), (74)

where μi are the row-degrees of Dl in the left coprime
fraction P (·) = Dl(·)−1Nl(·) with Dl(·) r.r. Denote
by “grank” the generic rank, i.e., over R(s), of a
rational matrix. Then, because Dl(·) is nonsingular and
Dl(·)P (·) = Nl(·), grankP (·) = grankNl(·) = p, i.e.,

Nl(·) has a full generic row rank. This implies

μi > 0, ∀i ∈ p. (75)

Indeed, suppose ∃ i ∈ p such that μi = 0. Then
with P (·) strictly proper, δri[Nl] < δri[Dl] = μi = 0,
whence the i-th row of Nl(·) is zero. This contradicts
the full generic row rank of Nl(·), whence (75) holds. Fi-
nally, (74) and (75) imply rankF = m + p.
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