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An image recall system using a large scale associative memory employing the generalized Brain-State-in-a-Box (gBSB)
neural network model is proposed. The gBSB neural network can store binary vectors as stable equilibrium points. This
property is used to store images in the gBSB memory. When a noisy image is presented as an input to the gBSB network,
the gBSB net processes it to filter out the noise. The overlapping decomposition method is utilized to efficiently process
images using their binary representation. Furthermore, the uniform quantization is employed to reduce the size of the data
representation of the images. Simulation results for monochrome gray scale and color images are presented. Also, a hybrid
gBSB-McCulloch-Pitts neural model is introduced and an image recall system is built around this neural net. Simulation
results for this model are presented and compared with the results for the system employing the gBSB neural model.
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1. Introduction State-in-a-Box (gBSB), has the property that the network
trajectory constrained to a hyperface Hf, is described
This paper is on using a class of nonlinear dynamical sys-by a lower-order gBSB type model. This interesting prop-
tems for image recall. A specific discrete-time dynami- erty helps significantly to analyze the dynamical behavior
cal system, referred to as the generalized Brain-State-in-0f the gBSB net. Another tool that makes the gBSB model
a-Box (gBSB) neural network, is used to build an image suitable for constructing associative memory is the stabil-
recall system. It stores original images in the neural asso-ity criterion of the vertices oft,, (Hui andZak, 1992),
ciative memory, and when a noisy image is presented tosee also (Hassoun, 1995) for a further discussion of the
the system, it reconstructs the corresponding original im- condition. The gBSB neural network is suitable for asso-
age after the classification process of the neural networkciative memory because it can store patterns as its stable
and the proposed error correction process. equilibrium points. Lilloet al. (1994) proposed a system-
atic method to synthesize associative memories using the

i The Brain-S'Fatg-in-a-BoT (BSB) EEthiS a simple non- ngSB neural network. This method is used to design large
inear autoassociative neural network that was proposedg e associative memories by Oh atak (2002; 2003).

by Andﬁrsc_mlet ‘f"l' |(1989)das a_memorﬁ/ model baze:j N The hybrid gBSB-McCulloch-Pitts neural network uses
neurophysiological considerations. The BSB model gets the same activation function as the McCulloch-Pitts neural

its n_amde fr%m _thehfaﬁt that thHeéneiwork trzije_(lz_tr:)rysiéézon- network but the argument of the activation function is the
strzzlnle to be mdt € ype_zlrcu " E [rlf,fl] ) Z h same as in the gBSB net. Both the gBSB neural network
model was used primarily to model effects and mecha- ,, he the hybrid gBSB-McCulloch-Pitts net are suitable

nisms seen in psyc-hology and cognitive science (Ander- for associative memory because they can store patterns as
son, 1995). A possible function of the BSB net is to rec- their stable equilibrium points

ognize a pattern from its given noisy version. The BSB
net can also be used as a pattern recognizer that employs  Designing associative memory using the decompo-
a smooth nearness measure and generates smooth dedition concept has been investigated by numerous re-
sion boundaries (Schultz, 1993). Three different gener- searchers (Akar and Sezer, 2001; Ikedal, 2001; Oh
alizations of the BSB model were proposed by different andZak, 2002; 2003; Zetzsche, 1990). Ikeztal. (2001)
research groups: Hui arthk (1992), Golden (1993), and used a disjoint decomposition to design large scale asso-
Anderson (1995). In particular, the network considered by ciative memories. They employed the two-level network
Hui andZak (1992), referred to as the generalized Brain- concept to alleviate the problem of spurious states caused
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by disjoint decomposition. Akar and Sezer (2001) used 2. Overview of the Generalized Brain-State-
overlapping decomposition. The concept of overlapping in-a-Box (gBSB) and the Hybrid gBSB-
deqomposmon was used earlier in th.e context of decen-  McCulloch-Pitts Neural Models

tralized control of large scale dynamical systems (lkeda

and Siljak, 1980). Akar and Sezer applied the concept In this paper, we use a gBSB neural model to design an
of overlapping decomposition to the associative memory image recall processor. The gBSB neural model has its
design, where they focused on the decomposition of theroot in the Brain-State-in-a-Box (BSB) neural model pro-
weight matrix. In their paper, the weight matrix of each posed by Andersoet al. in 1977 (cf. Andersoret al,
decomposed sub-network must satisfy certain conditions.1989). The dynamics of the BSB neural model are de-
That is, a certain portion of each weight matrix must have scribed by the difference equation

all zero elements and another portion of the weight ma-

trix of each sub-network must coincide with a certain por- z(k+1) = g(x(k) + aWz(k)), (1)

tion of the weight matrix of a neighboring sub-network. o N

This means that a sub-network cannot be designed sepaith an initial conditionz(0) = xo, wherex(k) € R”
rately from its neighboring sub-networks. Also, this may IS the state of the BSB neural network at tihg o > 0
complicate the design process of associative memories ifiS @ Step sizeW € R"*" is a symmetric weight matrix,
the number of sub-networks is large. In Oh afek’s and the activation functiog : R™ — R™ is defined as
papers (2002; 2003), overlapping decomposition was car-

ried out on the patterns, rather than on the weight matrix 1 it 2; > 1,

of the associative memory. This approach eliminates the (9()), = (sat(z)), = ¢z if —1<z; <1, (2

restrictions on the weight matrices of sub-networks, and -1 if z; < 1.

therefore allows designing each sub-network of associa-

tive memory independently. The following definitions are used in the further discus-
sion:;

In this paper, we propose an image recall systemus- i . o
ing the large scale associative memory proposed by OhDef|n|t|pn 1. A point z. is an equmbr!um stateof the
and Zak (2002; 2003) to efficiently process the images. dynamical systeme(k + 1) = T'(z(k)) if z. = T(x.).
The original images are stored in a large scale neural as- v |l be concerned with the equilibrium states that
sociative memory. When a noisy image is given as an 4. yertices of the hypercubH, — [1,1]". That is,

input t(_) the pro_posed image recall system, it is decom- each equilibrium state belongs to the get1, 1}".
posed into sub-images and processed by neural networks

and the error correction processor to reconstruct the correpefinition 2. An equilibrium statex, of w(k+1) =

sponding original image. We assume that the test imagesT(w(k)) is super stabléf there existse > 0 such that

are simply noisy versions of training images and they are for any 4 satisfying ||y — .|| < ¢, we haveT (y) = z.
perfectly aligned with the training images. We do not con- \here || - || may be any p-norm of a vector.

sider in this article the cases when the test images are ro-

tated, scaled, or transformed to break the alignment with Definition 3. A basin of attractiorof an equilibrium state

the training images. of the gBSB neural model is the set of points such that the
trajectory of the gBSB model emanating from any point

The paper is organized as follows: In Section 2, we in the set converges to the equilibrium state.
review the str re an ili nditions of the gBSB
eview the structure a d stability conditions 0 t. e gBS The BSB neural net can be used to construct neural
model and the synthesis procedure of associative memo- L :

: , . associative memory, where each pattern vector is stored as
ries using the gBSB neural model. Also, we introduce the

hybrid gBSB-McCulloch-Pitts neural model and discuss _asuperstgble equm_bnum state_. When agiven initial state
. - o . . - is located in the basin of attraction of a certain stored pat-
its stability conditions briefly. In Section 3, we discuss

. i . tern, the network trajectory starting from this given initial
the overlapping decomposition method that is employed o . o
condition converges to the pattern. The given initial state
to construct a large scale neural net to process large scal€

. . ¢an be interpreted as a noisy version of the correspond-
patterns. Also, we introduce the error correction algo- .
: ing stored pattern. In other words, the BSB network can
rithm that we employed to enhance the performance of .
. . . . recall the stored pattern successfully from a noisy vector
the associative memory. In Section 4, we discuss image. . . -
. . . . f the noisy pattern is located close enough to the desired
representation that is used in the proposed image recal

system. Simulation results are presented in Section 5. Fi_pattern. o
. . : A generalization of the BSB neural network, referred
nally, conclusions are found in Section 6.

to as the generalized Brain-State-in-a-Box (gBSB) neural
model, was proposed by Hui aék (1992). The gBSB
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neural model is characterized by a nonsymmetric weightand A € R™*™ such that

matrix and it offers more control of the extent of the basins "

of attraction of the equilibrium states. The dynamics of A < — Z Dl — o], i=1,2,... n.
the gBSB model are represented by

z(k +1) = g((In + aW)a(k) + ab), (3 Finally, determine the weight matri¥% using the for-
where g(x) = sat(x) asin (2),I, isann x n identity mula
matrix, b € R” is a bias vector, and¥V € R"*" is
a weight matrix that is not necessarily symmetric, which
makes it easier to implement associative memories when 1 9 ; nxr
using the gBSB net. where V= [ o) o ... o) ] e {11}

We now discuss the stability condition that we use igg X ctlg da_npsegﬁl(;In\;erzer!emag(ljxtgf(rﬁ I‘g?n:r?tdab ocia-
when designing associative memory using the gBSB stru In Su way us Impler SS0cl
model. Let tive memory that is guaranteed to store the given patterns

as super stable vertices of the hypercutig. A further
L(z) = (I, + aW)x + ab, discussion of the above method can be found in some pa-

) pers (Lillo et al, 1994; Park and Park, 2000; Parkal,
and let(L(x)); be thei-th component ofL(x). Suppose 1999).

k=1,k+#i

W = (DV - B)V! + A(I,, - VVT), (5)

v — [v v v }T €{-1,1)" Next, we introduce the hybrid gBSB-McCulloch-
v " ’ ’ Pitts neural network which is characterized by the same
that is, v is a vertex of H,,. This vertexv is an equilib-  difference equation (3) witty being an activation func-
rium state of the gBSB model if and only if tion defined as a standard sign function,
(L(v),vi =1, i=1,2,...,n. 1 if x>0
We can show that if (9(x), = (sign(z)), = 0 if z:=0 (6)
(L(U))ivi >1, i=12,...,n, 4)

then v is a super stable equilibrium state of the gBSB \all\éesg::\ggttic: ;t:rt:g?/ Cuc;?g't't?]r;tzg;yfrﬁzzghig ﬂii')?g"lse
neural model (Hui andak, 1992; Lilloet al, 1994). y 9 T o
suppose thay = [ v; w2 -+ v, |© € {-1,1}"

When the desired patterns are given, the associativerpen this vertex is a super stable equilibrium state of the
memory should be able to store them as super stable equiz e model if
librium states of the gBSB network. Also, it should mini-
mize the number of super stable equilibrium states that do (L(’U))ivz‘ >0, i=1,2,...,n. 7)
not correspond to the given stored patterns. Such unde-
sired equilibrium states are callsgurious statesWe can It is easy to see that (4) implies (7). This means th&t
synthesize associative memories using the method pro-and b constructed for the gBSB network will also work
posed by Lilloet al. (1994). This design method is used for the hybrid gBSB-McCulloch-Pitts net.
by us in this paper. We now briefly present the method.

For given pattern vectore) ¢ {—1,1}",j = . .
1,2,...,r, that we wish to store, we fijst forr];1 a matrix 3. Overlapping De(_:omposn!on Method and
B=[bb - bR, where an Error Correction Algorithm for

; High Dimensional Patterns
b= Zl v, >0, j=12...1, 3.1. Idea of the Overlapping Decomposition
=
The designers of most associative memories face the se-
rious problem of the quadratic growth of the number of
interconnections with the problem size. Oh arak
dii > zn: \di|, and (2002; 2003) attackeq these difficulties by proposing a de-
sign method of associative memory as a system of decom-

ande;'s are design parameters. Then, chod3e= R"*"
such that

hELRA posed neural networks. As pointed out by Ikestaal.
n _ (2001), a completely decoupled modularization gives rise
dii < Y dil 4+ bil, i=1,2,...,m, to spurious memory problems. In Oh addk’s papers,

k=1,k#i the idea of overlapping decomposition was used rather
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than decoupled modularization. Also, to further enhance Also, by adopting a toroidal structure, we ensure a sym-
the performance of the method, an error correction algo- metry of the image partitions, which makes it easy to im-
rithm was added. The error correction algorithm builds plementimage processing sub-networks.

on overlapping idea; that is, the error correction algorithm

arises natl_JraIIy from the overlapping decomposition. The 3 5 Computational Complexity of the Overlapping
reduced size of each sub-network of the memory system Decomposition Method

may reduce the recall capacity of the memory. By adding

the error correction algorithm, the recall performance of To investigate the computational complexity of the over-
the proposed neural associative memory is enhanced. lapping decomposition method, consider the pattern

When the gBSB network is in the recall mode, it fol- Shown in Fig. 1. The dimension of the original pattern
lows from (3) that the main computational load of the net- IS Pm x ¢n. Therefore, if we used just one gBSB neu-
work results from the multiplication of a weight matrix &l network to process this image, its weight mati&

W and a state vectoz. The number of multiplications ~ Would be apgmn x pgmn matrix containing(pgmn)?
of the elements oW and z is of the order ofn2, where elements. If we use an image partition shown in Figure 1,
n is the dimension of the state vectar The same is true  then the dimension of each sub-patterrig + 1) x (n+
for the number of additions. This results in a heavy com- 1)- Hence, the number of elements of the weight matrix of

. . . i 2 2
putational cost when the dimension of the pattern vector 8ach sub-network igm +1)%(n + 1). Because there are
is large. pq weight matrices, the overall number of their elements

: 9 5 . .
We decompose each stored pattern into sub-patternsIS pa(m + 1)*(n + 1)°. Therefore, the ratio of the sizes

and construct gBSB sub-networks using (5). That is, eacho.f thle weight matrlcets ofks_ub-networks o the size of the
gBSB sub-network stores the corresponding sub—patternssmg € processing hetworkis
of the stored patterns. We employ the overlapping de-  pg(m +1)%(n +1)2 1 1\2 1\?2
composition method and the error correction algorithm to (pgmn)? ~ g (1 + m) (1 + n) :
improve the performance of neural networks. Each sub- i

network can be designed independently of others and the!f the sub-networks are designed so that the number of
recall error may be reduced using the error correction pro- ©Verlapping rows ism, and the number of overlapping

cess (Oh andak, 2002; 2003). columns isn,, then the above ratio becomes
An example Qf overlappi_ng decomposition of a pat- 1 (1 4 mo)2 (1 n &)2
tern is shown in Fig. 1. This is the case when the pattern pq n
is represented as a 2-dimensional image. As we can seg gt
in Fig. 1, the original pattern is decomposed so that there () = 1 (1 N %)2
exist overlapping parts between neighboring sub-patterns. p)= ’
and pm = M, where M is a constant. We assume that
1 n n+l on 2n+l qn 1 m, < m = M/p, that is, the number of overlapping
1 rows is smaller than the number of rows of the sub-pattern.
Then,
1 Mo \2
o | V]| Ve Vi )= (14 72)
P M
m+1 [ N N )
1 (1+2mo N m?2 2)
= - p p
, Vo Vi Vo P MM
m
2m+1 1 2m, m?
=-+ + D
° ° ° p M M
[ J [ J [ J
° ° ° Therefore,
df(p) 1 mg
dp = —? + e <0
Vo Viz eoe | 74 because0 < p < M/m, from the above assumption.
pm This means thaff (p) is a decreasing function gf in the
1 interval 0 < p < M/m,. If we let
. . . 1 Mo\ 2 1 o \2
Fig. 1. Example of toroidal overlapping 9(q) = p (1 + ;) = (1 + Nq) :

decomposition of a given pattern.
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wheregn = N isaconstantand, < n = N/q, g(q) is first check if there are sub-patterns with no mismatches. If
a decreasing function of in the interval0 < g < N/n,. such a pattern is found, the algorithm is initiated by locat-
This demonstrates that the amount of computer resourcesng a marker on the above sub-pattern and then the marker
occupied by the weight matrices becomes smaller as themoves horizontally to the next sub-pattern in the same row
numbersp and ¢ grow. until a sub-pattern with mismatches is encountered. If all
Let us now consider the same decomposition as in Sub-patterns have mismatches, we select a sub-network
Fig. 1 to determine the number of multiplications be- With the minimal number of mismatches. Suppose that
tween the elements o/ and x(k) in (3) during the ~ the marker is located on the sub-netwoi%;, and as-
recall process when only one neural network is used. Be-SUme that the right and the bottom portionséf; have
cause W is a pgmn x pgmn matrix and z(k) is a mismatches. Note that the decomposed input pattern cor-

pgmn-dimensional vector in the undecomposed network, fesponding to the sub-network;; is denoted asX;;.

(pgmn)? multiplications between the elements & We denote byV;; the result o_f the rec.all process, see
and (k) are needed for a transition to the next state Figs. 1 and 2 for an explanation of this notation. The
x(k + 1). With the same reasoningim + 1)2(n + 1)2 (n+1)-th column of X;; is replaced with the first column

multiplications are needed in a sub-network if we use the Of Vi j+1, and the n+1)-th row of X;; is replaced with
overlapping decomposition method to process the image.the firstrow of V., ;. That is, the algorithm replaces the
Considering that there argg sub-networks, we get a to- Mismatched overlapping portions &;; with the corre-

tal of pg(m + 1)2(n + 1)? multiplications. Therefore, if ~ SPonding portions of its neighboring sub-patte¥is; .,

we let V,,, be the number of multiplications in the gBSB ~ Vi.j—1, Vit1,5, of Vi_1;, which are the results of the
network that is not decomposed, then the total number offecall process of the corresponding sub-networks. After
multiplications in the network consisting of decomposed the replacement, the sub-network goes through the recall

sub-networks is reduced to process again and examines the number of mismatches of
) ) the resultant sub-pattern. If the number of resultant mis-
1 (1 4 1) (1 n 1) N matched portions is smaller than the previous one, the al-
pq m n " gorithm keeps this modified result. If the number of mis-

matched portions is not smaller than the previous one, the
previous resuliV;; is kept. Then, the marker moves hori-
zontally to the next sub-network. After the marker returns
1 Mo\ 2 o\ 2 to the initial sub-network, it then moves vertically to the
Da (1 + 7) (1 T 7) N next row and repeats the same procedure for the new row.
pq n

) o ) Note that the next row of thg-th row of the pattern shown
This shows that the numk_Jer_ of mult|pllca_t|0ns in the reca_ll in Fig. 1 is its first row. The error correction stage is fin-
process of neural assouatlve_memqry Is also decreasmqshed when the marker returns to the sub-network that the
as the numberg and ¢ grow in the interval0 < p < marker initially started from. We can repeat the error cor-
M/mo and0 < g < N/n,. rection algorithm so that the sub-patterns can go through
the error correction stage multiple times.

In the case when there are, overlapping rows anch,,
overlapping columns, the number of multiplications is

3.3. Reducing the Classification Error in the Image

The main idea behind the error correction algorithm
Recall Process

is to replace the incorrectly recalled elements of the sub-
While the number of computations is reduced by the pattern with the ones from.t'he .neig'hboring sub-patterns
smaller dimensions of the decomposed sub-patterns andNd l€t the sub-pattern modified in this way go through the
corresponding sub-networks, the capacity of each Sub_recall process again. If the element_s from the neighboring
network is lower than that of the network that is not de- sub-patterns are correctly recalled, it is more probable that
composed. This may lead to a high recall error rate. To the current. sub-pattern will be regalled corregtly at the er-
reduce this error rate, we add the error correction stage af/Of correction stage. The reason is that we might have put
ter the recall stage in order to correct possible recall errorsth€ sub-pattern in the basin of attraction of the training
(Oh andZak, 2002: 2003). The overlapping decomposi- sub-pattern by replacing the overlapping elements.

tion plays an important role in the error correction proce- In summary, the proposed neural image recall sys-
dure. Every sub-pattern overlaps with four neighboring tem operates as follows: Prototype images are decom-
sub-patterns in the decomposition of Fig. 1. After the re- posed into sub-image patterns with a toroidal overlapping
call process, we check the number of mismatches of over-decomposition structure, and the corresponding individ-
lapping portions for each sub-pattern. We record the num-ual sub-networks are constructed using (5) independently
ber of overlapping portions in which mismatches occur of other sub-networks. The overlapping portions of adja-
for each sub-pattern. The number of mismatched overlap-cent stored sub-patterns coincide with each other if they
ping portions is an integer from the s@d, 1, 2,3,4}. We are decomposed from the same pattern. When the noisy
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«| Original
. Input Pattern

Reconstructed
Output Pattern

Sub—network Nj;

Recall
. Processor

Y_| Error Correction
Algorithm

[ )
i .
()
‘ f
Decomposed
Output Sub—patterns

Decomposed
Input Sub-patterns

Fig. 2. Image recall procedure using gBSB neural sub-networks with overlapping
decompositions and the error correction algorithm.

4. Representation of an Image as a Pattern
for gBSB-Based Neural Associative
Memory

image is presented to the network, it is decomposed into
sub-patterns. Then, each sub-pattern is assigned to a cor-
responding sub-network as an initial condition, and each
sub-network starts processing the initial sub-pattern. Af- 4.1 |mage Representation

ter all the individual sub-networks finish processing their

sub-patterns, the overlapping portions are checked if theyAn image can be defined as a functigi{z, y), where
match with adjacent sub-patterns. If the recall process isxz and y are spatial coordinates (Gonzalez and Wintz,
completed without recall errors, all the overlapping por- 1987). For monochrome imageg, is a scalar function
tions of the sub-patterns processed by the correspondthat represents light intensity at each point. A digital
ing sub-networks would match with their corresponding monochrome image may be represented by a matrix in the
neighboring sub-patterns. If a mismatched boundary is 2-dimensional space, whogg, j)-th element isf(z, 5),
found between two adjacent sub-patterns, we concludewhere (i, j) is a discrete spatial coordinate. Each ele-
that a recall error occurred in at least one of the two neigh- ment of the matrix is called a pixel. The pixel in digital
boring sub-networks during the recall process. In other images usually has an integer value in a finite range so that
words, the network detects a recall error. Once an error isit can be represented by a finite number of binary digits.
detected, the error correction algorithm described above isFor example, if0 < f(i,j) < L — 1, then each pixel
used to correct the recall errors. After the error correction can be represented bjjog, L] bits, where[-] denotes
process is finished, we combine the resultant sub-patternghe ceiling operator. Consequently, a digital monochrome
to reconstruct the image. The flow of the pattern process-image can be represented by a matrix whose elements are
ing above is illustrated in Fig. 2. binary strings of finite length.
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The RGB color coordinate system is one of the most where the indicator functioig(z) is1if x € S and 0

popular color coordinate systems. Based on the RGB
color coordinate system, each pixel of a digital color im-

age is represented by three components: red, green, and

blue. In other words,f (i, j) is a vector valued function
in a digital color image, and the digital color image can be

represented as three matrices, each corresponding to th

otherwise.

A quantizer is said to be uniform if the reconstruc-
tion levels are equispaced and the thresholds are midway
between adjacent levels (Gray and Neuhoff, 1998). All in-
fervals in the uniform quantizer have the same size except

red, green, or blue components of the image. Because th@0SSiPly the outermost intervals (Sayood, 1996).

three components of each pixel have integer values in a

finite range, we can use binary strings of finite length to
represent a digital color image.

As we have seen in Section 2, gBSB-based neural as-

sociative memory can be used as a pattern classifier if th

patterns are represented by vectors whose elements ar

—1 or +1. Because digital images can be represented

as a binary number, we process each digit of the binary

number as an element of a pattern vector. For example, if

the monochrome image is represented byldnx N ma-

trix and the binary representation of each pixel kakits,

the size of a pattern becomég x N x k. Using a gBSB
net, a noisy input image can be classified into one of the
stored images if its vector representation is located within
the basin of attraction of a stored image in the gBSB neu-
ral network memory.

In the following section, we propose using a uniform
guantization to further reduce the computational load of
the image recall process.

4.2. Uniform Quantization

In our image recall system, all the images to be processed

are in the digitized format, that is, each pixel of an image

is assumed to be already represented by a binary numbe

with a fixed number of digits. Our goal in this section is

to present a technique that reduces the number of bits re
quired to represent a pixel. We propose to use uniform
guantization of images, which can be viewed as a simple
image compression method. This will lighten the com-

putational complexity of the image recall process. In our
further discussion, we use the following definition (Gray

and Neuhoff, 1998):

Definition 4. A quantizeris a mapper defined on a set
of intervals S = {S;;¢ € 7}, where the index set is
ordinarily a collection of consecutive integers beginning
with 0 or 1, together with a set of reconstruction levels
C = {y;;i € I}, so that the overall quantizey is de-
fined by ¢(z) = y; for « € S;, which can be expressed
concisely as

a@) = D _yils, (),

e

Suppose now that we have fabit image and want
to represent this image with: (< k) bits per pixel using
uniform quantization. The number of levels of the original
image is2*, and that of the quantized image 2§*. The
simplest way to perform uniform quantization is to divide
the rangef0, 2¥—1] using 2™ intervals of the same length

e . . i - .
and assign a binary number witty digits to each inter-

with binary numbers, they can be used as patterns to bevaI. For example, assume that we want to quantize an 8-bit

processed by the gBSB net. After representing each pixel

monochrome image uniformly using 2-bits-per-pixel rep-
resentation. To do this, we divide the ranj§e255] into 4
intervals such ag0, 63, [64, 127], [128, 191], [192, 255],
and assign binary numbef®), 01, 10, 11 to each interval.

In this paper, we used a slightly different way to
quantize images. Instead of dividing the rani§e2* —
1] into intervals of the same length, we allocated the
same length to the inner intervals and we assigned half
the length of them to two outermost intervals. As an
example, we divide the rangf, 255] into 4 intervals
such a0, 42], [43, 127], [128, 212], [213, 255] and assign
00,01,10,11 to each interval. The reason why we used
this scheme was because the images we used in our simu-
lations had a lot of extreme pixel values, i.e., 0 and 255.

5. Simulation Experiments

We simulated our proposed image recall system us-
ing 150 x 150 gray scale images as test images. The
pixels of original images were represented with 8 bits. To

reduce the computational load, we carried out the uniform

guantization described in Section 4.2 so that the quantized
images could be represented with 6 bits per pixel. These
image patterns are shown in Fig. 3. We simulated the im-
age recall system with the gBSB neural networks and the

hybrid gBSB-McCulloch-Pitts neural nets.

An example result of the image recall with gBSB
neural networks is shown in Fig. 4. The input image
in Fig. 4(a) is a noisy version of a stored image pat-
tern. The noise in this image is the so-called ‘salt-
and-pepper noise’ with the error probability 6f5. In
other words, each pixel might be corrupted by a noise
with the probability of 0.5, and this noisy pixel is white
or black with the same probability. The input image
was quantized employing the same method as was used
for the stored image patterns. The whole image pat-
tern was decomposed intd00 (10 x 10) sub-patterns
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Fig. 3. Quantized prototype monochrome image patterns with 6 bits/pixel.
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(c) Result after the error correction process (d) Output image
Fig. 4. Simulation result of image recall by gBSB neural networks with monochrome images.

using the overlapping decomposition method described in©Ut 0f 22500 (150 x 150), i.e., no pixel in the recon-
Section 3. Each sub-pattern went through recall process ofStructed image had different values than the corresponding
the corresponding sub-network. The result after the recallStored prototype image.

processes of all the sub-networks is shown in Fig. 4(b). In Fig. 5, an example result of the image recall sys-
There were 5 mismatched portions between sub-patterndem employing the hybrid gBSB-McCulloch-Pitts neural
in this example. The next stage was the error correc- model is shown. We used the same overlapping decom-
tion process. The collection of sub-images in Fig. 4(c) position and the same noisy input image as in our simu-
is the result of the error correction process. There waslation of the image recall system using the gBSB neural
no mismatched portion between these sub-patterns. Fi-model, which is shown in Fig. 5(a). That is, the input
nally, the reconstructed image is shown in Fig. 4(d). In image is corrupted by the salt-and-pepper noise with the
this image, there was no erroneously reconstructed pixelerror probability of 0.5, and the image was decomposed
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(c) Result after the error correction process (d) Output image

Fig. 5. Simulation result of image recall by hybrid gBSB-McCulloch-Pitts neural networks with monochrome images.

into 100 (10 x 10) sub-images using the overlapping de- In Figs. 6 and 8(a), image recall systems using
composition method. The result of the recall processesthe gBSB model and the hybrid gBSB-McCulloch-Pitts
is shown in Fig. 5(b), where there exist 87 mismatched model were compared with each other. The input images
portions between sub-images. Figure 5(c) is the result af-were corrupted by the salt-and-pepper noise with different
ter the error correction process and there still remains 57error rates in this simulation. Also, in Figs. 7 and 8(b), the
mismatches. The final result of image recall is shown in results of the simulations are shown when the input im-
Fig. 5(d). In this result, 4491 pixels out of 22500 pixels ages were corrupted by the additive Gaussian noise, and
have different values than the pixels of the corresponding the two models were compared with each other. The input
stored prototype image, i.€19.96% of the whole pixels  images were corrupted by adding the Gaussian noise to the
were erroneously reconstructed. stored prototype image with different values of standard
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(a) Input error rate: 0.3.  Reconstruction error rate — gBSB model: 0, hybrid model: 0.

(c) Input error rate: 0.5.  Reconstruction error rate — gBSB model: 0, hybrid model: 0.1996.

Fig. 6. Simulation results of image recall using the gBSB neural model and the hybrid gBSB-McCulloch-Pitts model (in
the case of the salt-and-pepper input noise). Note—left: input images, center: gBSB model, right: hybrid model.

deviation that varies from 0 to 15. Each image used in this gre shown in Fig. 9. The pixels in the original images were
simulation had 64 gray levels because a pixel was repre-represented by 24 bits (8 bits for each of the R,G,B com-
sented by 6 bits. Therefore, for example, the standard de-ponents) before the uniform quantization preprocessing.
viation 15 means that the standard deviation of the Gaus-The image patterns in Fig. 9 are quantized versions of the
sian noise was almost a quarter of the full gray scale of the original images with 6 bits per pixel (2 bits for each of the
image. As we can see in these figures, the results from ther G,B components). An example of a simulation result
system using the gBSB model were better than the onesis shown in Fig. 10. The image recall system was com-
from the system using the hybrid gBSB-McCulloch-Pitts posed of gBSB neural networks in this simulation. The
model. size of images used in this simulation wag0 x 200.

We can apply the same procedure to the recall of The noisy input image in Fig. 10(a) was generated for the
color images. The image patterns used in our simulation simulation in such a way that each of the three R,G,B ma-
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(a) Standard deviation of the additive Gaussian noise in input: 5.
Reconstruction error rate — gBSB model:89 x 10~*, hybrid model: 0.456.

(b) Standard deviation of the additive Gaussian noise in input: 10.
Reconstruction error rate — gBSB model: 0.010, hybrid model: 0.577.

(c) Standard deviation of the additive Gaussian noise in input: 15.
Reconstruction error rate — gBSB model: 0.072, hybrid model: 0.609.

Fig. 7. Simulation results of image recall using the gBSB neural model and the hybrid gBSB-McCulloch-Pitts model (in
the case of the Gaussian input noise). Note—left: input images, center: gBSB model, right: hybrid model.

trices was corrupted by the salt-and-pepper noise. TheThe number of incorrectly reconstructed pixels was 150
probability that each element of a pixel might be cor- out of 60000 pixels.

rupted by the noise wag.4 in this example. The patterns

were decomposed int600 (= 30 x 20) sub-patternsin  Remark 1. The gBSB based system outperformed the
this simulation. The number of mismatched portions be- hybrid gBSB-McCulloch-Pitts network based system. An
tween sub-patterns was 26 after the recall process, and iexplanation for this can be found in the difference between
was reduced by the subsequent error correction processhe activation functions of the two models as given by (2)
to 8. The final reconstructed image is shown in Fig. 10(d). and (6), respectively. In the hybrid gBSB-McCulloch-
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Remark 2. The recall results of the hybrid gBSB-
McCulloch-Pitts neural network based system signifi-
cantly deteriorated, especially when an input image was
corrupted by the Gaussian noise. This is because the bi-
nary representation of the image corrupted by the Gaus-
sian noise might be very far in the Hamming distance
sense from the stored prototype image to which the input
pattern is supposed to converge. In the case of the salt-
and-pepper noise, only the pixels selected with a given er-
ror probability are replaced with pixels representing white

o
I

o o
1 =3
x =)
T
I I

The Rate of Incorrectly Reconstructed Pixels

The Error Rate of the Input Image

(Salt-and—Pepper Noise) or black. In the case of the Gaussian noise, most pixel val-
ues are changed by adding or subtracting small numbers to
(@) Input noise: salt-and-pepper noise them, and the binary representation of the modified values

can be very far from the binary representation of the orig-
inal pixel values. The image corrupted by the Gaussian

o
3

=& gBSB neural model ‘ noise may be an image that is very remote from the stored
vol| T [yorid gBSB-McCulloch- ] prototype image in the Hamming distance sense and may
1) not belong to the basin of attraction of the corresponding

stored prototype image.

6. Conclusions

In this paper, we described an image recall system that we
constructed by employing a large scale gBSB neural net-
work. We used the overlapping decomposition method to
construct this network. This recall system works as neu-
ral associative memory that also contains the error correc-
- tion subsystem to enhance the recall performance. The

The Standard Deviation of the Gaussian Noise proposed system was able to recall the prototype images
in Input Image that were stored in the neural network when the noisy in-
put images were given, even when the probability that an
image pixel was corrupted with a salt-and-pepper noise
was quite high, even as high &s5. Also, when the in-
Fig. 8. Comparison between the system employing the putimage was corrupted with the Gaussian noise, the pro-

gBSB neural model and the system employing the posed system successfully reconstructed the stored proto-

hybrid gBSB-McCulloch-Pitts model. type image unless the standard deviation of the additive
Gaussian noise was too high. We built another image re-
call system employing the hybrid gBSB-McCulloch-Pitts
neural model, and compared the performance of this sys-
tem with the one using the gBSB neural model. The per-
formance of the hybrid gBSB-McCulloch-Pitts neural net-
work based system was not as good as the gBSB model
based system, especially when the input noise was the
Gaussian noise and when the input error rate of the salt-
and-pepper noise was high.

The Rate of Incorrectly Reconstructed Pixels

(b) Input noise: Gaussian noise

Pitts neural network, the initial state(0) moves to a ver-
tex of the hypercubéed,, in one step. If this vertex is a sta-
ble equilibrium state that is not a prototype vector, this re-
sults in arecall error. In other words, if the initial direction
of the trajectory is towards a non-prototype stable equilib-
rium state, it yields a recall error. On the other hand, in the
case of the gBSB neural network, the trajectory stays in-
side the hypercube for several time units depending on the In this paper, we assumed that the test images were
step sizea. This means that the convergence of the state simply noisy versions of the prototype images. If the test
in the gBSB network is less sensitive to the initial direc- images were rotated, scaled, or shifted, the performance
tion of the trajectory and it is possible that it changes the of the proposed system would most probably deteriorate
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Fig. 9. Quantized prototype color image patterns with 6 bits/pixel.

significantly. Designing a system whose performance is tational load. The main reason why we used the uniform
insensitive to those kinds of transformations of test images quantization is its simplicity. It would enhance the quality
is an open problem and it is left out for future research of quantized images if we used a quantization method that
activities. We used binary representation of the intensity depends on the statistics of the training images. We leave
values of images. The use of different image representa-this issue for future research.

tion methods in the prt_)posedilmage rec;all system can be Acknowledgement

considered. Constructing an improved image representa-
tion method seems to be an interesting research topic. ThaVe are grateful for constructive comments of the review-
uniform quantization method is used to reduce the compu-ers.
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(c) Result after the error correc-

tion process
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(b) Result after the recall pro-
cess
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(d) Output image

Fig. 10. Simulation result of image recall using the gBSB neural model with color images.
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