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EXTENSIONS OF THE CAYLEY-HAMILTON
THEOREM FOR 2-D CONTINUOUS-DISCRETE
LINEAR SYSTEMS

TabprEUSZ KACZOREK*

The Cayley-Hamilton theorem is extended for new classes of 2-D continuous-
discrete linear systems.

1. Introduction

Recently a new class of two-dimensional (2-D) continuous-discrete linear system has
been introduced (Kaczorek, 1994a; 1994b). Using the Weierstrass decomposition in
(Kaczorek, 1994a) the general response formula for regular 2-D continuous-discrete
linear systems was derived. In (Kaczorek, 1994b) the general response formula was
derived and the necessary and sufficient conditions for the reachability and controlla-
bility of the standard 2-D continuous-discrete linear systems were established.

The classical Cayley-Hamilton theorem was extended for regular and singular
2-D and n-D linear systems. (Ciftcibasi and Yuksel, 1982; Chang and Chen, 1992;
Kaczorek, 1994a; 1994b; Smart and Barnett, 1986; Warwick, 1983). In (Chang and
Chen, 1992) the generalized Cayley-Hamilton theorem for standard pencils was pre-
sented. In this paper the Cayley-Hamilton theorem will be extended for new classes
of 2-D continuous-discrete linear systems.

2. Models of 2-D Continuous-Discrete Linear Systems

Let IRy be the set of nonnegative real numbers and Z; be the set of nonnegative
integers. Consider a 2-D continuous-discrete linear system described by the equations

Ex(t, k+1) = Ax(t, k+ 1) + Bx(t, k) + Cul(t, k), telRy, k€Z, (la)
y(t, k) = Da(t, k), teRy, k€Zy (Ib)
Oz (t, k)

where z(t, k) = , =(t,k) € IR™ is the semistate vector, u(t,k) € IR™ is

the input vector, y(¢,k) € IRP is the output vector, £ € IR¢**, A € IR%*", B ¢
R2x"?, C € IR?*™, D € IR¥*™ and IRP*{ is the set of px ¢ real matrices.

If g#n or ¢=n but detE =0, system (1) will be called singular. System (1) will
be called regular if ¢ = n, detE =0 and

det[Es — A] # 0 for some € (the field of complex numbers) (2)
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If g=n and detE # 0, then premultiplying (1a) by E~! we obtain
z(t,k+1)=Az(t,k+ 1)+ B'z(t, k) + C'u(t, k) (1’a)

where A’ .= E-1A, B':=E~'B, C' := E~!C.

A 2-D system described by (1%a) and (1b) will be called standard. Boundary
conditions for (1a) (or(1'a)) are given by

z(t,0)=z1(t), t Ry and z(0,k)==z2(k), ke€Zy (3)

where z1(t) and z2(k) are known and z;(0) = z2(0).

The boundary conditions (3) are called admissible for (1a) if equation (1a) has a
solution z(¢, k) for (3) and a given u(t, k). The set of admissible boundary conditions
(3) is determined by the matrices A, B, C, E and the given input u(¢, k).

3. Solution and General Response Formula

Consider the standard system described by (1a) and (1b) with boundary condi-
tions (3).

Theorem 1. The solution z(t, k) to (1'a) with (3) is given by

k-1 ¢ -
s(t8) = Maa(k)+ Y [ ACp [ et
i=1 70 0

Thk—i-1
.. B/ eA('rk—i-l_'r"-i)BeATk—‘1:2(i) drg_;drmg_i_1---dn
0

t T T2
+ / eA(t-—Tl)B/ eA(‘rl—'rz)B/ eA(‘rg—'re,)
0 0 0 ‘

Tk—-1
= B/ eAMme-1=7) By (1) drg drgp—q - -dmy

0
k-1 t T1 T2
+ Z/ EA.(t—TI)B/ GA(TI_Tz)B/ eA(Tg—Ta)
i=0 /0 0 0

Thk—i-1
.. B/ eA(T"—"—l_T"—‘)Bu(Tk_,-, i) drg—; dmg—i—q - -dm
0

(4)

fort Ry, ke Zy (by deﬁnitionyrg =t).

Theorem 1 can be proved by induction or by checking that (4) satisfies (1'a)
and (3) (Kaczorek, 1994b). In particular case for A =0 we have the following.

Corollary 1. The solution x(t,k) to the equation

i(t,k+1) = Bz(t,k) + Cu(t,k), teRy, keZ, (5)
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with boundary conditions (3) is given by

1 Tk T2
z(t, k) = Bk/ / / zy(m)dr dry - -dry
0o Jo 0
k-1 3 t T T;
Bt)? ) . k it2
+Z I:Lﬁlxg(k—z)—%—Bk“z"lC/ / / w(rip1)drigr - -dmg
i=0 ' 0 /0 0

fortelRy, keZ,.

The general response formula for the standard system (1'a), (1b) can be obtained
by substitution of (4) into (1b).
The general response formula for the regular system (1) with was derived in (Kaczorek,
1994a).

(6)

4. Cayley-Hamilton Theorem for 2-D Continuous-Discrete
Linear Systems

4.1. Standard Systems
It'is assumed that for (1a) the following condition holds
det{I,sz — A’z — B'] # 0 for some (s,z) € CxC (M

where I, is the n x n identity matrix.

If condition (7) is satisfied, then we may write
[e.e] e.e]
[Lnsz — Az — B =) ) Tis7(H1),=04D) 8)
i=0j=0

where T;; are some real matrices called the transition matrices of (1a).

Equating the matrix coefficients at the same powers of s and z of the equality.

(o] (o]
[Insz — A’z — B') ZZﬂjs~(i+1)z—(j+l)
i=0 j=0
= ZZTijS"(iH)Z'(jH) Insz— Az — B =1,
1=0 j=0
we obtain
In for i=35=0
Lj=q AT j+B' Ty jo1=Ti1 jA'+T;_1j1B' for i>0,7>0 (10)

0 the zero matrix for i< Qorfand <0
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Lemma. The transition matrices T;; satisfy the relation
A" for i>0 and j=0
Tii=4 0 forj>i>1 (11)
B" fori=j>1
Proof. From (10) we have for i =j =0, Too = I, = A’® and for i >0, j =0
Tio=ATic10+B'Tic1,.1=ATi_10= AlzTi—z,o == ATy = A,
1=1,2,..
Similarily we have from (10) for : =0, j >0
Toj=AT_1;+BT_1;.1=0 |
and
Ty; = A'Toj + BTy j-1=0 for j>1

Assuming that Ty; = 0 for [ > k we shall show that Tj41,41 = 0. Really from (10)
we have

Tk+1’(+1 = AITk’I_H -+ BITk’I =0 for I>k
Therefore, by induction T3; = 0 for j > > 1.
From (10) for i = j > 1 we have
Ti= AT 1i+B'Tiovio1=BTi1;1=B"Tig; 0= =BTy=B"

since T;_1; =0 for ¢« > 1. [ |

Theorem 2. Let
det[los2— A’z — B1:= Y > dijs'2?  (dpn =1) (12)
1=0 j=0

Then the transition matrices T;; of (1'a) satisfy the equations

n n
SN diTigp-r,jpi-1 =0 for k=12, (13)
1=0 j=0

Proof. Let [I sz — A’z — B'],q be the adjoint matrix of [I,sz — A’z — B’] and

n—1ln—1

[Ihsz — A2 — B'laq i= Z z Hijsizj (14)

1=0 j=0
Taking into account that

[Insz — A’z — B'lqa = [Insz — A’z — B'] " det[I,s2 — A’z — B']
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and using (12), (8) and (14) we may write

n—1ln-1 oo oo n n
S5 e = |33 e | |325 a0
1=0 j=0 1=0 j=0 i=0 j=0
n—k—-1ln-1-1
- — I
=Is" " E Tijdigksrjsier | 572
1=0 7=0 .
(15)
n—1n-1
0_0
oo [ DD Tydiprjan | 82
i=0 j=0
n+k—1n4i-1

+ot Z Z Tijdipr,j—ipr | 57527+

The comparison of the matrix coefficients at the same powers of s and z yields

n+k—1n4i-1
Z Z Tijdi—k-}-l,j—H-1 =0 for k,l: 1,2, (16)

1=0 j=0
Note that (16) is equivalent to (13).  ®

Taking into account (11) we may write (13) in the form

n i—1
doo +Zd AHES 1+Zd”3”+’” YD Tk o = 0 (17)
i=1 =1 i=2 j=1

fori+k>1,j+1>1, k1=12,...

Therefore, we have the following important

Corollary 2. The transition mairices Tj; of (I'a) satisfy equations (17). In parti-
cular case for k=1=1 from (17) we have

n i—1
Z digA” + Zd”B” +Y > diTy =0 (18)

1=2 j=1

Example. Consider system (1a) with
1 —1 B 0 1
0 1| 10

sz—z, z-—1

A =

In this case

det[I sz — A’z — B'] = =s%22 - 2522+ 22+ 21

-1 §z2 — 2
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and

doo = —1, dop =1, doa=1
d10 = 0, : dll = 0, d12 = -—2
dyg =0, da1 =0, dyp=1

Using (10) and (11) we obtain

Too =
0 1

1 -1 01
Tio=A = Ty, =
. [0 1} . [1 0

1 -2 -1 2
Tyo = A? = [ ] ; Ton= AT+ B'Tio = { 5 }

0 1
-3 4
3 -3

1 0
], Tor =Toa =T12 =

Ty, =B =

1 0
0 1 ] ,  T31 = ATy + B'Ty =

From (18) we have for k =1=1

dooly + d1oA’ + dooA'* + di1 B + dyoB'? + dy1Ths

10 1 -1 1 -2 01 10 -1 2 00
=-— +0 +0 +0 +1 +0 =
01 0 1 0 1 10 01 2 -1 00
and for k =2, I =1 from (17) we obtain
doolz + dioA”” + dooA’® + d11 B + g2 B'® + dy T
10 1 -2 1 -3 10 01 -3 4 00
=~ +0 +0 +0 + +0 =
01 0 1 0 1 01 10 3 -3 00

Similarily 1t can be checked that (17) is satisfied for £ > 2 and 1> 2.

4.2. Singular Systems

The above considerations can be extended for the singular system (1) satisfying the
condition

det[Esz — Az — B] #0 for some (s,z) € CxC (19)
In this case instead of (8) and (12) we have

[Esz — Az — B]™* = Z Z Tl s~ (41) ;=G +D) (20)

i=—n1j=—n3
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and

ry T2

det[Esz — Az — B] := ZZd;-jsizj (21)
1=0 j=0
respectively, where ry < rank E, ry < max(rank E,rank A).

In general case n, and ny; may be infinite. If det A # 0 then ny = 0 and if
d. ,, # 0 then n; and ny are finite. Equating the matrix coefficients at the same
powers of s and z of the equality

[Esz — Az — B i i ﬂ!js_(iﬂ)z“(j“)
) ZO:o—n.l]:77LQ (22)
= Y D> Ts 000D | [Bsz — Az~ B] =1,
i=—ny j=—ny
we obtain
AT, o+ BT, _ 41, fori=j=0
ET; =< AT!_,;+BT/_,;_, fori#0or/and j #0 (23a)
0 for i < —nj or/and j < —ny
and
TL 0 A+TL, _B+1I, fori=j=0
Ti’jE: ﬂ~1,jA+Ti’—1,j—1B for i+ 0 or/and j # 0 (23Db)
0 fori < —nj or/and j < —ny
Note that (10) is a particular case of (23) for £ = I,
Let
: mi mo
[Esz — Az — Blag ::ZZHZ{jSizj ‘ ' (24)
i=0 j=0

where m; <7y and my < ry.

Using (20), (21) and (24) in a similar way as Theorem 2, the following theorem can
be proved.

Theorem 3. The transition matrices T of (1a) satisfy the equations

1 T2

szf;jﬂ-i—k—l,j-}-l—l =0forni+ri—1>my, na+rys—1>my (25)

1=0 j=0

and k>0, {>0.
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Note that (13) is a particular case of (25) for ny = ny =0, 1y = rz = n and

m; =mg=n-—1.
4.3. Particular Case
Consider equation (la) for A =0, i.e.
Ez(t,k + 1) = Bz(t, k) + Cu(t, k)
with the commutative pair (E, B)
EB =BE
and

det[Es — B] #0 for some s€ C

Theorem 4. If (26) holds, then

i a,:BiEn_i =0
1=0

where a; are the coefficients of the characteristic polynomial
n
det[Es — B] = Zais’
1=0

Proof. From (26a) it follows that

B(Es— B) = (Es— B)B, E(Es— B) = (Es— B)E
and

(Es— B)~'B = B(Es — B)~!, (Es— B)"'E = E(Es— B)™*
Using (29) it is easy to show that

[(Es—- B)—lB]k : Bk(Es _B)*,
k=12

gLy e

(55— B)1E] * = (Bs— B)*EF,
and

(Es—B) "E"'=E"YEs—-B)™, i=0,1,..
In (Ciftcibasi and Yuksel, 1982) it was shown that if

E=(Es— B) 'E, B=(Es—-B)™'B
then

i Cl,'Tg_i—l'E'—n_1 =90
i=0

(26a)

(26b)

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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Using (33), (32), (30) and (31) we may write

n n

Zaiﬁ"_«”"' = Zai [(Es . B)-lB] i [(Es - B)“lE’] B
:Zn:aiBi(Es-—B)‘i(Es— B)i-rpn—ig" (34)

a;B'E""{(Es — B)™" =0

,,
1l
o

Postmultiplication of (34) by (Es — B)™ yields (27). ]
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