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AUTOMATIC DETECTION AND CORRECTION
OF COMPUTATIONAL ERRORS IN PROGRAMS

P.A.D. pE MAINE*, M.M. DE MAINE*

Two different kinds of methods that are frequently used to evaluate functions
are: Regression (for single-valued parameters) and Iteration (for multi-valued
parameters). Comprehensive tests have established that both regression and
iteration methods can yield unexpected false answers because their criteria are

, necessary but not sufficient conditions. Working algorithms that automatically
detect and correct computational errors are described. For regression methods,
in the Maximum Tolerance (MAXTOL) algorithm, the traditional question “Do
these data describe this equation?” is replaced by “Do these data describe this
equation within user stipulated limits of reliability for the raw data?” For itera-
tion methods absolute measures for computational accuracy, determined from
a general form of the Law of Conservation of Mass and Energy, have led to
the development of the fully Automatic Error Detection and Corrective Action
(EDCA) algorithm.

1. Introduction

Key problems associated with numerical evaluations of equations are the determi-
nation of computational accuracy and the correction of computational errors. The
objective of this paper is to describe and demonstrate two algorithms that determine
computational accuracy, use user-supplied “limits of reliability” or “desired compu-
tational accuracy” to detect errors and then automatically correct them.

Two different kinds of methods that are used to evaluate equations are:

(i) Regression methods in which only single-valued parameters are calculated, gene-
rally from values for multi-valued parameters by graphical or statistical curve-
fitting methods.

(ii) Iteration methods in which values for multi-valued parameters are generated from
boundary conditions. Typical examples are the use of the well known procedures
by Hamming-Kutta-Runge (for evaluating systems of differential equations) and
Newton-Raphson (for evaluating systems of nonlinear equations), and the use
of iterative procedures to solve nonlinear equations for both single-valued and
multi-valued parameters.
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1.1. Regression Methods

Regression methods have recently been considered in (de Maine and de Maine, 1992a).
With conventional procedures the answers are ultimately computed from the varian-
ces. They include measures for the “goodness of fit”, calculated values for single-
valued parameters and their reliabilities. Extensive experiments using machine gene-
rated data with controlled variances (de Maine, 1978a) have established that:

(a) The three different kinds of variance (normal statistical fluctuations, wrong va-

lues, and unsuspected curvature) can affect the “goodness of fit” criteria in dif-
ferent and unpredictable ways (de Maine, 1978b; de Maine et al., 1978).

(b) Different transforms of the fitting equation yield different results (de Maine,
1965) (e.g. improve a fit by plotting ¥ versus X instead of Y/X versus 1/X).
Thus virtually any desired result can be confirmed by selecting an appropriate
transformation.

(c) Interactive graphical methods based on variants of the method of residuals
(Thisted, 1988) appear to ignore Sillen’s results (Sillen, 1962) and can there-
fore yield incorrect answers. Sillen’s results, which demonstrated that graphical
and statistical curve-fitting methods yield virtually identical answers, have been
independently confirmed in our laboratory (de Maine, 1965; de Maine and Seaw-
right, 1963a.).

The experiments just cited also established that the ambiguity inherent in conven-
tional graphical and statistical curve-fitting methods occurs because the “goodness of
fit” criteria are essentially average measures that are not invariant to transformations
of the trial equation. Such transformations can affect the data and its variances in
opposing ways.

1.2. Iteration Methods

Methods for estimating absolute computational accuracies have not been reported.
Relative computational accuracies may be determined by the following two types of
method that use relative measures like the rate of convergence.

(1) In convergence methods for calculating multi-valued parameters results are
deemed acceptable if their values are not significantly altered in successive itera-
tions.

(2) Sensitivity methods, normally used in iterative procedures that compute values
for both single-valued and multi-valued parameters, are also used in classical
iteration procedures to calculate values for multi-valued parameters. Calculated
values for single-valued parameters are accepted if changes in their initial values
do not significantly affect the final calculated values for any of them. Results
are also accepted if small changes in the calculated value(s) for the single-valued
parameter(s) do not significantly alter the calculated value(s) for any multi-valued
parameter.

While both types of methods can detect chaotic or unstable conditions like those
that occur at or near points of discontinuity, neither can by themselves (i) instigate or
recommend corrective actions, or (ii) correctly determine the absolute computational
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accuracy for any calculated parameter. That occurs because the relative measures
used are necessary, but not sufficient, and therefore spurious results are often reported
(de Maine and de Maine, 1992b). Sensitivity methods are particularly prone to yield
incorrect answers because the effect of even small changes in the distribution or values
of variances are not understood. An example is the result reported for the iterative
solution of a simple system of nonlinear equations that is in error by more than 1000%
(de Maine et al., 1957). That particular system of equations has three possible foci
(correct, false and oscillating), determined by the actual distribution of variances (de
Maine and Seawright, 1963b). The reported result is a false focus.

The key problem of determining absolute computational accuracies has been
solved with the realization that a general form of the physical law of conservation
of mass and energy applies to mathematics. The result is the Error Detection and
Corrective Action, EDCA, algorithm that employs a user-stipulated parameter to
detect computational errors, automatically instigates corrective actions, and reports
the absolute computational accuracy for every calculated value.

2. Maximum Tolerance Method (Regression Analysis)
Terms associated with this method are:

The values for Observables are the data that will be used to compute values for the
variables in the trial equation.

The Maximum Tolerances are the user-stipulated maximum uncertainties for every
value of every observable.

The Error Bounds are the maximum uncertainties for every value for every variable.
They are calculated from the observables and their maximum tolerances.

A Domain contains the values for the variables that were used to successfully solve the
trial equation. If there is unsuspected curvature the data are partitioned into
overlapping domains that are used separately to solve the trial equation.

A Rejected Data-Point is one whose deviation exceeds its error bound. Illegal rejects
result from unsuspected curvature. They lead to the partitioning of the data
and their eventual acceptance in one or more of the overlapping domains. Legal
rejects are not accepted in any domain.

The Maximum Error is the maximum possible error in the calculated value for a pa-
rameter in a domain. It is computed by deforming the accepted data with their
calculated deviations.

The maximum tolerance method is an asymptotic procedure that uses the error
bounds to reject unacceptable data and to detect unsuspected curvature, which leads
to partitioning into overlapping domains and no illegally rejected data-points.

2.1. Calculation of Error Bounds

Values for the variables and their error bounds are mechanically computed from the
values for observables, O;, and their maximum tolerances, dO; > 0. For illustrative
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purposes suppose that four observables define the variables w, z, y and 2 thus:
w=log(0) — 03); £ =04; y= 01/03; and z = 04 — O;.

There are two different methods for computing error bounds (designated £ B;).

In both methods the signs for the maximum tolerances are selected to yield the
maximum values for the error bounds. In the Tolerance method:

EB, = lOg(Ol +d0;— 05+ dOz) — log(01 — Og)
EB; =dO,
EBy = (014 d041)/(03 — dO3) — 01/03

EB, = dO, + dO;

The Dertvative method, which can only be used for very small maximum tolerances,

yields:
EBy = (dO1 +d02)/(01 — 03)
EB, = dO,
EBy = d01/03 + 01d0s/02
EB, = dO, + dO;
2.2. Overview of the Maximum Tolerance, MAXTOL, Method

The MAXTOL method (de Maine and de Maine, 1992a), also called the CURFIT
method (de Maine, 1978b; de Maine et al., 1978), uses the following three algorithms:

(a)

()

A central feature of the complex Self-Judgement Principle (SJP) (de Maine and
Seawright, 1963b) are twelve automatic or semi-automatic mechanisms for redu-
cing bias and eliminating erroneous data. The SJP transposes the data points (to
eliminate bias), then uses the conventional method of least squares to compute
the median curve and the error bounds to determine which data points are to
be rejected. Rejected data points are those with a deviation greater than the
corresponding error bound. ‘

The Discard Rules Procedure, DRP, is best described as an environmental ana-
lysis of each rejected data point and its three different closest neighbors to deter-
mine if the rejection is legal. A legal rejection is due to normal random statistical
fluctuations.

The Error Expansion Procedure, EEP, is used as a last resort to increase the
error bounds in those cases where the maximum tolerances are too small.

In the Maximum Tolerance method the data points that are computed from the

values for the observables are ordered with the first independent variable increasing
and then they are arbitrarily partitioned into a maximum of ten consecutive sectors,
each with a minimum of eight distinctly different data points. At this point the
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domain for the trial equation contains all the data points that were not eliminated by
the SJP. The following steps are executed.

STEP 1. The SJP is used to determine which data points in the designated domain
are rejected. The median curve is computed by the conventional method of
least-squares and then the error bounds are used to determine which data
points are rejected.

STEP 2. The rejected data points are examined by the DRP to determine if there
are illegal rejects (i.e. those due to unsuspected curvature). If there are no
illegal rejects go to Step 3. Otherwise Step 4 is executed.

STEP 3. Use the calculated deviations of all accepted data points to compute the
maximum error in the median value for every parameter. The maximum
errors are computed by deforming the deviations for accepted values for
each variable in turn to the worst configuration. If all data points have
been processed go to Step 6. Otherwise redefine the domain and execute
Step 1.

STEP 4. In this step there is at least one illegally rejected data point. If the domain
cannot be decreased (i.e. there is only one sector) go to Step 5. If there is
more than one sector, the domain is redefined by omitting either a half, if
an end sector is to be omitted, or a full sector from the left or right. This
assures that the domains will overlap by at least half a sector. Go to Step 1.

STEP 5. For domains with one sector the EEP, which increases the error bounds, is
invoked, and Step 1 is executed. :

STEP 6. The regression analysis has been completed and the maximum tolerance
procedure is terminated.

2.3. Criteria of Fit

The explicit “goodness of fit” criteria in their order of significance are:
(A) The number of domains and the range of every variable in every domain.

~ (B) The calculated value for every parameter and its associated maximum error in
every domain.

(C) The number of rejected data points and the maximum tolerances for every value
for every observable.

A perfect fit occurs for the specified ranges only if there is one domain, all maximum
errors are vanishingly small, and there are no rejected data points.

The advantages offered by the maximum tolerance method include:

(1) The ambiguity and uncertainty that are an inherent part of the conventional
curve-fitting methods are avoided.

(2) Fits of different sets of data to the same equation or the same set of data to
different equations with the same or different dimensions, can be directly and
unambiguously compared.
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3. Error Detection and Corrective Action, EDCA, Algorithm

In conventional iteration procedures well known relative mathematical measures such
as the rate of convergence and division by zero or very small numbers are used to
detect instability. If instability is detected, alternative procedures must be used. The
problems associated with this approach for non trivial systems of equations are:
(i) Conventional mathematical tests are necessary but not sufficient. While terminal
failures (like division by zero) do establish that instability has occurred they do
not by themselves indicate which alternative procedures should be used.

(i1) When terminal failures do not occur, it is nearly impossible to determine the
validity of answers, and instability cannot be detected.

Clearly the usefulness of conventional iteration procedures can be greatly enhanced
with: (1) absolute measures of instability; and (2) automatic methods for improving
computational accuracy.

Absolute measures are described next, and the general rules for designing EDCA
algorithms are given in Subsection 3.2. The particular version that is being used for
applications of the common Newton-Raphson and Hamming-Kutta-Runge methods
is discussed in Subsection 3.3 and demonstrated in Section 4.

3.1. Absolute Measures of Instability

Absolute measures can be devised with a general form of the Law of Conservation of
Mass/Energy applied to all systems of equations, regardless of their physical meaning
or interpretation. The physical form of this law, Mass Cannot be Created or Destro-
yed, asserts that equations must be balanced and that all specific reaction constants
(single-valued parameters) and concentrations (multi-valued parameters) of reactants
must have positive real values. The general form or mathematical variant is that all
equations must be balanced, so parameters can have any real or complex values.

Applications of the general form of this law are used to compute the maximum
computational error in every calculated value for every parameter. Key definitions
are:

The Maximum Computational Accuracy is the maximum computational error in a run.
A maximum computational accuracy of 0.00000026% means all the computed
results are correct to at least 0.00000026%.

The Maximum Computational Accuracy for a Data-Point is the Maximum Computatio-
nal Accuracy for the computed values for all variables in that data-point.

The ACCURACY System Parameter is the user stipulated maximum value for the
computational accuracy. If this is exceeded by the maximum computational
accuracy for any data point corrective actions are automatically invoked until
either a solution is found or the computation is terminated. The user is informed
about the automatic procedures invoked to improve the maximum computational
accuracy or, if the computation is terminated because the limits of computational
accuracy were reached, the specific tasks that must be performed before the run
1s resubmitted.
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Suppose that values for the variables A, B, C and D are to be computed
for t = 0,1,2,...,N from the boundary conditions (the values for k; and K; and
initial values for all variables: Ay, Bo, Co and Dy) for the family of equations:
—dA/dt = —dB/dt = dC/dt = k1 AB; K; = D/C?, which in the physical sciences is
described thus: A+ B — Ck1; 2C « D, K;.

For each variable in turn: ‘

1. Recompute the value for the variable. For example, the recomputed value for
variable B is: NB; = Ag+ By + Co +2Dg — A; — Cy — 2D;.

2. Calculate the computational accuracy for the value of the variable. For example,
the computational accuracy for B; is the absolute value of 100(N By — B:)/B;.

3. Calculate the computational accuracy in K1, CAK)x, with the new value for the
variable. For example, if NC; is the recomputed value for C; then CAKi¢c is
the absolute value of 100(N K¢ — K1)/K; where NKi¢c = D;/NCE.

It should be noted that: (i) recomputation of a variable, like NB; or NC%, is in-
dependent of the meaning of the equation, and (ii) recomputation of a single-valued
parameter, like N K¢, is determined by the type of equation.

3.2. Methodology for Designing EDCA Algorithms

EDCA algorithms depend on the iteration method(s) that are used. The general
methodology that was used to develop the highly successful EDCA algorithm (Sub-
section 3.3) is described next. It requires the availability of implemented forms for
both the absolute measures of instability and the iteration procedure.

The steps are as follows:

STEP 1. Devise tests for detecting mathematical instability and measuring computa-
tional accuracy for the iteration procedure. Tests for mathematical insta-
bility (i.e. division by zero or failure to converge) are normally an integral
part of most iteration procedures.

STEP 2. Use the absolute measures of instability to determine the parameters that
control mathematical instability and the range (or scan limits) for each.
Values for a parameter that lie outside its scan limits cause failures or require
excessive computation time. Controlling parameters can be deduced from
experiments that measure the effect of change in their values on the relative
tests for mathematical instability.

STEP 3. Determine the causal relationships between the values for the controlling
parameters and the kind of test.

STEP 4. Use the causal relationships obtained in Step 3 to deduce actions that will
improve the computational accuracy.

STEP 5. Implement the EDCA algorithm. Information obtained in Steps 3 and 4 is
used thus:

(i) If possible automate those actions that improve the computational ac-
curacy and notify the user of the remedial actions.
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(ii) If automation is not possible notify the user that instability has been
detected and suggest (if possible) remedial actions.

3.3. Implemented Version of the EDCA Algorithm

The general form of the law of conservation of mass and energy is independent of the
lteration method that is used. The first step towards realizing an EDCA algorithm
1s to implement a general form of the law for use in determining the computational
accuracy in calculated values for variables. The second step is to design and implement
EDCA algorithms for every different iteration procedure.

3.3.1. General Form of the Law of Conservation of Mass and Energy

In chemistry the equation for a reaction: a4 + bB = ¢C + dD, which can represent
either a rate reaction that describes a family of first order ordinary equations or a
equilibrium reaction that describes a non-linear equation, stipulates that @ units of A
and b units of B combine to form ¢ units of C' and d units of D. The stoichiometric
constants or coefficients (lower case letters) and concentrations of entities (upper case
letters) must be positive real numbers. In this simple case, with values for (1) all
stoichlometric constants, (ii) all variables in an initial state, and (iii) one of the
variables in a second state, values for the remaining three variables in the second
state can be calculated. For example, if Ap and A; designate the first and second
states of A, then: Bl = (A]_ - Ag)b/a — Bo, Cl = (Al - AQ)C/G, — Co; and D1 =
(Al - Ag)d/a - Do.

For the general form of the law of conservation of mass and energy the parameters
can be negative, positive or complex. However, values for variables are computed in
exactly the same way.

For any system of equations and adequate computer resources, the implemented
general form of the law (de Maine, 1980b) can be used to calculate the value for any
multi-valued parameter in a designated state from the values for all the parameters
in another state and values for selected parameters in the designated state. The equ-
ations can represent complex continuous or discontinuous functions with derivatives
and/or integrals. Moreover, the multi-valued parameters can themselves represent
complex functions and the coefficients may be described by combinations of Dirac
Delta Functions and factorials. Here the computational techniques are illustrated
with some simple examples. The subscripts o and 1 designate the initial and target
states respectively.

Example 1. Compute the value for A; from B for the following equation?
aA=0bB+cC+dD
A= a(Bl - Bo)/b + Ag

Example 2. Compute the value for A; from B; and D; for the following system
of equations?

aA+..=bB+ ..
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dA+...=dD+ ..
Al = G(Bl — Bg)/b+ a’(Dl —_ DD)/d+A0

Example 3. Compute the value for B; from A; and D; for the following system
of equations?

aA+..=bB+ ..
¥B+..=dD+ ...
B = b(Al - Ao)/a - b/(Dl - Do)/d+ By

Example 4. Compute the value for B; from A;, D; and E; for the following
systems of equations?

aA+..=bB+ ..
¥B+..=dD+..
dD+..=eE+..
By = b(A1 — Ag)/a— V' (D1 — Do+ d'(E; — Eo)/e) /d + By

Example 5. Compute the value for A; from B;, D; and E; for the following
systems of equations?

aA+..=bB+ ...
adA+..=dD+ ..

dD+..=€eE+ ..
Al = a(Bl - Bo)/b+ a (Dl — Do+ d/(El - Eo)/e) /d+ Ap

The number of variables whose values are required in the second state is determined
by the interdependence of the equations.

The general form of this algorithm is used to recompute the variable that has
the lowest value. Space limitations prevent the inclusion of the detailed algorithm.
However, the FORTRAN coded versions of the two key routines, called CACONC and
CAMELD, have been described elsewhere (de Maine, 1980b). Copies can be obtained
from the authors. Here it is sufficient to note that the primary task was to devise a
‘book-keeping method for selecting that combination of values for parameters in the
object state which simplifies the calculation of the value for the designated parameter.

The absolute measure for computational reliability is the percentile difference
between the computed and the recomputed values for a parameter. If it exceeds the
user stipulated value for the ACCURACY parameter then the computed value is not
acceptable and corrective actions are invoked.
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3.3.2. Controlling Parameters

The general purpose FRANS system, which operates in the prediction and computa-
tional modes (de Maine and de Maine, 1990), uses the well known Newton-Raphson
and Hamming-Kutta-Runge iteration methods to so lve physical problems. There are
eight tests for mathematical instability and computational accuracy (see Tab.1). The
first four are conventional mathematical tests, the fifth is used to indicate a successful
restart in the Hamming-Kutta-Runge method, FAILED=6 results from the applica-
tion of the physical form of the law of conservation of mass and energy, and the last
two (FAILED=7 and 8) arise from the general form of the law of conservation of mass
and energy.

Eleven parameters control computational accuracy (see Tab. 2). FUZZ is as-
soclated exclusively with the prediction mode. The remaining ten are associated
with the Newton-Raphson and Hamming-Kutta-Runge iteration methods. All except
EQSTEP, FUZZ, ITMAX, MINSTEP and WORDSIZE are dynamically variable,
which means that they can be altered without terminating computations.

Exhaustive empirical studies with MINPOS and MAXNEG equal MINSTEP and
—1000 x MINSTEP respectively have established the following.

1. Generally acceptable values for the five controlling parameters that cannot be
dynamically adjusted (EQSTEP, FUZZ, ITMAX, MINSTEP and WORDSIZE).
The first four are system parameters that are altered by the user when notified
by the FRANS system to do so. WORDSIZE is determined by the machine
architecture.

2. Generally acceptable values for the six dynamically adjustable parameters (AC-
CURACY, EQTOL, MINPOS, MAXNEG, TRUNCATE and SMALLEST). AC-
CURACY, EQTOL, TRUNCATE and SMALLEST are system parameters that
can also be set by users. However, they are normally changed by the system itself.

3. The ranges of acceptable values for ACCURACY, EQTOL and TRUNCATE.

4. There is a causal relation between the kind of test and values for ACCURACY,
EQTOL and TRUNCATE. Remedial actions for failures in tests are either to
increase (Test 3) or decrease (all other tests) EQTOL. If EQTOL cannot be chan-
ged (i.e. it has a terminal value in its range) it is set to its default value and then
TRUNCATE is changed. If TRUNCATE cannot be changed then it is set to its
default value and ACCURACY is increased. If ACCURACY cannot be changed
(i.e. it is the maximum value), the computational accuracy of the machine that
is being used has been exceeded and the iteration is terminated with appropriate
advisory messages.

The values assigned for the controlling parameters are shown in Tab. 3.

3.3.3. The Implemented EDCA Algorithm

For the implemented form of the EDCA algorithm the following definitions are requ-
ired.
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Tab. 1. Reliability tests for the Newton-Raphson and Hamming-Kutta-Runge itera-

tion

methods. FAILED is the error code.

The first four are conventional

mathematical tests. Tests 6, 7 and 8 are variants of the general form of the
Law of Conservation of Mass and Energy. Test 5 indicates a successful restart
of the Hamming-Kutta-Runge procedure.

FAILED TEST

1 Failed the first Hamming-Kutta-Runge test (more than 1000 iterations
were required).

2 Failed the second Hamming-Kutta-Runge test (convergence did not
occur).

3 Failed the first Newton-Raphson test (convergence did not occur).

4 Failed the second Newton-Raphson test (terminal error occurred).

5 Successful recalculation of the starting value for a variable by the
Hamming-Kutta-Runge method.

6 Failed because a negative value for a variable was calculated.

7 Failed because the maximum computational accuracy for the recalcu-
lated value for a variable exceeded the user-stipulated ACCURACY
system parameter.

8 Failed because the maximum computational accuracy in the calculated
value for a equilibrium constant exceeds the user-stipulated ACCU-
RACY parameter.

Tab. 2. Parameters that control the computational accuracy in the FRANS system.

FUZZ is used only in the prediction mode. The other parameters are used in
the iteration mode. WORDSIZE is determined by the machine architecture.
EQSTEP, FUZZ, ITMAX, MINSTEP and WORDSIZE are not dynamically

adjustable.
Name Description of Role of Parameter

ACCURACY | User-stipulated ACCURACY system parameter.

EQSTEP Smallest equilibrium step for Newton-Raphson.

EQTOL Controlling parameter for Newton-Raphson.

FUZZ Used in the prediction mode to determine which variables are compu-
table.

ITMAX Maximum number of iterations for Newton-Raphson

MAXNEG —MAXNEG 1is the largest negative value recognized for a computed
parameter.

MINPOS Smallest positive value recognized for a computed parameter.

MINSTEP Smallest step in Hamming-Kutta-Runge.

SMALLEST | Smallest absolute difference recognized in the time scale for Hamming-
Kutta-Runge. )

TRUNCATE | Controlling parameter for Hamming-Kutta-Runge.

WORDSIZE

Number of bits in a double word.
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Tab. 3. Values assigned for the Controlling Parameters for the Newton-Raphson and
Hamming-Kutta-Runge iteration methods. FUZZ, ITMAX and WORDSIZE
are not dynamically variable. MAXNEG and MINPOS have been arbitrarily
set equal to 1000 x MINSTEP and MINSTEP respectively.

Name Minimum | Default | Maximum
ACCURACY | 1077 10.0 10.0
EQSTEP 10731
EQTOL 0.1 10~ 0.1
FUZZ 1012
ITMAX 10.

MAXNEG 10712

MINPOS 10728

MINSTEP 10735
SMALLEST 10~°
TRUNCATE | 0 0 14
WORDSIZE 64 Bits 64 Bits | 64 Bits

RTFLAG is the number of time dependent equations.
NP is the number of the first data-point correctly computed with the current values

for EQTOL, TRUNCATE and ACCURACY.
NP, is the number of the current data-point.

FAILED (the error code) is 0, 1, 2, 3, 4, 5, 6, 7 or 8. 0 and 5 indicate successful
computations. 3 specifies that the EQTOL is to be increased or TRUN-
CATE decreased. All other values for FAILED specify that EQTOL is to
be decreased or TRUNCATE increased.

EQTOLMay the maximum value for EQTOL.

EQTOLMin the minimum value for EQTOL.

TRUNCATEM.x the maximum value for TRUNCATE.

TRUNCATEwM;, the minimum value for TRUNCATE.

ACCURACYMax the maximum value for ACCURACY.
ACCURACYMin the minimum value for ACCURACY.

INCREASE the number of occurrences of FAILED=3 since the last successful com-
putation.

DECREASE the number of occurrences for FAILED=1, 2, 4, 6, 7 and 8 since the last
successful computation.

ACCURACY, EQTOL, MAXNEG, MINPOS, SMALLEST and TRUNCATE are the
current values for the dynamically adjustable parameters. The values for MAXNEG,
MINPOS and SMALLEST have been arbitrarily set to MINSTEP, 1000 x MINSTEP
and 107° respectively (see Tab. 3). DECREASE and INCREASE are used to de-
tect oscillations between FAILED=3 and all other values for FAILED > 0 except
FAILED=5.
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If there is any time dependent equation present (RTFLAG > 0) and NP.~NP; > 1
then the iteration is restarted at the last successfully computed data-point, NP,_;,
without changing the values for any dynamically adjustable parameter. The iteration
is terminated with appropriate advisory messages if: (i) all data-points are succes-
sfully computed; (ii) the allocated time has been completed; (iii) all possible values
for ACCURACY, EQTOL and TRUNCATE have been scanned and the limits of
computational accuracy have been exceeded; or (iv) both DECREASE and INCRE-
ASE are greater than five. A step-by-step description of the EDCA algorithm for the
Newton-Raphson and Hamming-Kutta-Runge methods follows.

STEP 1: If FAILED=0 or 5 — the current data point, N P,, was successfully pro-
cessed — set INCREASE and DECREASE to zero and then go to Step 14.
Otherwise go to Step 2.

STEP 2: If RTFLAG=0 there is no first order ordinary differential equation:
Set NP, =NP, and NP;=1

If RTFLAG > 0 there is at least one first order ordinary differential equa-
tion.

(a) If less than two data points were successfully processed (N P.—N Py < 2):
Set NP, = NP,_; and NP;=1

(b) If more than one data point was successfully processed (N P.—N P, > 1):
Set NP. =NP.,_; and NP;=NP,— NP,

STEP 3: If NP; <2 — less than two data points were successfully processed — go
to Step 4.
If NP3 > 1 — more than one data point was successfully processed — go
to Step 13.

STEP 4: If FAILED=3 the value of EQTOL is to be increased. Go to Step b.
If FAILED=1, 2, 4, 6, 7 or 8 the value of EQTOL is to be decreased. Go
to Step 8.

STEP 5: Set INCREASE=INCREASE+1.
If both INCREASE and DECREASE are greater than 4 — an oscillating
condition has been identified — terminate the run by executing Step 12.
Otherwise go to Step 6.

STEP 6: EQTOL is to be increased.
If 10 x EQTOL < or = EQTOLmax, set EQTOL = 10 x EQTOL then exe-
cute Step 13.
If 10 x EQTOL > EQTOLpMax — the maximum value of EQTOL has been
exceeded and the value of TRUNCATE is to be decreased — set EQTOL
to its default value and then execute Step 7.

STEP 7: TRUNCATE is to be decreased.
If TRUNCATE-1 > or = TRUNCATEmM;y,, set TRUNCATE =
TRUNCATE-1 then execute Step 13. -
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STEP 8:

STEP 9:

If TRUNCATE—-1 < TRUNCATEM;, — the minimum value of TRUN-
CATE has been exceeded and the value of ACCURACY must be increased
— set TRUNCATE equal to its default value and then execute Step 11.

Set DECREASE = DECREASE+1.

If both INCREASE and DECREASE are greater than 4 — an oscillating
condition has been identified — terminate the run by executing Step 12.
Otherwise go to Step 9.

EQTOL is to be decreased.

If EQTOL/10 > or = EQTOLpmin set EQTOL = EQTOL/10 and then
execute Step 13. :

If EQTOL/10 < EQTOLpM;; — the minimum value of EQTOL has been
exceeded and the value of TRUNCATE is to be increased — set EQTOL
to its default value and then execute Step 10.

STEP 10: TRUNCATE is to be increased.

If TRUNCATE+1 < or = TRUNCATEM.x set TRUNCATE equal to
TRUNCATE+1 and then execute Step 13.

If TRUNCATE+1 > TRUNCATEMax — the maximum value of TRUN-
CATE has been exceeded and the value of ACCURACY must been increased
— set TRUNCATE equal to its default value and then execute Step 11.

STEP 11: ACCURACY is to be increased.

If 1.10 x ACCURACY < or = ACCURACYMax set ACCURACY equal to
1.10 x ACCURACY and then execute Step 13.

If 1.10 x ACCURACY > ACCURACYMax — the maximum value of AC-
CURACY has been exceeded and the run is to be terminated — execute
Step 12. .

STEP 12: At this point three of the six dynamically adjustable parameters (EQTOL,

TRUNCATE and ACCURACY) have been scanned without finding an ac-
ceptable solution. The run is terminated with recommendations for the
restarting conditions and options. The options in order of preference are:

Option A. If FAILED=8 — Test 8 in Tab. 1 — delete all references to the
designated culprit calculated constant from the model.

Option B. If FAILED=6 or 7 — Tests 6 and 7 in Tab. 1 — delete all re-
ferences to the designated culprit calculated variable from the
model.

Option C. If FAILED=1, 2,3 or4 and NP. =1 — Tests 1,2, 3 and 4 in
Tab. 1 — the probable cause is the presence of a reactant with
zero concentration that is not formed in any reaction. Set the
culprit initial concentration to non-zero.

In many thousands of hours of computer time a terminal condi-
tion with N P. > 1 has never been observed.

Option D. Increase the system parameters MINPOS and MAXNEG one

hundred fold. All computed positive values less than MINPOS
and negative values greater than —MAXNEG are to be ignored.
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Option E. Respond to the prompt, and increase the ranges for the EQTOL
and TRUNCATE system parameters.

STEP 13: Restart the computation with data-point N P, then execute Step 14.

STEP 14: If the last data-point has been processed terminate the run. Otherwise
determine the remaining time. If it is less than five seconds set FAILED
equal to 12+FAILED and then print messages about the recommended
conditions for manually restarting the run. If more than five seconds remain
continue with the computation of the next data point.

It is planned to extend this algorithm to include automation of changes for the re-
maining three dynamically adjustable parameters (MAXNEG, MINPOS and SMAL-
LEST).

4. Applications of the EDCA Algorithm

The purpose of this section is to demonstrate with selected examples the EDCA
method that is used in the FRANS system to control computational errors. The user-
friendly interfaces can only be demonstrated on computers. Examples that are trivial
from the mathematical viewpoint are used because of space limitations. Within the
available computer resources there are no limits on the size or complexity of models.
Here it should be noted that the meaning of the widely used notation for describing
families of equations is as follows. RKF1, RKF2, RKB and EK are single-valued
parameters. All other parameters are multi-valued. Both single- and multi-valued
parameters may be functions of several parameters.

A —2.1xB+C, RKF1; means a family of first order ordinary differential equations:
—dA/dt =dB/2.1dt = dC/dt = RKF1.A

C & A+ D, RKF2, RK B; means two families of first order differential equations:
—dC/dt =dA/dt =dD/dt = RKF2.C
—dA/dt = -dD/dt =dC/dt = RKB.A.B

X 4+ B « C+ A, EK; means the non-linear equation:
FK=CA/X.B :

The use of the FRANS system has been described in (de Maine and de Maine,
1987; 1990; Marsili, 1990; de Maine et al., 1985) and especially in (de Maine, 1980a).
Here it is used to demonstrate the implemented form of the EDCA algorithm. The
concentrations for all reactants are to be computed at times 0.0, 0.1, 0.5 and 1.0
seconds for the system of equations:

A—921xB+C,RKF1l; C < A+ D, RKF2, RKB; X+ B — C+ A, EK;

with RKF1 =1, RKF2 =0.001, RKB = 10, FK = 5, and the initial concentra-
tions for A, B, C, D and X equal to 0.1, 0, 0, 0 and 10 moles/liter respectively.
RKFz and RKB are the specific rate constants for the forward and backward re-
actions, and FK is the equilibrium constant. All times quoted in this paper were
measured on a 386 based Toshiba 5200.
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Tab. 4. Pertinent part of the output from FRANS for the system of equations defi-
ned in the text. The maximum computational accuracy establishes that all
the calculated values for concentration of the five reactants are correct to at
least 1.4327329 percent. A computational accuracy of 0.0 percent means that
the calculated value is accurate to within the minimum recognized positive

value, 10715,

TABULATED RESULTS OUTPUTTED BY THE SOLVER PART OF THE CRAMS
SYSTEM.

4 SIGNIFICANT FIGURES ARE TO BE PRINTED FOR EACH OF THE VALUES FOR
THE 5 COMPOUNDS FOR THOSE OF THE 4 DATA-POINTS THAT WERE COMPU-
TED.
“TRUNCATE”, “EQTOL”, “ACCURACY” & “MINSTEP” ARE SYSTEM PARAME-
TERS.
FOR DATA-POINTS 1 TO 4 “TRUNCATE” = 0, “EQTOL” = 0.1000D-05 &
“ACCURACY” = 0.1000D+02.
THE DEFAULT VALUES ARE: —“TRUNCATE” = 0, “EQTOL” = 0.1000D-05,
“ACCURACY” = 0.1000D+02 AND
“MINSTEP” = 0.1000D~-14.
THE MINIMUM POSITIVE VALUE FOR A CONCENTRATION THAT WAS USED FOR
CHECKING IS 0.1000D—14.
ALL NEGATIVE CONCENTRATIONS GREATER THAN 0.1000D-11 WERE SET TO
ZERO.

ALL 4 OF THE REQUESTED DATA-POINTS WERE COMPUTED.
THE AMOUNT OF TIME FOR CALCULATIONS WAS 0.2000D4-01 SECONDS.

THE MAXIMUM COMPUTATIONAL ACCURACY IS 0.14327329D+01 %.

~ COMPUTATIONAL ACCURACY FOR DATA-POINT 1 IS 0.00000000D+00%.

— COMPUTATIONAL ACCURACY FOR DATA-POINT 2 IS 0.14327329D+01%.

- COMPUTATIONAL ACCURACY FOR DATA-POINT 3 IS 0.21810109D—01%.

— COMPUTATIONAL ACCURACY FOR DATA-POINT 4 IS 0.22093028D —03%.

THE COMPUTATIONAL ACCURACY CAN BE IMPROVED BY DECREASING THE
SYSTEM PARAMETER “ACCURACY” FROM 10.00000000 TO 0.00022083.
HOWEVER THE TIME REQUIRED MAY BE SUBSTANTIALLY INCREASED.

THE COMPUTATIONAL SPEED CANNOT BE INCREASED BY CHANGING “ACCU-
RACY”. ~

TIME A B C D
0.0000D+00 0.1000D+00 0.0000D+00 0.0000D+400 0.0000D+00
0.1000D+00 0.1116D+00 0.7414D—-04 0.3268D—01 0.1549D-05
0.5000D+00 0.1725D4+00 0.7288D-03 0.2054D+4+00 0.3719D-—-04
0.1000D+01 0.2956D+00 0.3472D-02 0.5570D+00 0.1250D-—-03

TIME X
0.0000D+00 0.1000D+02
0.1000D+00 0.9835D+01
0.5000D+00 0.9720D+01
0.1000D+01  0.9483D+01

Table 4 contains the pertinent part of the output with the ACCURACY system
parameter set to its default value, 10. Two seconds were required to achieve a maxi-
mum computational accuracy of 1.437 percent for all the values of 4, B, C, D and
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X that are displayed at the end of the Table. It should be noted that the maximum
computational accuracy of 1.437 percent could only be determined by application of
the general form of the law of conservation of mass and energy. The advisory messages
include the statement that the computational accuracy can be improved by changing
the system parameter from its default value, 10.0, to 0.00022083.

Tables 5 and 6 contain the advisory messages for the ACCURACY system para-
meter set to 0.00022083, 0.00000073 and 0.00000037. The -amount of computer time
increases from two seconds, for ACCURACY = 10.0, to 205 seconds for ACCURACY
= 0.00000037. With ACCURACY equal to 0.00000037 the computational lirnits for
a 64-Bit machine is exceeded and there are two remedial options. With the second
option, deleting reactant X, the computer time and maximum computational accu-
racy are reduced to one second and 0.0 percent respectively (Tab. 6). The results
displayed in Tables 4, 5 and 6 are summarized in Tab. 7.

Tab. 5. EDCA messages for the system parameter ACCURACY set to 0.00022083 and
0.00000078.

ACCURACY System Parameter 0.00022083
ALL 4 OF THE REQUESTED DATA-POINTS WERE COMPUTED.
. THE AMOUNT OF TIME FOR CALCULATIONS WAS 0.5000D+01 SECONDS.

THE MAXIMUM COMPUTATIONAL ACCURACY IS 0.11435083D-05 %.

- COMPUTATIONAL ACCURACY FOR DATA-POINT 1 IS 0.00000000D+00%.
— COMPUTATIONAL ACCURACY FOR DATA-POINT 2 IS 0.88418585D—06%.
— COMPUTATIONAL ACCURACY FOR DATA-POINT 3 IS 0.11435083D—05%.
— COMPUTATIONAL ACCURACY FOR DATA-POINT 4 IS 0.83249193D—06%.

THE COMPUTATIONAL ACCURACY CAN BE IMPROVED BY DECREASING THE
SYSTEM PARAMETER “ACCURACY” FROM 0.00022083 TO 0.00000073.

HOWEVER THE TIME REQUIRED MAY BE SUBSTANTIALLY INCREASED.

THE COMPUTATIONAL SPEED CAN BE IMPROVED BY INCREASING THE SYSTEM
PARAMETER “ACCURACY” FROM 0.00022083 TO 10.00000000.

ACCURACY System Parameter 0.00000078
ALL 4 OF THE REQUESTED DATA-POINTS WERE COMPUTED.

THE AMOUNT OF TIME FOR CALCULATIONS WAS 0.38D+02 SECONDS.

THE MAXIMUM COMPUTATIONAL ACCURACY IS 0.47218717D—06 %.

- COMPUTATIONAL ACCURACY FOR DATA-POINT 1 IS 0.00000000D+00%.

- COMPUTATIONAL ACCURACY FOR DATA-POINT 2 IS 0.47218717D—-06%.

- COMPUTATIONAL ACCURACY FOR DATA-POINT 3 IS 0.33973727D—07%.

- COMPUTATIONAL ACCURACY FOR DATA-POINT 4 IS 0.27417794D—07%.

THE COMPUTATIONAL ACCURACY CAN BE IMPROVED BY DECREASING THE
SYSTEM PARAMETER “ACCURACY” FROM 0.00000078 TO 0.00000037.

HOWEVER THE TIME REQUIRED MAY BE SUBSTANTIALLY INCREASED.

THE COMPUTATIONAL SPEED CAN BE IMPROVED BY INCREASING THE SYSTEM
PARAMETER “ACCURACY” FROM 0.00000078 TO 10.00000000.
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Tab. 6. EDCA messages generated for the two runs with the system parameter
ACCURACY set to 0.00000037. For the second run all references to the
reactant X were deleted. All calculated values are correct to within
the minimum positive value that is recognized, 10715,

ACCURACY System Parameter 0.00000037
ALL 4 OF THE REQUESTED DATA-POINTS WERE COMPUTED.
THE AMOUNT OF TIME FOR CALCULATIONS WAS 0.2050D+03 SECONDS.

THE MAXIMUM COMPUTATIONAL ACCURACY IS 0.46336507D—06 %.

— COMPUTATIONAL ACCURACY FOR DATA-POINT 1 IS 0.00000000D+00%.
— COMPUTATIONAL ACCURACY FOR DATA-POINT 2 IS 0.46336507D—06%.
— COMPUTATIONAL ACCURACY FOR DATA-POINT 3 IS 0.52034360D—09%.
— COMPUTATIONAL ACCURACY FOR DATA-POINT 4 IS 0.85641250D—09%.

THE COMPUTATIONAL LIMITS FOR A 64-BIT WORD MACHINE HAVE BEEN EX CE-
EDED WITH “ACCURACY”= 0.3700D-06. THE REMEDIAL OPTIONS ARE TO
CHANGE THE SCAN LIMITS FOR “TRUNCATE” AND “EQTOL” WHEN INTERRO-
GATED BY THE FRANS SYSTEM OR:~

— DELETE THE REACTANT X AS FOLLOWS:-

A. SET SYSTEM PARAMETERS “TRUNCATE"=0, “EQTOL” =0.1000D—-05
AND “ACCURACY" TO 0.3700D—-086.

B. DELETE THE EQUATION(S) WITH VARIABLE X FROM THE REAC-
TION MODEL.

C. DELETE THE REACTION CONSTANT(S) IN THE DELETED REAC-
TION(S).
D. DELETE THE VALUE(S) OF THE DELETED VARIABLE X.

E. FOR INITIAL VALUES USE THOSE VALUES SHOWN FOR DATA-
POINT 1 AND SET THE STARTING TIME TO 0.0000D4-00 UNITS.

F. RESUBMIT THIS RUN WITH T = 220SECONDS.

ACCURACY System Parameter 0.00000037 with Reactant X Deleted

ALL 4 OF THE REQUESTED DATA-POINTS WERE COMPUTED.

THE AMOUNT OF TIME FOR CALCULATIONS WAS 0.1000D+01 SECONDS.
THE MAXIMUM COMPUTATIONAL ACCURACY IS 0.00000000D+00 %.

— COMPUTATIONAL ACCURACY FOR DATA-POINT 1 IS 0.00000000D+00%.
— COMPUTATIONAL ACCURACY FOR DATA-POINT 2 IS 0.00000000D+00%.
— COMPUTATIONAL ACCURACY FOR DATA-POINT 3 IS 0.00000000D+-00%.
- COMPUTATIONAL ACCURACY FOR DATA-POINT 4 IS 0.00000000D+00%.

THE COMPUTATIONAL ACCURACY CANNOT BE INCREASED BY CHANGING “AC-
CURACY™.

THE COMPUTATIONAL SPEED CANNOT BE INCREASED BY CHANGING “ACCU-
RACY™.
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Tab. 7. Summary of the pertinent results displayed in Tables 4, 5 and 6 for the EDCA
algorithm, obtained with a TOSHIBA 5200. SPA and MCA are the System
Parameter ACCURACY and the Maximum Computational Accuracy respec-
tively. In Run 4 all references to the variable X were deleted from the model,
the second option given in Tab. 6. MCA = 0.00000000 means that the values
for the variables A, B, C and D normally displayed (not shown in Tab. 6)
are within their correct values as stipulated by the values for dynamically

adjustable parameters MINPOS, MINNEG and SMALLEST.

MCA (%)

Run | Time (secs) | SPA (%)
0 10.0000000 | 1.43273300
1 0.00022082 | 0.00000114
2 38 0.00000078 | 0.00000047
3 205 0.00000037 | 0.00000047
4 1 0.00000037 | 0.00000000

5. Conclusions

Two methods for determining computational accuracy have been described and de-
monstrated. In the Maximum Tolerance procedure user-supplied estimates of the
reliability of raw-data are used to eliminate the ambiguity that is an inherent part of
the conventional curve-fitting methods.

In the Error Detection And Corrective Action (EDCA) algorithm, which is an
application of a general form of the law of conservation of mass and energy, user
stipulated computational accuracies are used in iteration procedures to detect ma-
thematical instability and invoke corrective actions to ensure that only acceptable
answers are displayed.
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