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A MULTIDIMENSIONAL POLYNOMIAL
FACTORIZATION METHOD BASED ON THE
MULTIDIMENSIONAL LAGRANGE POLYNOMIALS

Nikos E. MASTORAKIS*, Spyros G. TZAFESTAS*
Nickoras J. THEODOROU*

This paper provides a factorization technique of multidimensional polynomials
which is based on the concept of multidimensional Lagrange polynomials. These
polynomials are used for finding the coefficients of the factors of the multidi-
mensional polynomial. The result is that the given polynomial is factorized in
general factors involving several independent variables. The technique is fully
supported by a set of theorems and an illustrative example.

1. Introduction

Much research effort has been devoted in the recent years to problems involving
multidimensional (m-D) signals and multidimensional (m-D) systems. An m-D signal
is a function of more than one variable while an m-D system is an algorithm or a
transformation that transforms an m-D input signal to an m-D output signal. If for
a linear combination of two inputs, the same linear combination of their corresponding
outputs is obtained in the output of the system, the system is said to be linear. If
for each shifted m-D input signal a similarly shifted m-D output signal is obtained,
the system is said to be shift invariant. Linear and shift invariant m-D systems,
indicated by the symbol LSI, have recently attracted increasing attention. The reason
1s that many practical systems and applications lead to m-D models. Among these
applications, one can mention m-D digital filtering and image processing, biomedical
and geophysical data processing, remote sensing, computer vision, underwater acou-
stics, moving-objects recognition, z-ray enhancement, digital memory modelling and
distributed-parameter system analysis (Kaczorek, 1985; Tzafestas, 1986).

An m-D, LSI, SISO (single input, single output) discrete system, with
input u(ni,...,nmy), output y(ni,..,nm) and corresponding m-D z-transform
U(z1, .y 2m), Y (21, ..., 2m) may be defined by its m-D transfer function (ng, ..., ny,
are positive integers). ‘

Ny Nm . .
Qiy,. in21t .. 2k
_Y(z1,...,2m) iIZ::o imZ::O Horetm i

Uz, ... A N ) )
(31, 2m) 2 2 Pt
1,=0 Tm=0
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where Ni,..., Ny, are positive integers, @, ..

im and Fy ;. €1R. The polynomial
E?jl.—:o s Eﬁ:‘:o Fil,,__,imzil ...zim is the characteristic polynomial of the system and
henceforth it 1s noted by fc(z1, ..., 2m)-

If an m-D polynomial is written as a product of other lower degree poly-
nomials, then it is said to be factorizable. Factorization of m-D polynomials 1s
one of the primary processes in the field of m-D systems, since among others it
helps performing simpler realizations, simpler stability tests, and simpler control-
lers. More specifically, if the numerator and denominator of the transfer function
G(z1, .y 2m) = 9(21, -y 2m)/ fe(21, ..., 2m) are factorized as:

9(z1, . zm) = g1(21, -y Zm) - . . gn (21, --; Zm)
fc(zla sz) = fl(zlx "'sz) .- 'fN(Zli ,Zm)

where the g;’s and f;’s are obviously simpler than g and f;, respectively, one has to
realize the simpler m-D transfer functions:

Gi(z1, oy 2m) = M G (21, o 2m) = M’_”_)

- fl(zl) ~--7zm)’ fN(zl) -“:zm)
As the stability tests are in the form: check if f.(z1,...,2m) = 0 (in
appropriate regions of zi,...,%y), it is important to factorize f(z1,...,zm) In
fi(z1, .y 2m), -, In(21, ..., Zm), because in this case the stability test is separated into

simpler ones.

The factorization results of m-D polynomials are also useful in the theory of
distributed-parameter systems (DPS), which are described by partial differential equa-
tions, since the characteristic polynomials of DPS are actually m-D polynomials.

Factorizing an m-D polynomial is not a simple problem and available 1-D facto-
rization techniques cannot be extended to the m-D case in a straightforward way. Up
to now, the general factorization problem, i.e. the factorization of each factorizable
polynomial, has not been solved yet. For this reason, some more or less special ty-
pes of m-D polynomial factorization has been studied. In Theodorou and Tzafestas
(1985), the factorization in factors of one variableie. f(z1,...,2m) = fi(21)...fm(2m),
or in factors with no common variables i.e. f(z1,...,2m) = f1(Z1)fx(Zx) (71, ..., Zk
are mutually disjoint groups of independent variables) was solved. In Mastorakis
et al. (1991), the factorization succeeded by considering the given polynomial as
(1-D) polynomial with respect to z; and applying the well-known formulas from
elementary algebra, when the given polynomial is 2nd, 3rd, 4th degree in z;. In
Mastorakis and Theodorou (1992), the factorization of the State-Space Model was
presented. In Mastorakis et al. (1992), the factorization of an m-D polynomial in
linear factors i.e. f(z1,...,2m) = vaz‘l(zl +a;i 222 + ... + @i m2Zm + ¢;) was studied. In
Mastorakis and Theodorou (1990), the factorization of an m-D polynomial in factors
where at least one factor contains no more than m — 1 variables was studied.

Here, a factorization method for m-D polynomials is presented that employs
multidimensional Lagrange polynomials. The method is simple since it is based on
the computation of the roots of 1-D polynomials. These 1-D polynomials are obtained
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from the given m-D polynomial (to be factorized) by considering all variables, except
one, as parameters.

Section 2 introduces the concept of multidimensional Lagrange polynomials by
extending the well known 1-D Lagrange polynomials. Section 3 presents the root
factorization method and Section 4 provides an illustrative example. Two subsidiary
theorems are shown in the Appendix.

2. Lagrange Polynomials

Let pn(z1) be a polynomial of the complex variable z;. If the values py(z1) = g(21)
are known at the points zy,, ..., z1,, then the polynomial py(z1) can be found by
the formula

N
pn(21) = Zfi(zi)g(lli) (1)
where:
() = (21 = 215). (21 — 21, )(21 — 21,4,) (21 — 21yy)
flen) = (21, = 210) (21 — 21,0, ) (21 = 21400) (20 — 214) ®

are the associated Lagrange polynomials.

This polynomial is uniquely defined, since if there exists another polynomial
piv(21), then py(z1) — piy(21) has N + 1 roots (at the points zi,,...,21,). But
pN(21) — Piy(21) has degree N and so py(z1) — piy(21) =0 ie. py(z1) = ph(21).

Now, consider a polynomial py,,.. n,.(21,...,2m) in m-dimensions. If the values
PNy, N (21, Zm) = g(21, ..., 2m) are known at the points (Zlil)"‘)zmim)) where
0<% <Np,...,0 <4, < Ny, then one obtains:

le:m, Zl,... Z Z 621, 1m(z1,... ) (Z]_‘l,...,zmim) (3)

1;=0 tm=0
where:
N, N
H (Zl - zlk) . H (Zm zmk)
k=0 k=0
ki1 ki m
eily“'yim(zl""’zm) =M N (4)
kl——% (zlzl Zlk) . kDO (zm;m zmk)
k#1, k#im

This polynomial i1s again uniquely defined, since if there exists another polynomial

PNy,...Nmo theDn pny N, = Py, N, Siice PN, N, = Ph, . N, at the points
(214, #my,, ), where 0 < i3 < Ni,...,0 < iy < Ny, The proof is given in the
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3. The Root Factorization Method

The factorization method that follows refers to the special class of m-D polynomials
f(z1, ..., Zm), described by (5)

N1 Nm
f(z1, . 2m) = Z Z (i, ..., tm)2t 20 (5)
1,=0 tm=0
that have the following property: There exists at least one independent variable z;

such that the only existing monomial including the maximum power of z; is zj-vj ,
that is for at least one j (j =1,...,m):

a(ila "'1zj—l,Nj:1j+1) 1Zm) =0

when i) +...44;_1 + 441 + ... + i > 0 (and of course (0, ...,0,N;,0,...,0) # 0).
Then, without loss of generality, it is assumed that

(0, ...,0,N;,0,...,0) = 1

Although this is a special case, the class of m-D polynomials having the above
property is still very general.

Considering f(z1, ..., 2zm) as an 1-D polynomial f(z1,...,2j_1,%j+1,...,2m) With
respect to one independent variable z; (j = 1,..,m), then the remaining inde-
pendent variables z1,...,2j_1,2j41,...,2m are considered as parameters. In other
words, one gives constant values to 21, ...,2j-1, %j+1, ..., zm and the above polyno-
mial is factorized as 1-D polynomial with respect to z;. The roots p;(%), where

A .
Z =21,y 2j=1, Zj+1, -, Zm] T, Obey the relation

N;

f(z1, .y 2m) = H (Zj —pi(E)) (6)

=1

Now, the validity of (6), in the case that p;(Z) is a polynomial of z, will be
examined.

Suppose that:

Ljt1

Ly LJ'-1 L
p,-(?) = Z E Z Z 0(1:1,...,ij_l,ij+1,...,im)

11=0 ij.1=0 2541=0 1m=0

x 2t 2P (7)
where:
Li < Ny, Lj 1 < Njo1, Ljy1 < Njjay ooy Lin < Ny (8)

Without loss of generality, one can assume that

Li=Ni,..,Lj—1=Nj_1,Lj+1 = Nj41,..., Lm = Nm 9)
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considering that 6(¢1,...,4-1,%41,...,4m) = 0 for the remaining terms. The reason
is that the exact values of Ly, ..., Lj_1,Lj41,...,L;m are unknown. So,

Nj—1  Njpa

Mz Nm
=)0 ) D0 DT b, i1 i, ey i)

13=0 {j.1=0 i;41=0 =0

Clearly,in order to find p;(Z), by the Lagrange interpolation formula, the va-
lues at the points (zl‘l, ...,zj_liq,zj+1ij+1,...,zmim), are needed, where 0 < ¢; <
N1, ,0< 3521 S N;jo1,0 <4541 < Njj1,y 0, 0 < i < N

If one gives these different values to Z, the roots of f(z1,...,2m) are found,
considered as an 1-D polynomial with respect to z;. These roots are also the values
of the supposed polynomials p;(z). Therefore these polynomials can be found by the
Lagrange interpolation formula. Since the correct correspondence between one root
and one p;(z) is unknown, all the combinations, between them, should be tried.

Suppose that a polynomial p;(Z) has been constructed by the Lagrange interpola-
tion formula. Then,the m-D polynomial z; —p;(Z) is tested as a factor of f(z1, ..., 2m)
by applying the following theorem.

Theorem 1. A factor z; — pi(21, ..., 2j-1, Zj41, ---, Zm) s an m-D polynomial factor
of f(z1, ..., zm) tf and only if

f(zl, s 2= 1, Di( 21, ooy 251, Zi 41, s Zm)s Zj41s ...,zm> =0 (11)

Proof. The proof based on the 1-D division f(z1,...,2m) : (z; — pi(Z)), with respect
to z;, is omitted for the sake of brevity. [ ]

Remark. It is reminded that p;(Z) were assumed to be polynomials in (7). One
should notice that if (11) holds, then p;(Z) are indeed polynomials. If not, p;(7) are
not polynomials and f(z1, ..., zm) cannot be factored in polynomial factors according
to (6). However, it may be factored in other forms.

Now, if one factor z; — p;(?) is found, the algorithmic division f(z1,...,2m) :
(#zj = pi(2)) = q(21,..-,2m) is carried out. The polynomial ¢(zy,...,2y,) may be
factorized with this or with other methods (Mastorakis and Theodorou, 1990;1992;
Mastorakis et al., 1991; Misra and Patel, 1990; Theodorou and Tzafestas, 1985).

4. Example
Consider the 2-D polynomial:

f(z1,29) = 22 + 22122 + 22, — 223 + 32§ + 229 (12)

STEP 1. Clearly N1 =2 and N, = 3. The present method can be applied, because
a(N1,i3) = 0 when i3 > 0. Then, the variable zy is considered as a parameter.
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STEP 2. Set z; = 0, then
f(21,0) = 22 4+ 221 = z1(21 + 2)

Roots: 0,-2
Set zo =1
flz1,1) =20 + 221 + 22 — 24342 =27 + 421 +3
Roots: —1,-3
Set z9 = —1
flz1,-1) =22+ 220+ 221 +2+3-2=22 + 421 + 3
Roots: —1,-3
Set 29 = 2.
f(21,2) = 22 4+ 821+ 220 — 16+ 124+ 4 = 22 + 10
Roots: —10,0

Now, one has 4 pairs of roots. So, one can construct 2* Lagrange polynomials having
the form:

(22 - 1)(22 + 1)(22 - 2) (22 - 0)(22 + 1)(22 - 2)

p(z2) = 0 - 1)(0+ 1)(0—2) 9(0)+ 1-0)1+1)(1-2) 9(1)
" (Zz — O)(22 — 1)(2‘2 — 2) g(—l) " (2'2 - 0)(2‘2 — 1)(Z2 —+ 1)

2
(—1-0)(-1-1)(-1-2) e-oe-De+rn ‘¥
where ¢(0)=0 or -2, g(1)=—1 or =3, g(=1)=—-1 or =3, g(2) =0 or —10.
If one takes: ¢(0) = —2, g(1) = -1, g(-1) = =3, ¢(2) = 0, one finds p(z;) =
0-28 4023422 —2. The polynomial 21 —p(z3) = z1 — (22 —2) is a factor of f(z1, 22)
since

f(p(zz), zz) =(22—2)2+2(22 — 2)22 + 2(22 — 2) — 225 + 322 + 22, =0

STEP 3. Now, the algorithmic division
flz1,22) 121 — 22+ 2

1s carried out.

This division is carried out considering z; as parameter

B2+ 1)z — 223 + 325+ 22 | AT 2T 2) ézg —2)
—22 + (25— 2)n 21+ (224 + 22)
(222 + 29)21 — 223 + 322 + 229

—(222 4+ 23)21 + 225 — 322 — 225
0 0
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Therefore
f(71,22) = (21 — 22 + 2) (21 + 223 + 22) (13)

Clearly, z; — 25 +2 is not further factorizable. Now, it is examined, if z; 4223 4 2, is
factorizable.If yes, then the variable z must appear only in one factor: z;4azy+3. The
other factor will be czo+d. However coz+4d cannot be a factor of z;+222+22, because
714+ 2(—2)* +2(—2) £ 0 (Vd, c). Thus the polynomial is not further factorizable.

An application of this example is the following.

Consider the 2-D system described by the transfer function:

1 ) 1
Gler,22) = fe1,22) (71— 22 1 2)(z1 + 22 + 22) .

If the polynomial f(z1,22) has zeros inside the unit circle the system is unstable. For
this reason the equation

flz1,22) =0 (15)
or

22422022 4+ 221 — 225 + 322 4+ 225 = 0 (16)
with |z1] <1, |23] <1 is considered.

Since f(z1,22) is factorized, (16) is rewritten
71—20+42=0 or z1+22§+z2:0

The first of them has the obvious solution z; = —1, z; = 1 for which || < 1,
|za| < 1. Therefore f(zy,22) =0 for |z1] <1, |z3] < 1. Thus the considered system
is unstable.

5. Conclusion

A new m-D factorization technique has been developed in this paper through the uti-
lization of multidimensional Lagrange polynomials that were introduced for the first
time here. The method is based on the computation of the roots of 1-D polynomials
derived from the initial m-D polynomial. Actually, with the results of the present
paper the class of factorizable m-D polynomials is widened considerably. Other works
carried out by the authors concern the factorization of m-D polynomials through root
perturbation or rational function simplification.

Appendix

Theorem Al. If a multidimensional polynomial is equal to zero at the points
21 5y Zmy,, where 0 < 4y < Nip,..,0 < 4y < Ny, then this polynomial is the
zero polynomial.
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Proof. Consider an m-D polynomial in the form:

Ny N3 N

h(z,..,z) = Z Z ( Z a(jl,..,jm)z#) |2 (A1)

j1=0 \j2=0 Fm=0

and take the following (N + 1) values of (z1, ..., zm):

Zy = Cl,o; Z2 = 42,01 sy Zm = Cm,O
21 =C,Ny, 22=C20, -y Zm={mo
If for all the above Ny + 1 values of (21, ..., zm) the polynomial h(zi,...,zm) is zero,

le.: h(z1,...,zm) =0, then

N N )
S (X b dmadr) | =0 (Y, =00, M)
Jj2=0 im=0

for z3 = (2,0, -, Zm = {m,0-
Now, let the N + 1 points

z21="C0, 2z2=C21, 23=C(30, ---y Zm =(mo

z21=C N, 22=C21, 22=(3,0, .-, Zm =m0

If for all the above Ny + 1 values of 2, ...,z one has: h(z, ..., zm) = 0, then

Ny N )
S < S a(jl,..,jm)zgnm) L Adr=0 Vi, i=0,.,N)
j2=0 im=0

for Z9 = C2,1,23 = 43,(), oy Bm = leo.

Continuing in the same way, variating each time z;, one finds

N, N ,
Sl (3 aldmddr) A =0 (Wi, =00, M)
j2=0 Fm=0
at the points
22 =020, 23=0(30, ---, Zm=Cmpo

22=C2,1, 23=C3,0, cee Zm:Cm,o

29 = CZ.NQ) 23 = C3,0> vy Zm = Cm,O
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Then, variating, in the same way, the variable z3, it is found

N3 Np, )
Z ( Z a(jl;--,jm)zfnm)--- 31733:0 (le)jZ) j1:01"')N11 j2:0;"';NZ)

ja=0 Fm=0
for 23 =(3,0,-.-,¢3,N3, -, Zm = (im0
Continuing this procedure, finally, one obtains:
a(j1, - jm) = 0, 0<in <N, .., 08 jm < Ny
|
Theorem A2. If two multidimensional polynomials become equal at the points

(2145 s Zmy,, ), where 0 < iy < Ni,...,0 < iy < Ny, then these polynomials are
tdentically equal.

Proof. Let hi(z1,..., zm) and hy(z1, ..., 2, ) be polynomials of 21, ..., z,. Suppose now
that the polynomial:

h(z1, ..., 2m) = hi(21, ..., Zm) — ha(21, ..., Zm) (A.2)
becomes equal to zero, at the points (21,-1 y oo Zmy, ), Where 0 < i3 < Ny, .., 0 <4y, <
N Then, from theorem Al: A(z1, ..., 2m) = 0 and so hy(z1, ..., 2m) = ha(z1, ..., 2m).

|
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