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STRATEGIC SENSORS AND SPY SENSORS

LarBl AFIFI*, ABDELHAG EL JAI*

The purpose of this paper is to give general results on regional observation and
regional detection of distributed systems. This leads to the so called strategic
sensors and spy sensors. Characterizations of such sensors are also given as
well as the relationship between these two notions. The scanning sensor case
and the minimum time detection problem are also examined. Various examples
illustrate the different results and an application to a bidimensional diffusion
system is given.

1. Introduction

For a given distributed system, the detectability concept (see El Jai and Afifi, 1994)
is defined as the possibility of reconstruction of a source from the knowledge of the
output of the system under consideration. In practical situations, the output is given
by means of sensors. A sensor which allows a unique reconstruction of the source is
said to be a spy sensor. If the source is approximatively located in a subregion w,
then we have a regional detectability problem and a regional spy sensors.
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fixed sensor measurements
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sensor
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On the other hand, the observability of a system is the possibility of the recon-
struction of its state supposed to be unknown. This concept is closer to practical
situations when we are only interested in the knowledge of the state in a given sub-
region of the domain, or if the system is not observable on the whole domain.
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The regional observability was introduced recently by A. El Jai and the results
are finer than those on the usual observability concept, (Amouroux et al., to appear;
El Jai et al.,, 1993; 1994). A sensor which allows a unique reconstruction of the state
of the system (or on a considered subregion) is said to be strategic (or regionally
strategic).

The observability and the detectability are two different concepts and then the
notions of (regional) strategic sensors and (regional) spy sensors are also different. In
this paper, we show that there are various relations between regional strategic sensors
and regional spy sensors.

The next section is devoted to the presentation of the system under consideration
and preliminaries. In sections 3 and 4, we study respectively regional observability
and regional detectability of the system in the case where the output is given by
means of fixed or moving sensors. We also give a characterization of these concepts
in term of sensors structures. In section 5, we give the relationship between the two
concepts and hence between (regional) strategic sensors and (regional) spy sensors.
In the last section an application to the case of a bidimensional diffusion system is
considered. Examples on various situations are also given along the paper.

2. The System Under Consideration — Preliminaries
Let © be an open bounded subset of IR™ with a sufficiently regular boundary ' = 912.
We consider the system described by the state equation

z(t) = Az(t) + We(t), 0<t<T

t(0)=20€e X M

where X = L2() is the state space and the operator A is linear and generates on
X astrongly continuous semi-group (S(t)):>0 defined by

Tn

SMz=) e Y (2,ni)x bn (2)

n>1 ji=1

(¢n,j)n,; is an orthonormal basis of eigenfunctions of A (with a certain boundary
conditions) associated to the eigenvalues (Ay), with multiplicity r,,

Adnj = Andn j
I¢n.ill% =1 3)
n>1, 1<j<rm |
We assume that
r=sup r, < o0 (4)
n>1

The operator W characterizes the nature of the source which excites the system and
e(t) is related to the intensity of the exciting source and will be defined precisely
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later. The state of the system z € L?(0,T;V) where V is a Hilbert space such that
X C V with continuous injection and if we identify X to its dual X , we have

Vicxcv (5)

with continuous injections. The state regularity depends on the nature of the source
and z(t) can be in the Hilbert space V' (case of pointwise source for example). The
output equation 1s given by

y(t) = Cz(t), 0<t<T (6)
where Y is the observation Hilbert space, C : X — Y is linear and y € L?(0,7Y).

In concrete situations, the output is given by means of ¢ sensors (see El Jai and
Amouroux, 1990; El Jai et al., 1994; El Jai and Pritchard, 1988), in this case we have
Y =IR?. Let us recall the following definitions
Definition 1. A sensor is a couple (D, g) where
1) D is the support of the sensor, D C €,
i) g € L%() is the spatial distribution of the sensor on D.
A sensor (D,g) is said to be
i) zoneif D is a subdomain of ,
ii) pointwiseif D is reduced to a single point, D = {c}.
In this case, we have
g=16(—-¢) (M)
and the sensor will be denoted by (c, 6;)
iii) boundary (zone or pointwise) if D C T,

iv) moving or scanning (zone, pointwise or boundary) if D depends on time, D =
'D(t), in this case g also depends on time and g(¢,.) is the spatial distribution
of the sensor on D(t) at time t.

If the output is given by means of ¢ sensors (D;, gi)1<i<q, We have

<917')
C= : (8)

(glb')

and in the case of moving sensors, the operator C = C(¢) depends on time variable.

Let w be a given subregion of €2; the present paper is focused on the following
problems.

Problem 1. Regional Observability

Given the autonomous system associated to (1) and output (6), characterize the
sensors which allow the regional observability in w. This case has been extensively
studied particularly by El Jai and Zerrik in (Amouroux et al., to appear; El Jai
et al, 1993; 1994). Various results on fixed sensors structure have been established
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(see El Jai et al, 1994; El Jai et al, 1993) and applied to a thermal process (see
Amouroux et al., to appear).

Problem 2. Regional Detection

Given the excited system (1) and output (6), characterize the sensors which allow

a unique reconstruction (detection) of the source supposed to be located in a given
subregion w. Basic results were established by El Jai and Afifi in (1994).

In this paper we recall the most important of these results and extend them to the
case of scanning sensors. We also show the relationship between regional strategic
sensors and regional spy sensors. The first problem is a more general situation of
the usual state reconstruction, whereas the second problem can be interpreted as an
observation problem of an unknown control exciting the system.

3. Regional Observability and Strategic Sensors

In this section we assume that system (1) is autonomous

{ #(t) = Az(2), 0<t<T o)
z(0) = o
where zg is supposed to be unknown. We have
z(t) = S(t)zo, 0<t<T
and the output equation (6) becomes
{ y(t) = CS(t)zo = K(H)zo

0<t<T

(10)

where K : z € L2(Q) — Kz = CS(.)z € L*(0,T;Y). The adjoint K* of K is
defined by

T
K'y= / S* () y(t) dt
0

In the following subsections we recall some results on regional observability and stra-
tegic sensors and then we give new results on the case of strategic scanning sensors.

3.1. Observability

Let w be a nonempty subregion of 2 and p the restriction operator to w
p:f€L}Q) — flo € L*(w) (11)

the adjoint of p is p* =4, the natural injection L%(w) — L2(2).

Definition 2. System (9) with the output (10) is

1) w—exactly observable (or exactly observable on w) if

Im(po K*) = L*(w) (12)
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ii) w—weakly observable (or weakly observable on w) if

Ker(K o) = {0} (13)
this is equivalent to

Im(p o K*) = L*(w) (14)

Remark. Definition (2) can be extended to the case where the operator C depends
on time (case of moving sensors). n

We have the following properties
e The exact observability on w —> the weak observability on w.

e For w; C ws (C ) with w;y # 0, the exact (weak) observability on wy; == the
exact (weak) observability on w;.

e The system can be regionally observable but not observable on the whole domain.
The following example illustrates this result.

Example 1. Consider the one-dimensional diffusion system defined in 2 =]0, 1[ by
the equation

oz 8%z
2(0,1) = 2(1,8) = 0 (15)
z(.,0) =z

and assume that measurements are given by means of a pointwise sensor located in
¢ €]0, 1[, hence the output equation is

y(t) = z(c, 1), t €]0, T (16)
52
The operator A = 327 generates a strongly continuous semi-group defined by
St = e*Hz, én)x ¢n
n>1

with A, = —n?7? and ¢,(€) = v2sin(nn€), € €]0,1[. If ¢ € Q, system (15)—(16)
is not observable on Q =]0,1[ (see El Jai and Pritchard, 1988). As an example,
the initial state 2o(.) = v/2sin(n7.) is not observable in ]0,1[ (zo € KerK) but is
regionally observable on w = E, gﬂ (:co ¢ Ker(K o z)) .

3.2. Strategic Sensors

We suppose that the output is given by ¢ pointwise sensors (¢, 8¢;)1<i<q, then (10)
becomes

z(c1,t)
y(t) = ; , 0<t<T (17)

z(cq,t)
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Definition 3. The sensors (c;,dc;)1<i<q are strategic (regionally strategic on w or
w-strategic) if system (9)—(17) is weakly observable on 2 (on w).

For n> 1, let

¢n,1(cl) ¢n,rn(cl)
¢n,1(62) T ¢n,rn(02)

M, = (18)
$naleg) 0 bnra(cq)
and
Yn,1(w)
Ta(w) = ; (19)
V(W)
with
Tn,i(W) = ('Yn,j ; m,k(w)): k=1rm; m>1
where

o s (@) = / B (6 (6) A&

We have the following result on the characterization of regional strategic sensors, see
El Jai et al. (1994).

Proposition 1. The sensors (ci, 6., )1<i<q are w-strategic if and only if

q > suprp (20)
n>1
and
rank{Mpyn(w)} = rp, Vn>1 (21)

Remark. Definition 3 is the same for zone sensors (D;, gi)1<i<y and Proposition 1
is also valid with

(91,¢n,1) -+ (91,n,rn)
(92, 6n,1) - (92,%n,rn)

<ng¢n,l) (gq)¢n,rn>

and

(95, i) = / 0:(6) b n(6) €

w

|
In the next section we extend the previous result to the case of scanning sensor.



Strategic sensors and spy sensors

959

3.3. Strategic Scanning Sensor

We suppose that measurements are given by means of a scanning pointwise sensor

describing a curve v where v = Im(c) with
c:pe€D—cp) €7

is given and sufficiently regular.

Sensors

The output operator becomes

C:am=5(~dm» pED
then the observation becomes

wWp,t) = C(p)S(t)xo = K(p,t)zo

and the sensor (c(p), 6C(p)) is w-strategic if and only if
peD )
Kpt)xo=0Vp,t = =0 in w

Proposition 2. (El Jai and Afifi, 1994) If v crosses ¢ points cy,cz,--

(23)

(26)

-, cq such

that the associated pointwise sensors (c;, 0c,;)1<i<q @re w-strategic, then the scanning

sensor (c(p),éc(p)> is an w-strategic sensor.
p€ED

In the case where v is parametrized by the time variable ¢,

teZCl0,T[— c(p(i’)) €y
the observation becomes

y(t) = C(p(t)) S(t)zo = K (t)ao

and the scanning sensor (c(p(t)),éc(p(t)ﬂ . is w-strategic if and only if
te

Kt)zo=0Vt€eZl = 20=01in w

(29)
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Let Iy,....,I; time intervals C 7 such that I;(I; =0 for i # j and ¢; = ¢(p(t))
on I; with ¢; #¢; for i # j. Then we have the following result.

Proposition 3. If the values (c¢;)1<i<q can be associated to ¢ pointwise sensors
locations and if the associated sensors (c;, éc;)1<i<q are w-strategic, then the scanning

sensor (c(p(t)), 6C(p(t))>tez is w-strategic.

Remark. The results can be easily extended to the case of ¢ scanning sensors. | |

4. Detection of Sources and Spy Sensors

The following definitions (sources and detection) are general and do not depend on
the linearity of the system.

4.1. Sources

Definition 4. A source s is defined by (X, g,I), where

i) L():tel —3@)CO
defines the support of the source at time ¢ and is assumed to be varying in
time.

defines the intensity of the excitement in & at time t.

iii) 1={t/g(t,) #0 on 5(1)}

is the support of the function g and defines the life duration of the source s.

As we focus our attention on the detection of the source (this can be done sepa-
rately from its life duration), we consider the source as a couple s = (X, g). The set
of such sources will be denoted £, we have

£C f(o, T;P(Q)) <« F(0,T; V) (30)

where P(2) is the set of parts of Q and F(0,T;7) is the space of functions f :
(0,7 — Z (Z = P(Q) or V). The space £ may be considered as a vector space
with convenient addition and scalar product operations.

Remarks

e ] is generally connexe (i.e. a time interval). It may happen that I is a union of
several intervals, then the detection problem can be studied as if the system were
excited by consecutive sources.

e The support of the source may also be non connexe X(t) = UEi(t). In this case

1
the source is said to be a multi-source.
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e For s = (X, 9) € £, one can extend g and X as follows

g(t,_):{ g(t,) on I

0 elsewhere

E(t):{ Z(t) on I

0 elsewhere

then s = (2, g) is well defined on the time interval ]0, 7. |

Definition 5. A source s is said to be

1) pointwise if 3(t) is reduced to a single point for all ¢ in I:
o) ={b(t)}, Vtel

It is the case of a moving pointwise source.

ii) zone if 3(¢) is a region C Q, for all ¢ in I.
It is the case of a moving zone source.

iii) fixed (or motionless) if £ does not depend on time,
()=, Vtel

It 1s the case of a fixed source which may be zone or pointwise.

Remarks

e The case of a pointwise fixed source L(t) = {b} € @, V¢, is the most common
situation.

e The source may be on the boundary I' of €, in this case we have £(¢t) CT', Vi ¢
I and we can define by the same a pointwise, zone, fixed or moving boundary
source. |

Definition 6.
i) The duration of a source is the length u(I) of I.
1) A source is persistent if p(I) > 0.
iii) A source is intantaneous (or non persistent) if x(I) = 0. In this case the source

can be active only at times t1, t3, ...tn.

Remark. For a pointwise instantaneous source, we have

9(t,€) = 6(t —t0) 6(§ —b) (32)

and (32) is considered as a product of generalized functions, see (Colombeau, 1983;
1986; Egorov, 1990). |
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4.2. Detection

In this section we suppose without loss of generality that the system is excited by a
pointwise fixed source so = (b, e), then W = 6(. — b) and system (1) becomes

{ (1) = Az(t) + 6(. — ble(t)

z(0) = o (33)

We assume that the source location is approximatively located in a given subregion
w of . Note that for N sufficiently large, the function e can be written

N
e(t) = Zﬂl X[t‘-,t,v+1[(t) (34)
i=1

with 4 =0 <tz < - <ityp1 =T and B > 0; 1 <4 < N. If the system is
observed via ¢ pointwise sensors (c;, dc,;)1<i<q, then the output equation is

91(2)
y) = : €Y =1IR? (35)
q(?)
where
Gi(t) =Y ™'Y (20, 6ns) bni(ci)
nzt o d=l o (36)
43 [ D) drY s 8o |
n>170 Jj=1
Let
(Sw:{(a,f)eg | aEw} (37)
and
Qu:se€& —ye L*0,T;Y) (38)

Definition 7. A source s is said to be w-detectable (detectable in w) on 10,77 if
the knowledge of the system together with the output (35) is sufficient to make the
assoclated operator @, injective.

In this case one has to find a reconstruction operator R, : L?(0,T,Y) — &,
such that

s=Ruy (39)

and if @, is invertible, then Q7! = R,. The detection of a source will obviously
depend on w and the output operator C and then on the nature of the sensors. We
introduce the following definition:
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Definition 8. A spy sensor (w-spy sensor) is a sensor which allows a unique detection
of the source s (in w).

A spy sensor may be multipoint, zone or scanning. In practice, the reconstruction
of all the parameters of a source may be difficult (or impossible). So we can try
to detect (or reconstruct) only some of the parameters of the source (location for
example). In this case we shall say that the source is w-partially detectable. The
associated sensor will be partially spy. The previous definitions can be extended to
the case of zone or moving sources, see El Jai and Afifi (1994).

Remarks
o If w; C wy C 1, then a source which is wy-detectable is wq-detectable.
e If a source is w-detectable, it is partially w-detectable.

o A source can be regionally or partially detectable, but not detectable. To illustrate
this result, we consider the following example. |

Example 2. Consider the one-dimensional parabolic system supposed to be distur-
bed by a pointwise fixed source so = (b,e) which is located in a subregion w C]0, 1],

oz 0z '
W(E,t) = ‘a‘p(fyt) +6(. — b)e(?)
z(0,¢) =z(1,£)=0 ~ (40)
z(.,0) = 2o
in this case, we have V = H~17¢(Q) with 0 < ¢ << 1. We assume that measure-

ments are given by means of a pointwise sensor located in ¢ €]0, 1], hence the output
function is

y(t) = z(c, 1), t €]0,T[ . (41)
then we have, for ¢ = % and b # —%—
1) If 1 —b ¢ w, the source is detectable in w, but not detectable in €,
ii) The source is partially detectable (with respect to e), but not detectable.

The detection of an unknown source depends also on the different parameters of
the system amongst which is the length of the time interval.

4.3. Minimum Time Detection Problem

This section is devoted to the statement of the minimum time detection problem. It is
clear that a source may be detected in a minimum time, that is equivalent to find the
minimum time interval which makes the operator @, (38) injective. Suppose without
loss of generality that a source sp = (b,¢) is active on a certain time interval [0, Tp].
The choice of T depends on Ty and one has to consider 7' > Ty (or 0 < T' < To,
for large Tp) because if the source is w-detectable on 10,77 then it is w-detectable
on 10,77, for all T > T'. Let

O(s0) = {T> 0 such that sy is w-detectable on ]O,T[} (42)
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For a fixed source sg, the minimum time problem can be stated in the form
inf ©(so) (43)

the solution of which also depends on different parameters as w, the output operator
C (sensors) and the source location. The case of finite speed propagation systems
must be considered with more care. The solution of (43) is denoted by Ty*(C).

Using the previous results, it is easy to show
Proposition 3.
) T5(C) 2 7 (44)
where 7o is defined by
ro=inf {t >0/ () # y®)}

and y(t) = K(t)zo is the observation corresponding to the unexcited system (1)
(e(-) =0) and §(t) is defined in (35).

&) For fired w and ¢y, -, c, € Q, let Cp be the output operator corresponding to the
pointwise sensors (i, bc;)1<i<p, with 1 < p < q. Then if the source is w-detectable
on |0, T[ with respect to Cp, it is w-detectable on 10, T with respect to C,, and hence

T3(Cq) < T5(Gp) (45)

i) For a given output operator C and wi C wa(C Q) with b € wy, then if the source
is wy-detectable on [0, T, it is also wy-detectable on 10, T, then

75,(€) < T5,(C) (46)
w) For any subregion w such that b € w, we have
T5(C) — 10 when w\, {b} (47)

Remarks

e In the case of partial detection of the source, let T3%(C)per be the corresponding
minimum time partial detection. Then we have

T5(Cpar <TZ(C) (48)

e The results can be extended to zone sources and zone sensors. ]

4.4. Characterization of Spy Sensors

The characterization of regional spy sensors can be stated as a minimization problem.
For s =(a,f) € &,, let

F(s) =1ly(s,-) = llzaco rme) (49)
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where y(s,.) is the observation corresponding to the source s and § is given by (35)
(5) =u(s0,).

s ¥(s.)
MODEL

O—

SYSTEM

So ;(-)

The source detection problem is then equivalent to the minimization problem

inf F'(s)
{ sE gw (50)

Let

So={s€t./F(s)= siglgwp(s)} (51)

we have sg € S, and

Proposition 4. The sensors (¢;,6c;)1<i<q are w-spy sensors if and only if
S = {s0} (52)

Consider the matrix given by (18) and

¢n,1(€)
fn:€€Q— : €R™ (53)
bn,ra(€)
then we have the result (see El Jai and Afifi, 1994)
Proposition 5. Characterization of spy sensors.
The sensors (c;,6.,)1<i<q are w-spy sensors if and only of
a,f>0; {pew

afn(€) _ﬂfn(,u) EKerM, = a=f and £ = p (54)
Vn>1
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Remark. The result is also true for zone sensors with M, given by (22) and the
method considered here can be extended to the zone sources and boundary sensors
cases.

|

4.5. Scanning Spy Sensor

We consider the case where the measurements are given by one pointwise moving
sensor discribing a parametrized curve . We have similar results to those of scanning
strategic sensors. Suppose that v = Im(c) where

c:p€ED —clp) €Yy
and ¢(.) sufficiently regular.

Proposition 6. If ¥ crosses q points c1,cz,---,cq such that the (ci,6c;)1<i<q are
w-spy sensors, then the scanning sensor (c(p),de(p))pen 5 an w-spy-sensor.

In the case where v is parametrized by time variable
tel —c(pt) €7
with co p sufficiently regular, then we have the following result

Proposition 7. Let Iy, ...., I, be time intervals CZ and c1,cz,---,¢q € Q such that
LNIL =0 and ¢; # ¢; for i # j, with ¢(p(t)) =¢; for t € I;. Then if (ci,6c;)1<i<q
are w-spy sensors, the scanning sensor (c(p(t)), be(p(r)))tez 15 an w-spy sensor.

Sensors

Remarks. In the detectability (or observability) case,

e 7 does not necessarily have to be equal to ]0, 7.

e In the case of q scanning sensors, they are w-spy sensors (w-strategic sensors) if
the trajectory of each of them crosses a pointwise fixed w-spy sensor (w-strategic
sensor) location.

e This method can be extended to a moving zone sensor.

e The result also means that ¢ w-spy sensors (w-strategic sensors) may be alterna-
tively activated in time and ensure the w-detectability of the system (this is to be

considered when one does not know the minimum number of sensors which can
ensure the w-detection). [ ]
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5. Strategic Sensors and Spy Sensors

The state observation and the detection problem as seen in the previous sections are
two concepts which can be represented with the following diagram.

Observability
s > z(s) - Y

Source State Qutput

Detectability

Since s — z(s) is injective, we have the general result

Proposition 8. If the sensors are w-strategic, then they are w-spy sensors. °

The above result is valid for any type of sensors (fixed or moving). The following
example shows that the converse is not true.

€

Example 3. In the case of system (15) with the output (16),

i) if ¢ € Q, it is well known (see El Jai and Pritchard, 1988) that the corresponding
sensor (c,6.) is not strategic, but for ¢ # £, (c,8.) is a spy sensor, see El Jai
and Afifi (1994),

ii) for w = [e, f] and ¢ # % such that <% € @, then (¢,8,) is an w-spy sensor
-«
but not w-strategic. [ |
Remarks

e If the sensors are not w-spy sensors, one can slightly modify the region w and make
the sensors w-strategic, hence w-spy sensors, see (Amouroux et al., to appear; El
Jai et al., 1993).

e The results are true in the zone source and zone sensors cases and can be extended
to the boundary case.

e A necessary condition for ¢ sensors to be strategic is that

¢g>r=supr, (55)

In the case of spy sensors (55) is not necessary. As an illustrative example we consider
the system described in Q =]0,1] x]0, 1] by the equation

Oz 6%z
6D = S(60 + 50— De(t)
zlr = 0 (56)
:U(., 0) = o
with an output given by ¢ pointwise sensors located in c1,---, ¢, € . For any integer

q > 1, the sensors (c;, 6., )1<i<q can not be strategic (Berrahmoune and El Jai, 1983)
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but for ¢ = 2 and ¢; = (%,%) and ¢y = (%,%), the sensors (¢;, é¢;)1<i<2 are spy
SENSOrS. |

Example 4. Consider now the excited system (40) with an output given by a poin-
twise scanning sensor and describing a curve v parametrized by (23).

Let v = [a,b] with @ < b, then v crosses a point ¢y such that the associated sen-
sor (co,dc,) is strategic, then the sensor (¢(p), 6c(p))pep is strategic and hence a spy
Sensor.

In the case where v is parametrized by (27), if c¢(p(t)) = ¢ on a subinterval I of
Z, the scanning sensor (c(p(t)), 6c(o(1)))tez is strategic, then a spy sensor. |

6. Application to a Bidimensional Diffusion Process

In various physical problems, symmetry considerations lead to one or two space di-
mensions. The one-dimension case has been developed through examples and in
(El Jai and Afifi, 1994). In the present paper, we consider a more general situ-
ation which regards the mathematical development where © =]0,a;[x]0, as[ with
aj,az > 0, I'=0Q and ¢ € Q. and the bidimensional system defined in © by the
diffusion eqflation

Oz

e Az +§(.—bd)e(t)

zlr=0 (57)
z(.,0) =g

with the output
y(t) = z(c, 1) (58)

From the previous characterizations we derive results for (57). We suppose that one
unknown pointwise source so = (b, e) is to be detected by means of one pointwise
sensor assuming that the excitement is piecewise constant as defined in (34).

In this case, we have V = H=17¢(Q) with 0 < £ << 1 and the eigenvalues and
eigenfunctions of the operator A with the Dirichlet homogeneous boundary condi-
tions are given by

2 2
m n
— 2
Amn = —(—2+ —2) T
Cll CL2

Qsm,n('fyC) = a21a2 sin <m7ra£1> sin (nﬂ_(f_?)

Notice that r = sup 7y, n, where rp, » is the multiplicity of Ap, », can be infinite (case
where 2 is a square).

6.1. Case of a Fixed Sensor
In this section we assume that the output is given by a pointwise fixed sensor and

2
that Z—é ¢ @, then the multiplicity of the eigenvalues is rp, =1, VYm,n > 1.
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Let b= (b1,b2), ¢ = (c1,¢2) and

By = (b1, b2), By = (b1, a3 — b3)
B3 = (ay —b1,b2),  Ba= (a1 —b1,a2 —by)

Moreover, if we suppose that the source is located in a given subregion w =
[a1, 2] x [B1, B2] C © such that b € w, then we have the following results.

Proposition 9.

a) The sensor (c,6:) is w-strategic if and only if

1 g —a 1 ca—h
— and —
a1 Otz—011¢Q a2ﬂ2—51¢Q
then (c,6;) is an w-spy sensor.
1l aa—m 1e-pF . .
b) If ———=€Q or € Q, then the sensor (c,é.) is not w-strategic
a; s — o as ﬁZ ;81

but is a partial spy sensor with respect to e.

So C{(B1,e), (B2}, (Bs,0), (Ba, o)}

and

S, C {(Bi,e) / Bi Ew}

. a a .
i) If e1 # 2 and ¢y + ?2 the sensor (c,8:) is a spy sensor, and hence an
w-spy sensor,

i) If a1 = % and ¢y # %—2-, then

o if by = — (31 Bs), the sensor (c¢,8,) is a spy sensor ,
o if by # “

5 (c,8;) 1is not a spy sensor, and if By ¢ w, it is an w-spy
sensor.
i) If ¢ ;é — and ¢y = 2 the result is analogous to the previous case.

a; az

w) If c= (? 2) then Sq = {(B“e) 1<4 <4} and hence

o (c,6:) is a spy sensor <= b=c
o (c,0,) is an w-spy sensor <= S, = {(b,e)}.

In all the cases the sensor (c,d.) is a partial spy sensor (with respect to e), that
is to say that it can detect the intensity e of the source. Notice that,

— If b1 = 7 then Bl B3 and B2 B4,
— If by = “2—2 then By = B, and Bs = Ba,

—Ifblz%l and bzz%,then By = By = By = Ba.
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Remarks
e Suppose that the source location & € w C ]0, 512—1[ x |0, %2[, then the sensor (¢, é.)

1S an w-Spy Sensor.

o If ¢; = a?—l, ca # (12—2 and b €w C ]O,%[ x 10, as[, then the sensor (c,§.) is an
w-Spy sensor.
e The result is analogous for ¢; # C;—l and ¢y = aQ_z. [ |

Case of a square domain. In the case where the domain Q is a square (a; = ag),
it is known that any finite number of sensors cannot be strategic (see Curtain and
Pritchard, 1978; El Jai and El Yacoubi, 1993; El Jai and Pritchard, 1988). For the
detection problem, it is easy to show the following result.

Proposition 10. The couple of sensors located in (%,a) and (,8, a—;), with o #
ay

5 end B # a—;, are spy Sensors.

Remark. In some specific situations (depending on the subregion w) even one sensor
may be a w-spy sensor. [ ]

Case of a finite order approximation. In practice we consider an approximation
of the problem using truncations depending on the nature of the problem. Consider

the case where w = Q and a truncation up to the order N, then the condition & €Q
@

(2

for i = 1,2 becomes
C; k
= == < <
. ngN_{n, 1_k<n_N}

and one has to avoid a reduced number of points. For example if N = 3, we have

(see Fig. 1)
11
FN“{gv'Q")—}
[
_ . ........
az .
2 | H
a1 a
> 1
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6.2. Case of a Scanning Sensor
In this section we suppose that the output is given by a pointwise scanning sensor
describing a curve 7y parametrized by (23) or (27), we have the following results
2
Corollary 1. Suppose that a1 # ay with a_; € Q, then
a3

i) If v is parametrized by (23) and crosses a point co = (c§, c) such that

i
LgqQ  i=12 (59)
then (c(p), bc(p))pep i strategic and hence a spy sensor,
@) If v 1is parametrized by (27), and there exists co = (c§,c3) verifying (59) and
a subintervel Iy of I such that c(p(t)) = co on Iy, then the scanning sensor

(?(p(t)), 6c(p(t)))tEI is strategic and hence a spy sensor.

In the case where the domain is a square (a; = az), we have the following result
Corollary 2.
1) If v is parametrized by (23) and crosses two points ¢; = ((12—1,01) and ¢y =

ay . ay a1 .
(ﬂ, —2—> with o # 5 and B # 5 the sensor (c(p),éc(p)) oD 1S @ Spy sensor.

1) If v is parametrized by (27) and if there ezist two time intervals I1,Io CZ and
c1, ¢2 as defined in 1) such that (c(p(t)) =c¢ on I; for i=1 or 2, then the

scanning sensor (c(p(t)), 5°(p(t)))tez is a spy sensor.

In the case of a finite order approximation, we have

1) For arectangular domain, if the trajectory ! v = Im(c) of the sensor is such that

. Im(ﬁ(—)) is not reduced to a single point of Fi, for 2 i = 1 or 2, the

ai
scanning sensor Is strategic and then is a spy sensor (see Fig. 2 in the case
where N = 3).

()Y . 1 . . .
° Im(c—g-)—) is not reduced to 3 for i =1 or 2, then the scanning sensor is
7

a spy sensor (see Fig. 3 for N = 3).

.. . . a
i1) In the case of a‘square domain, if v crosses the axes z = 71 and y = 4t
two points different from (a—l a—1>, then the scanning sensor is a spy sensor (see

_ 272
Fig. 4). ,

1i1) Similar results can be achieved in the case where Q is a disk.

1 4 parametrized by (23) or (27)

2 () = (ea()ea()
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2
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, 2
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7. Conclusion

In this paper we give the principal results on the regional observability and detec-
tability of a class of distributed systems, as well as the characterization of regional
strategic sensors and spy sensors. We show the difference between the two concepts
and we compare the results obtained in each of the cases. The detection problem
naturally leads to the minimum time problem which was examined. Examples on
various situations are given.
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