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GROUP SEQUENCING SUBJECT TO PRECEDENCE
CONSTRAINTS'

MixHAIL Y. KOVALYOV*, ALEXANDER V. TUZIKOV*

The problem of sequencing jobs for processing on a single machine to minimize
maximum penalty is studied. It is assumed that the jobs are classified into
several families on the basis of group technology. Precedence constraints are
specified on the set of jobs for each family and on the set of families. The
Lawler’s polynomial time algorithm is generalized to solve this problem and
some problems with two ordered criteria.

1. Introduction

We consider the problem of sequencing n jobs for processing on a single machine
without idle times. Each job is available for processing at time zero and it is assigned
to one of F families on the basis of group technology (Ham et al., 1985; Mitrofanov,
1966; Potts and Van Wassenhove, 1991). Jobs of a specific family have to be processed
continously. An arbitrary (binary, transitive, irreflexive) relation — is determined on
the set of jobs for each family. If jobs ¢ and j belong to the same family and ¢ — j,
then the processing of job j cannot be started before job 4 has finished processing.
The analogous relation for which we use the same notation is determined on the set
of families. If I and J are some families and I — J, then processing jobs of family
J cannot be started before all jobs of family I have finished processing. For each
family J, a machine set-up time sy > 0 is required immediately before the jobs of
this family are processed. A processing time p; > 0, a due date d; > 0 and a weight
w; > 0 are specified for each job j. Given a job sequence, the completion time Cj
for each job j is easily determined. The objective is to find a sequence which satisfies
the group technology and precedence constraints and minimizes a maximum penalty
function

fraas (O, Ca) = max{ f5(C))li =1,...,n}

where f;(t), j =1,...,n, are some non-decreasing real-valued functions.

Adopting the notation for scheduling problems of Lawler et al. (1989), we denote
our problem by 1/GT, prec/ fmaz, where acronyms GT and prec indicate that the
group technology and precedence constraints, respectively, have been specified on the
set of jobs. For this problem without the group technology constraint, i.e. when
there is only one family, an O(n?) algorithm is presented by (Lawler, 1973). For
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the problem with the group technology constraint and no precedence constraints to
minimize maximum lateness (in this case f;(t) =t —d;, j = 1,...,n), a simple
O(nlogn) algorithm is described by (Potts and Van Wassenhove, 1991).

In this paper, the problem with the group technology and precedence constraints
is considered. The paper consists of four sections. In the next section, Lawler’s O(n?)
algorithm for 1/prec/ fmac is generalized to solve 1/GT, prec/ frmaz in O(Fn?) time.
Problems, for which this time complexity may be decreased, are indicated. In the
following section, we show how to adopt our algorithm to solve some single machine
group scheduling problems with two ordered criteria. The last section summarizes
results of the paper.

2. Generalization of the Lawler Algorithm

It is convenient to introduce some terminology. Given a set @, an element z° € Q
is called a minimal element of the set () with respect to the relation — if there is
no element z € @ such that z° — 2. The set of all minimal elements of the set Q
with respect to — is denoted by Q.

We first consider the problem in which there is only one family and the corre-
sponding set-up time is zero. In this case, the following O(n?) algorithm presented
by Lawler (1973) constructs an optimal job sequence.

Algorithm 1 (for one family).
INITIALIZATION: Set J, = {1,...,n}, P = X7, p;.

GENERAL STEP Construct J; . Find i, € J; such that f; (P,)=min{fi(P,)|l €
Jn } settling ties arbitrarily. If n = 1, then STOP: an optimal job sequence
(41, ..,1n) is constructed. Otherwise, set J,_1 = J, — {in}, Pac1 = Pn —
pi, and repeat General Step for n:=n — 1.

We now assume that there is more than one family. Algorithm 1 is then genera-
lized in the following way.

Algorithm 2 (for F families).
INITIALIZATION Set Hp = {1,...,F}, Rp = Z?zlpj + Zf‘:l sy.
GENERAL STEP Construct Hp. For each family L € Hy, apply Algorithm 1 in

which J, = {L} and P, = Rp. If 7 = (i1,...,ix) is the sequence given
by this algorithm, then calculate the value of this sequence

&.(Rp) = max{fii C:l=1,.. .,k}

where Cj is the completion time of job # in the sequence 77 subject
to C;, = Rp. Find family Ip such that ®;,(Rp) = min{®r(RFr)|L €
Hg} settling ties arbitrarily. If F = 1, then STOP: an optimal sequence
of families (my,,...,7,) is constructed. Otherwise, set Hp_, := Hp —
{Ir}, Rr_1 := Rp — (s15 + EjEIF p;) and repeat General Step for F' =
F—1.
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To demonstrate the application of Algorithm 2, consider the problem with six
jobs having processing times p; = 2,p3 = 3,p3 = 1,ps = 3,ps = 4,ps = 2 and due
dates di = 8,dy =5,d3 = 10,dy = 4,ds = 7,ds = 3. The jobs are divided into three
families, say A, B and C, so that A = {1,2,3,4},B = {5} and C = {6}. Set-up
times are s, = 2,58 = 1,s¢ = 3. The precedence constraints are given so that
B — C for the families and 1 — 2,4 — 3 for the jobs. The objective is to minimize
the maximum lateness, i.e. penalty functions are f;(C;) = Cj —d; for j=1,...,6.
Algorithm 2 solves this problem as follows.

1. Set F =3, H3={A,B,C}. Calculate Rg =2+3+1+34+44+24+2+1+3 =21
Construct Hy = {A,C}.
2. (Application of Algorithm 1 for family A)

2.1. Set n = 4,Js = {A} = {1,2,3,4}, P» = Rz = 21. Construct J;y =
{2,3}. Calculate f3(Ps) = 21 —dy = 16, f3(Ps) = 21 —ds = 11. Since
min{ f2(Ps), f3(Pa)} = f3(Ps), then set 4 = 3.

2.2.Set n =3, J3 = {1,2,4}, Ps = Py —p3 = 20. Construct J3 = {2,4}.
Calculate fo(P3) =20 —dy = 15, f4(P3) =20—dq = 16. Set i3 = 2.

2.3. Set n=2, Jo = {1,4}, P, = Ps—py = 17. Construct J; = {1,4}. Calculate
fi(P)=17T—d1 =9, fa(P2) =17 —dg=13. Set iz = 1.

24. St n =1, J; = {4}, P = P, — ps = 14. Construct J = {4}.
Calculate fa(P1) = 14 —dy = 10. Set i3 = 4. Thus, ®4(R3) =
max{fa(P1), f1(P2), f2(Ps), f3(Pa)} = 15.

3. (Application of Algorithm 1 for family C')

3.1. Set n=1, J, = {C} = {6}, P = Rz = 21. Construct J{ = {6}. Calculate
fo(Py) = 21 — dg = 18. Thus, ®c(Rs) = fo(Py) = 18.

4. Since min{®4(R3), ®c(R3)} = Pa(R3), we set I3 = A and 75, = 74 =
(i1,%2,%3,14) = (4,1,2,3).

5. Set F = 2, Hy = {B,C}. Calculate Ry = R3 — (24 9) = 10. Construct
Hy ={C}.

6. (Application of Algorithm 1 for family C)

6.1. Set n=1, J; = {C} = {6}, P = Ry = 10. Construct J; = {6}. Calculate
fe(P1) =10 —ds = 7. Thus, ®¢c(R2) = fs(P1) =7, I = C and 7, = 7¢c =
(6)-

7. Set F =1, H; = {B}. Calculate Ry = Ry — (3 +2) = 5. Construct H; = {B}.

8. (Application of Algorithm 1 for family B)
8.1.Set n=1, J; = {B} = {6}, PA = Ry = 5. Construct J; = {5}. Calculate
fs(Pl) =5- ds = 2. Thus, @B(Rl) == f5(P1) = ——2, Il = B and T, =
m™B — (5)
9. Finally, an optimal job sequence is (7p,7mc,7a) = (5,6,(4,1,2,3)). The
corresponding optimal objective value is max{®p(R1), Pc(R2),Pa(R3)} =
max{~2,7,15} = 15,

The following theorem holds.
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Theorem 1. Algorithm 2 solves problem 1/GT, prec/ fmax.

Proof. To prove this theorem, it is easy to adopt the proof of the correctness of
Lawler’s algorithm (Lawler 1973). The idea of our proof is as follows. Let H be
the set of families that have no successors with respect to the relation — and let
R be the sum of all the processing times and all the set-up times. Consider the
problem of scheduling jobs of some family L € H to minimize fnas subject to
the relation — and the condition that all jobs are available for processing at time
R—(sL + Y ;cr pi)- Let 71 be an optimal sequence of jobs for this problem and let
@1 (R) be the corresponding value of the criteria faz. If @x(R) = mingeg{®L(R)},
then there exists an optimal solution to the problem 1/GT, prec/fmas in which jobs
of family K are sequenced last in mx order. Since K is the group which is chosen
by Algorithm 2, repeating this argument shows that Algorithm 2 solves the problem
1/GT, prec/fmax [ ] :

Since Algorithm 1 applied for family I has O(|I|?) running time, the time
~ complexity of Algorithm 2 does not exceed O(F Ef:l |I]%), or equivalently, O(Fn?)
if computations of penalty functions are not taken into consideration. This time
complexity can be decreased in some cases as indicated in (Kovalyov and Tuzikov,
1991). For example, O(n?) and O(nlogn) algorithms can be developed for solvmg
1/GT, prec/fmaz and 1/GT/ fmaz, respectively, if

fi(C;) e {L; =C; —d;, Tj = max{0, L;},U; = sign(T})},j=1,...,n

If f;(C;) = w;T; for j = 1,...,n, then O(Fnlog®n) algorithm can be developed
for 1/GT/ fmacz using results of (Hochbaum and Shamir, 1989). If jobs have diffe-
rent release dates r; and equal due dates dj = d, j = 1,...,n, then the problems
1/r;,GT, prec/ fmae and 1/r;, GT/ fmaz, where f;(C;) = f(C; —=d), j =1,...,n,
can be solvedin O(n?) and O(nlogn) times, respectively. Furthermore, Algorithm 2
can naturally be generalized to the more complicated situation where some families
are divided into subfamilies and so on. In this case, to calculate the values of frqz for
families, it is necessary to calculate the values of f,,4, for subfamilies. This recursive
procedure is fulfilled until we reach jobs.

3. Bicriterion Problems

Algorithm 2 can also be applied to solve some single machine bicriterion problems
with the group technology constraint. In this section, we give some examples.

The first problem, denoted by 1/GT, prec/(gmaz, fmaz ), 18 to minimize frqz on
the set of all optimal sequences for 1/GT, prec/gmar Where gmae is another maxi-
mum penalty function. In order to solve this problem, we begin by applying Algorithm
2 and finding the objective function optimal value g* for 1/GT, prec/gmas. Then we
solve 1/GT, prec/fmaz using Algorithm 2 modified in the following way. In General
Step of Algorithm 1, which is the part of Algorithm 2, we redefine f;(P,) = oo for
leJy; if gi(Pn) > g* It is not difficult to prove that thls modification of Algorithm 2
solves 1/GT, prec/(¢mas, fmaz) In O(Fn?) time.

In the second problem, 1/GT/(3 > w;Cj, fmaz), it is assumed that there are no
precedence constraints and fpq is minimized on the set of all optimal sequences for
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1/GT/ Y w;C;. To solve this problem, we first determine a relation — on the set of
jobs for each family J,J = 1,..., F, so that for any pair 7,j of jobs from the same
family, the following property holds

i—j ifandonlyif p;/w; <pj/w;

Then we determine relation — on the set of families so that for any pair I,J of
families, such that

I —J if and only if (51+ij)/2'wj<(SJ-FZPj)/Z'LUj

jer jer jeJ jeJ
The following theorem holds.

Theorem 2. The sequence of jobs is optimal for 1/GT/ 5 w;C; if and only if it is
feasible with respect to relation —.

Proof. This theorem is easily proved if we consider families as composite jobs with
processing times Pr = sy + ) ;. p; and weights Wy = > jer Wj- Then, following
(Smith, 1956), we show that there is no interchange of the jobs or composite jobs
which improves the objective value if the job sequence is feasible with respect to
relation —. Conversely, if a sequence is not feasible with respect to —, then there is
an interchange of the jobs or composite jobs which improves the objective value.

|

Thus, 1/GT/(3_w;Cj, fmas) is equivalent to 1/GT, preé/fmax, where prece-
dence constraints are given by the relation — . Therefore, we can apply Algorithm 2
to solve it.

We note that an analog of Theorem 2 can be proved for a more general function
than the weighted sum of completion times. Let us assume that for the function
f(m) there exists a function r(7) such that for any job sequences 7' = (u,a,b,v)
and 7 = (u, b, a,v) the following statement holds

r(a) <r(b) implies f(7') < f(=")

Here u,a,b,v dre disjoint subsequences (strings) of jobs. In this case, following the
definition of Lawler (1983), we say that the function f(7) possesses a strong string
interchange property. As well as the weighted sum of completion times, the function

fmy= Y (wjep(C)+b;),  7#0
je{n}
possesses this property. In this case, we have
r(m) = (fm - 3 b)/(1-exp(r 3 1)
j€{r} je{n}

These and other examples of functions possessing the strong string interchange pro-
perty can be found in (Shafransky and Tuzikov, 1991; Tanaev et al., 1984).

If function f has the strong string interchange property, then we define relation
— on the set of jobs for each family so that, for any pair 7,; of jobs from the same
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family, ¢ — j if and only if r(¢) < r(j). We define relation — on the set of families
so that, for any pair I,J of families, I — J if and only if r(7;) < r(7;). Here
77 and wy are any sequences of jobs of families I and J, respectively, feasible with
respect to relation —. Then the following theorem holds.

Theorem 3. If the function f possesses the sirong string interchange property, then
the sequence of jobs is optimal for 1/GT/f if and only if it is feasible with respect to
relation —.

Proof. An interchange argument presented by (Smith, 1956) can easily be adopted
to prove this theorem. |

Theorem 3 is the basis to apply Algorithm 2 for solving the problem
1/GT/(f, fmaez) where the function f has the strong string interchange property.
This theorem shows, in fact, how to describe the set of all optimal sequences of jobs
using a binary relation on the set of jobs. Therefore, it is closely related to the results
of Monma and Sidney (1987) and Tuzikov (1985), where the problem of describing
the set of all optimal sequences is studied for the case of precedence constraints on
the set of jobs.

4. Conclusion

The main result of this paper is the generalization of the Lawler algorithm (Lawler,
1973) to the case of the group technology constraint. This generalized algorithm
is applied to solve a number of single machine group scheduling problems with va-
rious maximum penalty functions and some hierarchical bicriterion problems where
the second criterion is a maximum penalty. We believe that the application of the
presented algorithm is not limited by the problems considered and there exist other
real-life situations including the group technology constraint where it can be used.
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