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TOWARDS AUTOMATIC CORRECTNESS
VERIFICATION OF REAL-TIME PROGRAMS

Tomasz SZMUC*, PioTr SZWED*

An algebraic approach to correctness verification of graphical software specifi-
cations is presented. LACATRE graphical language based on multitasking and
providing real-time functions is considered as a specification tool. The verifica-
tion process is distributed into four stages. The two initial ones are related to a
translation of LACATRE specification into lower description level (Communica-
ting Real-Time State Machines). The third stage deals with a generation of the
process in the form of a graph of states and automatic relative correctness veri-
fication. The fourth stage is related to correctness verification for user-defined
criteria. The proposed verification method examines the relative correctness
concept introduced in former papers.

1. Introduction

Correctness verification of specification is a very important task that should be solved
in initial phases of software life cycle. This is due to the nature of specification, being
a coarse grained description of software. This fact causes that errors are related to a
larger domain (e.g. system structure) and their reasons (sources) may be hidden in
a large context of the program code. Correctness verification of specification is then
very crucial and should be completed in the specification/design phases. Otherwise,
undetected errors would be passed to the next phases, increasing difficulties of their
detection in the verification and testing phase.

LACATRE specification language (Schwarz et al., 1991; Schwarz 1992) has been
chosen for specification of real-time programs. The language is used for graphical
specification of applications and provides typical real-time primitives. The specifica-
tion covers the Preliminary and Detailed Design phases in the software development
cycle IEEE/ANSI Std., 1986). The language renders it possible to express the dy-
namical behaviour and relationships of real-time or concurrent system components
providing structural approach to the designed application, however does not model a
flow of data values. The LACATRE (LA4 in French abbreviation) language may be
used as a higher layer over several real-time operating systems e.g. iIRMX, VRTX 32,
VxWorks, 0S-9000 and CRAFT although it has been used at the beginning to pro-
vide the tools for design of applications running within the iIRMX system. The basic
concept is to let a developer to concentrate on the design of an application remaining
programming details to next development phases. The current MS Windows version
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of the language may be considered as a CASE tool (Schwarz et al, 1993b). This
version (developed in cooperation with LISPI laboratory, INSA de Lyon and CSL)
provides the tools for graphical programming. Graphical specification is translated
into the corresponding C code constituting a skeleton of the application program for
a target operating system. The translator for iRMX system is available, those for
other systems are under development at LISPI laboratory.

The paper concentrates on simulation and verification of LA4 programs. The ve-
rification is distributed into several layers, and relative correctness methods (Szmuc,
1991) are applied. Communicating Real-Time State Machines (CRSM) description
(Shaw, 1992) constitutes an intermediate layer between LA4 and process specifica-
tions. The process description is used in the relative correctness verification. Roughly
speaking the idea of the multilayer approach lies in modelling LA4 objects by a set of
state machines and all the communications between objects as state transitions. The
collection of state machines is the basis for the process generation.

2. Specification Language LA4 (an Overview)

LA4 specification may be represented in two modes: graphical (LA4_G) and textual
(LA4_T) one. The LA4_G representation is syntactically equivalent to LA4_T speci-
fication. The translation between two modes is achieved on-line during programming
being carried out usually in graphical mode. The LA4_T code may be translated into
chosen target language and operating system.

An application specified using LA4_G language is a scheme containing LA4 objects
i.e. the static system components and primitives describing communications between
objects. Two types of objects: programmable and configurable are provided. A pro-
grammable object may invoke some actions in a system. This class contains objects:
task, interrupt and alarm. The definitions appear in LA4.T code in the form of a
sequence of instructions corresponding to performed actions (Fig. 1.). Configurable
objects (semaphore, mailboz, message, message pool, resource and event) may be con-
nected to actions performed by programmable objects. Configurable objects perform
no action explicitly, therefore they are only declared but have no body in the LA4_T
code.

Primitives may be divided into two groups: global (creation, destruction pri-
mitives) and specific for an object (for example SEND.TO_MBX for a mailbox,
WAIT_ON_SEM for a semaphore).

Objects and primitives have their own graphical representations. The grammar
of LA4_G distinguishes certain regions in objects called bars. Any object has state
bar that may be accessed by global primitives and primitives inquiring or changing
object’s state (those are also denoted state calls). Programmable objects have progress
bar where primitives start. The primitives are represented by oriented broken lines
with an attached graphical symbol and some parameters. The configurable objects
have action bars; at those regions the primitive symbols end.

The progress bar of any programmable object may be extended by algorithmic
forms. Algorithmic forms represent program control flows and correspond to classi-
cal high-level languages structural constructs: ¢f-then-else, switch-case, repeat, while,
forever (infinite loop) and procedure.

An example of LA4 application is presented in Fig. 1.
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2.1. Objects and Primitives

A short description of basic LA4 components is given in the section. The detailed
definition of the language may be found in (Schwarz, 1992) and some supplements
in (Schwarz et al., 1993a; 1993b). Selected objects and primitives are presented in
Table 1, to make a brief introduction to further considerations.

Tab. 1. Selected LA4 objects and primitives.

Graphical representation

Description

task
Task
FOREVER 255
CREATE — DELAY
— SUSPEND
KILL — RESUME
progress bar

Task is the basic LA4 object corresponding to a
sequence of activities nearly always simple and re-
petitive. The initialisation sequence is placed before
FOREVER algorithmic form. Other algorithmic
forms permit to change the execution path. (In the
example if cond is TRUE, then the primitives
placed in the IF-THEN-ELSE brackets will be exe-
cuted). The DELAY primitive suspends the task for
a given period of time. SUSPEND makes the task
inactive until RESUME is invoked. CREATE and
KILL are global primitives for creation and
destruction. Priority is the only one parameter of a

SEND_TO_SEM

\

—— WAIT_ON_SEM

CREATE KiLL

IF(Sond)THEN I 3
ELSE... task. More detailed task model will be presented
ENDIF _ afterwards.

state bar
semaphore Semaphore is a classic object of real-time systems. [t

consists of a unit counter and a queue storing the
requests of objects waiting for the units.
SEND_TO_SEM stores numbers of units in a
semaphore; WAIT_ON_SEM (called by a pro-
grammable object) places the request for units in the
queue. The queues may be managed using FIFO or
priority polices. Programmable object is allowed to
take the units if it is the first in the queue and if the
demand may be satisfied.

mailbox and message

message END_TO_MBX
message name SEND_TO_

CREATE— 10

i KILL
WAIT_ON_MBX

Mailbox stores messages. Any message is a data
structure or a pointer to the structure (depending on
the target operating system). It is assumed that any
programmable object after sending a message to a
mailbox has no right to access the data stored in the
message; on the contrary, the object receiving a
message has unlimited access to its content. The
mailbox has two queues: the first
(SEND_TO_MBX) stocking messages and the
second (WAIT_ON_MBX) storing requests (as for
semaphores). LA4 allows us to specify also timeout
and overflow control.
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resource Rt?slource as LA4 object is intended to represent the
critical resources: memory, files and drivers. The
Ess \L A type of protection (semaphore, region, lock, inter-

ACC —_

\ rupt mask) is given as a parameter. CREATE corre-

RELEASE sponds to necessary initialisation (e.g. file opening).
ACCESS, RELEASE are standard actions permitting
to use resources. KILL performs post-actions (like
file closing). The simplified model considers the
resource protection of region type.

CREATE

event Event represents an object of synchronisation and
communication. The event is composed of simple
events that may be combined with OR or AND op-
erator. SIGNAL_EVENT signals the occurrence of a
simple event; WAIT EVENT suspends the exe-
cution of a programmable object until the composed
event occurs. CLEAR_EVENT restores the initial
state. It is assumed that the object handles a set of

operator AND or OR . .
i’ simple events and furnishes an occurrence of the

——— WAIT_EVENT composed event for any request (there is no queue of
objects waiting for events).
interrupt Interrupt (as LA4.objec_t) c_orresponds to interrgpt
handler. The object is introduced to specify:
source communication with other objects. The basic

=, IRPT /2:;1;:: d by atask) primitives are: SIGNAL_IT (executed by interrupt

ve object) and WAIT IT mutnally executed by a
—Z5 programmable object. The CREATE primitive
’ connects the interrupt handler to the interrupt vector,
while KILL restores the previous state. The
SIGNAL_IT and WAIT IT primitives are executed
simultaneously.

SIGNAL_IT

2.2. Example of LA4 Application

An example of LA4 application is given in Fig. 1. The system is composed of three
tasks: Producer, Consumer and MainTask. Producer creates a message (i.e. allocates
memory) and stores it (its pointer) in BufMbx mailbox. Consumer fetches a message
and processes it and then destroys the message (frees memory). BufMbx may contain
at most 50 messages. If the buffer is full, Producer should wait until Consumer takes at
least one message. If BufMbx is empty, Consumer will wait until a message is stored.
The process halts after finish condition is satisfied (it may be set in additional code
in a target system). All objects apart MainTask are explicitly created and destroyed.
MainTask is created and destroyed by the operating system in initial and final phases
of the application execution.

3. Relative Correctness Verification

The relative correctness concept (Szmuc, 1991; 1992; 1993) has been applied for
verification of LA4 specifications. The idea of the relative correctness consists in
checking if the program (system) meets requirements. It is an analogy (on the verbal
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LA4_G scheme corresponding LA4_T code

> % TASK (Producer, 255)

Consumer FOREVER

200 CREATE_MESSAGE (Msg) ;
SEND TO_MBX (BufMox,Msg, , ) ;
IF finish THEN
SENDﬁTO_SE‘.M(Control, 1,);
END IF

TASK_END

TASK (Consumer, 200)
CREATE MATLBOX (BufMbx, 50, F) ;
CREATE_TASK (Producer) ;

FOREVER
MainTask A WAIT ON_MBX (BufMbx, ) ;
150 KILL MESSAGE (Msg);
X TASK_END
Control —

TASK {MainTask, 150)
CREATE SEMAPHORE (Control, 1, 0,F);
CREATE TASK (Consumer) ;
WAIT ON_SEM (Control,1,);

]
3¢ KILL TASK(Producer);
KILL MATLBOX (BufMbx);
KILL TASK{Consummer);

KILL SEMAPHORE (Control);
TASK_END

Y

Fig. 1. The LA4 application: LA4.G scheme and corresponding LA4_T code.

description level) to the correctness verification defined in IEEE Software Standards
(IEEE/ANSI Std., 1986). As regards the formal description, the following three
objects are considered:
o verified process — described by a graph;
e criterion process — defined by another graph, but usually simpler than the first
one;

e correctness relation, which defines correspondence between selected (characteri-
stic) states in the verified and the criterion processes.

The relative correctness notion is described using algebraic language — algebra of
processes (Szmuc, 1989). This property causes that the methodology is independent
of a language specifying the verified system and may be used on any layer of sys-
tem description as well as in any phase of the software life cycle (IEEE/ANSI Std.,
1986). The generality of the tools provides homogenous description of a system and
correctness requirements but, on the other hand, causes additional operation, i.e.
a translation from applied specification (programming) language into the algebraic
form (graph) has to be accomplished. The correctness verification consists in chec-
king whether characteristic states of verified process appear (are encountered during
the execution) in order specified by a criterion process. The verification is accompli-
shed with checking a kind of homomorphism between the graphs describing verified
and criterion processes correspondingly. This homomorphism is checked in an auto-
matic way by a symbolic execution of the verified reduced process with an analysis
of the corresponding changes in the criterion process. A translation of the verified
system and correctness requirements into the corresponding process (graph) forms
has to be completed before the relative correctness method is applied.
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The following conclusion may be drawn as a result of the above considerations.
The relative correctness methods require three components (objects): process to be
verified P, criterion relation k and criterion process P’. The correctness criterion
is the pair (k, P’). Considering application of relative correctness methods to any
specification one should answer the following two questions:

e how to generate a process describing the system starting from the specification?

e how to choose the correctness criterion?
In the presented approach the verified process is generated starting from LA4 specifi-
cation via an intermediate description layer called CRSM (Communicating Real-Time
State Machines) Layer. Two types of criteria have been introduced: criteria generated
automatically starting from specification (typical for specifying language primitives
and paradigms) and user-defined criteria. The proposed distribution of criteria de-
finition increases the level of automation of the verification process and makes the
verification easier and more comfortable for the user. The idea of verification is pre-
sented in Fig. 2.

LA4 specification Specification Layer

!

(automatic or semi-automatic generation

generation of state transition rules (STR)

CRSM descripfion pre-defined objects
(rules)

automatic generation . T
Automatic Verificatio
l Layer :

process generation pre-defined criterion
(simulation) processes

Non-automatic Verification

verified process Layer

}

L correchness verification J - gsﬁfér?:r?:fgcess

Fig. 2. The verification layers.

The verification process is divided into four stages:
e Specification Layer (LACATRE specification in the case);
o CRSM description layer;
e Automatic Verification Layer;
e Non-automatic Verification Layer.
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The verification starts at the Specification Layer (i.e. LA4_T specification). The next
* step is to derive the CRSM description of an application starting from the specifica-
tion (i.e. to describe the whole system as a set of state machines and to provide state
transition rules reflecting communication mechanisms). Three tasks are accomplished
at the Automatic Verification Layer: automatic generation of correctness criterion,
generation of the verified process and correctness verification with regard to the pre-
viously generated correctness criterion. The last layer is related to the verification of
the generated process in the sense of user-defined criterion processes.

The paper focuses on CRSM Layer and Automatic Verification Layer that are
the basic concepts in the proposed approach. More detailed explanations dealing with
the other layers may be found in the related papers, i.e. (Schwarz, 1992; Schwarz
et al., 1991) for LA4 specification and (Szmuc, 1989; 1991; 1992; 1993) for relative
correctness verification and user-oriented specification of correctness criteria. The
basic idea of the relative correctness verification will be presented in the next sub-
section to give an introduction to considerations dealing with CRSM and Automatic
Verification layers.

3.1. Formal Tools for Relative Correctness Verification

The main notions related to the relative correctness verification (Szmuc, 1989; 1991,
1992; 1993) are recalled to clarify considerations dealing with translation of CRSM
specification and automatic correctness verification. The notion of the process is a
basic tool in the verification theory. This notion may be interpreted in different ways
as well as represented as a graph with selected two sets of its vertices. The definition
from (Pawlak, 1968) is given below.

Definition 1. By a process we mean a relational structure P = (S, B, F, T), where
S is a countable set of states, B C S is a set of initial states, F' C S is a set of final
states, 7' C S x S is a transition relation, and the following condition is satisfied:

B CDomT A FnNDomT #0

The netion of the state (and process) is very general and may be interpreted in

different ways, e.g. a state may represent:

1. current values of data and a label of currently executed instruction — for sequential
(one-process) program model;

2. a vector of current data values and a vector of instruction labels, i.e. any compo-
nent of the vector may describe a state of a component process in multiprocess
system,;

3. a restriction of a state of process (system), e.g. values of selected data are consi-
dered only;

4. symbol of operation (instruction).

The twofirst interpretations may be used for description of the verified process, while
the last ones may be applied to criterion process specification (selected data values,
operations). The main idea of the verification is to check if a program meets its
specification (assumed requirements). The verified process is a subject of verifica-
tion, the criterion process describes correctness requirements, e.g. required order of
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execution (appearance) of some selected states (operations). The criterion process is
usually specified in a different way, hence (and by other reasons) correctness relation
connecting characteristic states in a verified process with states in criterion process
1s defined.

Relative correctness is a relation between the verified process (sequential de-
scription of verified system) and the criterion process (specification of correctness
requirements). The two classes: partial and total relative correctness are considered.
A simplified definition of the correctness notion is given below.

Definition 2. Let P = (S, B, F,T), P' = (5', B', F', T") be processes and k C
Sx S arelation. We say that the process P is partially correct in the sense of a
correctness criterion (P’ k) iff the following conditions are satisfied:

1. Any characteristic state that appears in the process P as an initial one is con-
nected (by k relation) with states belonging to the set B’;

2. Every characteristic state that appears in the process P as a final one is connected
(by k relation) with states belonging to the set F;

3. For any transition (s',s}) € T’ in the criterion process whose states belong to the
counter domain of relation k there exists a semicomputation (in the process P)
that:

e begins with a state connected by & with ¢,

e finishes in a state connected with sj,

e any state in the semicomputation may be at most connected with other suc-
cessors of s or it should belong to B’.

Definition 3. Let P = (S, B, F, T), P' = (5, B/, F/, T") be processes and k C
S x S" arelation. We say that process P is totally correct in the sense of a correctness
criterion (P’ k) iff P is partially correct in the sense of (P', k') and the following
conditions are satisfied:

1. A set of characteristic states appearing as initial ones is equal to B’.

2. A set of characteristic states appearing as final ones is equal to F”.
3. Rank=9".

Roughly speaking process P is partially correct in the sense of (P’, k) when the
behaviour of P observed via relation %k is consonant with P’. The property does
not mean that k-mapping of P into P’ covers the whole process P’. This property
is reached by processes being totally correct in this sense.

These notions may be treated as generalisations of partial and total correctness
which are defined for sequential programs. Moreover, strong analogies between safety
and liveness properties (Manna and Pnueli, 1981) may be observed.

The correctness verification consists in simulation of the verified process (usually
its reduced form) and checking if the corresponding (by relation k) states transitions
are in accordance with the ones specified in the criterion process. The two main
constructs are used in the verification (see Szmuc, 1989; 1991; 1992; 1993 for details):

e coupled process describing transitions in the verified process and the corresponding
transitions in the criterion process;

e local testability theorem forming conditions that should be tested at any state
(transition) of the verified process to meet given correctness criterion.
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The verification of the relative correctness may be carried out in two ways, as the so-
called static verification (when the coupled process is constructed), and as dynamic
correction when running the verified process and the additional module constitute the
coupled process.

A process describing a real-time system and a criterion process specifying cor-
rectness requirements should be defined before the relative correctness verification is
applied. The two processes are generated at the Automatic Verification Layer.

3.2. CRSM Layer of Description

The CRSM layer is composed of two basic types of elements: pre-defined classes
modelling LA4 objects (tasks, mailboxes, semaphores) and transition rules (STR)
for objects’ states reflecting the communication mechanisms. It is assumed that any
communication (thus state modification) may occur between at most two objects.
Any LA4 primitive is described by one or more rules.

The goal of introducing the CRSM layer is to facilitate the simulation and the
generation of the verified process in the form of traces containing subsequent system
states. The set of all traces produced in the Automatic Verification Layer is then pas-
sed to the Non-Automatic Verification Layer, where relative correctness verification
in the sense of user-defined correctness criterion is carried out.

It is worthy to remark that as LA4 serves as an overlayer to many target sys-
tems and their programming languages, there is no model which is general enough
to express an object that would fit directly for all the systems. The goal of the
investigations is not to simulate an application in a chosen system, but to develop
methodology that may be applied for a large variety of systems. This is the rea-
son that non-deterministic application execution has been assumed whereas in iRMX
system applications are usually deterministic (excluding the same priority cases). No
assumptions have been made at this stage. That leads to situations when information
on the verified application may be redundant for certain target systems but will be
exactly satisfactory for others.

3.2.1. Predefined Classes of LA4 Objects

A class of objects describes the behaviour of LA4 objects of a given type. For example
mailboz class is used to model messages stocking mechanism, semaphore class makes
possible the simulation of storing and retiring units, task class allows a description of
activities for programmable objects, etc.

For any class of predefined objects two types of activities may be distinguished:
e actions accomplishing transitions between states,
e interrogations permitting to determine an object state or a possibility to perform
some selected actions.

Additionally, for any object o; an extraction function F; : X; — I is defined
projecting the set of object X; states into the set of integers. Any system state is
obtained as a vector of extracted states of its component objects. In a certain sense
the extraction function allows us to select observable components from the system.
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Any state of object is built from elementary states expressing important (for
modelling) properties. For the task in Fig. 3 we may consider the general state
(INITIAL, ACTIVE, FINAL, WAITING, SUSPENDED), the label of current instruction -
Label, task Priority, DelayCounter supporting time flow during execution of DELAY or
in waiting for communication state, MessageSet a set of messages being accessible for
the task, etc.

It should be noticed that in general case states of objects cannot be enumerated
a priort; for instance the contents of the set of messages accessible for a task Mes-
sageSet is unknown while designing the class but is to be determined during the
simulation.

Any object model is supplemented by its predefined criterion process specifying
correct transitions between the corresponding states. The types of transitions in
a criterion process supporting the approach are discussed in (Szmuc, 1993). The
criterion process is given indirectly — by enumerating all the actions that may be
performed on the object at a given state without falling in error. For instance, if the
task state is INITIAL, then Create action is permissible only. Invoking Destroy action
in this state causes an error (the global Boolean variable error is set to TRUE) and

stops the simulation.
Tu!
nsi cltionLabel GetLabel
SUSPENDED - «4———— GoToNextLabel
L
NextLabe! 4 GetNextLabel

4——- Set
DelayCounter 4—— Clear

TASK - criterion process l

Destroy

Resume

Suspend

Destroy
Sleep

Activate

Destroy .w

Fig. 3. Task model and its criterion process.

3.2.2. Transition Rules

The CRSM layer is completed by the data that are generated starting from the LA4
specification. The description of a RT system using CRSM language consists of two
parts: a declarative part that is a declaration of objects instances (and their classes)
used in the application and a descriptive part specifying dynamical behaviour by rules
of transition between states.

Any rule is constructed in the same manner, i.e. it is composed of two elements
— a guard and a command. A guard is a logic expression that may reach value
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TRUE or FALSE. The expression contains interrogations related to objects joined
by the logic operators and, or, not. A command is specified by the sequence of
actions changing the objects state (Fig. 4.). Each rule is assigned to the corresponding
LA4 primitive invoked by a programmable object. It may describe a communication
performed by two objects, a primitive changing states of a programmable objects
(DELAY, SUSPEND_ITSELF) or a structural command switching execution control
(IF condition THEN ... ELSE).

Label: k

Label: k+1 0 Semaphore

GetLabel(Task)=k and CanDeposit(Semaphore,1) - guard
GoToLabel(Task,k+ 1); Deposit(Semaphore,1); — command

Fig. 4. Example of transition rules. A task depositing one unit into the
semaphore. Description using C-like syntax.

The whole system is described by a set of state transition rules (STR). It is assumed
that the set of STR satisfies the following conditions:

o The language used to describe guards and commands contains a set of interroga-
tions and actions of pre-defined classes and symbols declared in objects instances.
The standard logic operators are also used.

e There are no two rules with the same guard in the set of STR.

e No guard reaches value TRUE when the global Boolean variable error is set to
TRUE.

3.3. Verification Layers
3.3.1. Criterion Processes

Two types of criterion processes corresponding to Automatic and Non-automatic Ve-
rification Layers have been introduced:

e the one specified as a sum of disjoint predefined criterion processes related to
LA4 objects; the process is generated automatically and specifies an intuitional
requirement of a program ezecutability; the relative correctness regarding this
process is tested dynamically during the system simulation;
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e a user defined criterion process specifying correct system behaviour in the sense
of the program functionality.

Automatic generation of criterion processes

Specification of a correctness criterion may be a difficult and time consuming task
that should be completed before the relative correctness verification. The idea ap-
plied in this paper lies in determining a part of the criterion that may be generated
automatically; the remaining part is application dependent and is defined by the user.
The division and selection should lead to a criterion that:

e may be generated automatically,

e allows us to express basic correctness requirements of the system.

A predefined criterion is attached to an object model. The criterion for the whole

. application is obtained by the instantation of predefined criteria corresponding to the

objects in the application. The generated disjoint criteria related to objects are then
summed to obtain an automatic criterion.

The following properties may be checked using correctness criteria specified in

an automatic way:

s code redundancy, reachability (if a certain rule has never been used during the
generation of traces, the corresponding transition is expected to be unreachable),

¢ starvation (a programmable object rests at the same instruction label starting
from a certain moment to the end of the current trace),

e deadlock (neither a final system state nor a branching state have been reached
but there is no rule permitting a change of system state. All the guards reached
FALSE value),

e typical sequence of calls to primitives affecting objects. For example, an object
should be created first, then it has to perform its characteristic activities, and fi-
nally should be destroyed; a task cannot access messages that it has never received,
etc.

Let us examine the application presented in Fig. 5. The correctness
criterion may be generated using the three component criteria: (Ppr, knr),
(P§p, ksn), (Pb,,ksm) corresponding to MainTask, Sender and Sem respectively.
The resulting criterion process P’ is obtained as a sum of component processes:

P'= Plug + Pl + Py,
and the correctness relation & is defined as
k= {(e, y)| e = (epmT,€8n,e5m); € € Domkpsr x Dom ks, x Dom kg

Yy € kpmr(emr)Uksn(esn)U ksm(esm)}

(see Szmuc, 1991).
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3.3.2. Process Describing the Real-Time System

A system state is a vector created by aggregation of extracted states of component
objects. The process describing the real-time system is generated during the system
simulation. The STR specifies constraints for possible transitions in the verified pro-
cess (i.e. they specify indirectly the 7' relation from Definition 1). During a transition
some actions changing object states are accomplished; any action performed on an
object changes its state (when the transition is correct in the sense of the predefined
criterion process) or causes that the global variable error is set to TRUE.

As at a given moment of simulation more then one guard may have the value
TRUE (the maximum number is equal to the number of programmable LA4 objects
existing in the application), the next transition may be chosen among several others.
That leads to non-determinism in the verified process.

3.3.3. General View of the Algorithm of Simulation

The simulation algorithm is based on do-od construct in the Dijkstra style (Dijkstra
and Scholten, 1989). All rules of STR are in the form of guarded commands; any
computation begins at an initial state and is continued until at least one TRUE
guard exists. The computation halts if all the guards are FALSE; the terminal state is
encountered in this case. The type of the terminal state allows us to conclude whether
the computation is correct in the sense of the correctness criterion or whether an error
or deadlock has occurred.

A so-called MainTask appears usually in LA4 specification (see Fig. 1 and Fig. 5).
This task is responsible for creation and destruction of all other elements of the
system. MainTask is never explicitly created and destroyed; it is under control of the
operating system. The expected correct execution of a program specified with LA4
begins when the MainTask is launched, just before an execution of its first instruction
and stops after completing its last instruction. This situation corresponds to the total
correctness property of the system.

Let us define two predicates in the domain of the extracted system states:
IsInttial(z) < no object, apart MainTask, is created; MainTask rests in the
state before the execution of its first instruction

IsFinal(w) & all objects apart MainTask are destroyed; MainTask has reached
its final state
The predicate mentioned above describes correct termination of programs. The others
listed below define incorrect terminal states:
IsWarning(z) <> MainTask has reached final state, but there exist some objects
that have not been destroyed
IsDeadlock(z) < MainTask has not reached a final state
IsError(z) <  the global variable error has the value TRUE as a result of the
command execution

It is easy to notice that the subsets of the final states corresponding to the predicates
are mutually disjoint.
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The correct program behaviour may be formulated using Dijksta’s predicate trans-
formers:
The system described by a process P is totally correct (the executability criteria) iff

IsInitial — wp(P, IsFinal)

This requirement means that any computation beginning in the state that satisfies
IsInitial finishes in the state satisfying postcondition IsFinal.

Loops

Infinite loops may appear in LA4 specification, e.g. application consisting of one task
that executes only FOREVER and DELAY. No errors occur during execution but
the process never reaches a terminal state. In such situation the partial correciness
property is checked.

Pseudo-terminal branching states have been introduced to make simulation algo-
rithm finite. Any system state is a branching state if its extracted state has occurred
in the sequence generated earlier. Taking into account the branching states, the par-
tial correctness conditions may be formulated by adding a supplementary predicate
IsBranching that is satisfied by all pseudo-terminal branching states.

The system described by a process P is partially correct (the executability criterion)
iff

IsInitial — wp(P, IsFinal V IsBranching)

Coming back to the extraction function, the importance of the selection of this func-
tion should be emphasized. In a general case the extraction function is not a bijection
and it allows us to choose a depth of the simulation by specifying how to distinguish
two given states (i.e. when to conclude that the simulation looped into the previously
reached state).

Algorithm for generation of state traces

The algorithm for traces generation is presented below. Variable R is a set of rules
whose guards are TRUE at the given moment of simulation; rs is used to store the
rule currently selected for execution; variable stack stocks the pairs (rs, R) to make
possible return to the point where bifurcation of traces occurs. Variable x denotes
the extracted system state; H stores all states that have appeared in the trace.

program generation;
begin extract system state z
if = IsInitial(z) then STOP {error in application model}
determine the set R of rules whose guards have the value TRUE
repeat
{generate a trace tail}
repeat
if R =0 then break {the predicate IsDeadlock(z) is TRUE}
select a rule rs € R to execute;
R:= R\ {rs};
Push((rs, R)); {push pair on a stack)}
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execute the command of rule rs;

extract the system state z;

if error, then break {the predicate IsError(z) is TRUE}

if £ € H, then break {the predicate IsBranching(z) is TRUE}

determine the set R of rules whose guards have the value TRUE;
until ~(IsFinal(z) V IsWarning(z));

{find rule rs responsible for bifurcation}
repeat (rs, R) := Pop();
until —empty(stack) A R = §;
{restore the state before the bifurcation}
if R# 0 then for ¢:=1 to count(stack) do reezecute rule r; from pair (r:, R:);
execute rule rs;
until empty(stack)
{all traces were generated}
end.

Time

Time flow has been introduced to the model to ensure the correct simulation of time
dependencies of systems specified with LA4. The time is simulated to permit model-
ling of delay command and all the primitives where timeout control is performed. It
is assumed that for any command the time of its execution may be considered. Ad-
ditionally, the time of switching between the tasks may be taken into account. After
a command is executed, the simulated time is increased by the time of the execu-

tion. Algorithms based on the time interval specifying the time of execution are also
considered.

3.4. Example of Simulation

Two similar examples (Fig. 5) of a system with two tasks and a semaphore are tested:

e case A (correct) primitive KILL_SEMAPHORE (marked in grey) has been executed
by Main Task;

e case B (incorrect) — the primitive has been executed by Sender.

This simple example has been chosen to provide an illustration of the presented
methods and tools. The example shows the main stages of the verification considered-
in the paper.

The correspondence between LA4 primitives and transition rules are listed in Tab. 2.

Results of the simulation are shown in Fig. 6 in the form of traces of rules selected
during execution. At the end of a trace the predicate satisfied by terminal state is
indicated (OK corresponds to IsFinal). In the presented example all the traces for
system A are correct. For system B correct traces as well as traces terminating
with warnings or deadlock have appeared; there was no occurrence of error, (i.e. all
executed commands succeeded, all transitions of states were correct in the sense of the
automatically generated criterion process). In spite of this, the generated process is
incorrect because the terminal states that do not correspond to final states of criterion
process (see Definition 2 and 3) have been encountered.



658 T. Szmuc and P. Szwed
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Fig. 5. Two simulated systems differing by a task that executes KILL SEMAPHORE.

Tab. 2. Rules and primitives from Fig. 5.

Rule Corresponding LA4 primitive Executed by
number
0 CREATESEMAPHORE(Sem,1,0,F); | MainTask
1 CREATE_TASK(Sender); MainTask
2 WAIT_ON_SEM(Sem,1); MainTask
(registration of the request)
3 WAIT_ON_SEM(Sem,1); MainTask
(action of retiring units)
4 KILL_TASK (Sender); MainTask
5 KILL.SEMAPHORE(Sem); MainTask (case A)
Sender (case B)
6 SEND_TO_SEM(Sem,1); Sender

During the simulation all the traces of system states (or dual traces of selected
rules) are generated. It is possible to impose their order by determining a way the
rules with TRUE guards are selected for execution. In the examples given below rules
have been scheduled by task priority, thus the traces generated as first (placed on the
left border) correspond to iRMX operating system.
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Fig. 6. Results of simulation for systems A and B.

4. Conclusions and Future Research

Correctness verification of specifications has been proposed in the paper. Graphi-
cal specification language LLA4 has been chosen as a tool for description of real-time
applications. The relative correctness algebraical tools have been applied for the ve-
rification. The general model provides homogenous description of the correctness in
any layer and phase of the verified software. On the other hand, translation from the
application description into an algebraical form has to be accomplished additionally.
An intermediate layer (CRSM) has been introduced making the translation and ve-
rification more clear and supporting automatic generation of verified and criterion
processes. The last property gives an opportunity for distribution of the verification
into two layers:
e Automatic Verification Layer related to typical primitives and paradigms of LLA4
language,
e user (application) oriented verification layer where correctness criteria should be
defined by the user.

Correctness criteria for the second verification layer are determined by applications,
hence generation of the correctness criteria has to be accomplished by the user and
cannot be done in a fully automatic way. It seems to be purposeful, however, to create
tools for fully automatic preparation of data for simulation, a user-friendly interface
permitting easy specification of user defined criterion process and the module for
visualisation of the execution traces.

The other directions, convergent with LA4 development tendencies (Schwarz
et al., 1993b) may include automatic generation of criterion processes for subsystems
(process and agency in LA4) and further hierarchization of correctness verification
layers.



660 T. Szmuc and P. Szwed

LA4 language has been chosen as an example of a specification tool. The language
is simple, clear and significantly expressive so it may be chosen as a representative
for the class of specification languages. It must be mentioned, however, that the
verification concept is general (see Fig. 2) and may be applied for other languages
and systems.
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