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ACTIVE NOISE AND VIBRATION CONTROL

STEPHEN J. ELLIOTT*

Active control can reduce sound and vibration by destructive interference be-
tween the original, primary, field and the field generated by controllable sec-
ondary sources. It is most effective at low frequencies, for which the wavelength
of the disturbance is comparable with the dimensions of the region being con-
trolled. In this review paper the physical limitations of performance are first
explored for vibration on a plate and sound in an enclosure, and the nature of
the plant response is discussed in these two cases. Adaptive feedforward control
algorithms have been successfully used in active control, and these are discussed
in terms of an equivalent feedback control system. Finally, the feedback control
of sound and vibration is discussed, from the point of view of Internal Model
Control, emphasising the importance of plant delay in determining optimal per-
formance, and the trade-off between disturbance rejection and robust stability.

1. Introduction

Sound and vibration have conventionally been controlled using passive methods which
involve absorbing the disturbance or blocking its transmission. These methods gen-
erally work well at high frequencies, where the wavelength of the disturbance is small
compared with the structure or enclosure, but are less effective at low frequencies.
At 100 Hz, for example, the wavelength of a soundwave under normal conditions in
air is about 3.4m, and it is difficult to absorb such a sound wave with a thin layer of
absorbent material on the walls of an enclosure.

Active sound and vibration control exploits the long wavelengths associated with
low frequency disturbances. It works on the principle of destructive interference be-
tween the original “primary” soundfield and that due to a number of controllable
“secondary” sources. The secondary sources are generally adjusted to minimise the
disturbance measured at a number of discrete sensors and a knowledge of the physics
of the sound or vibration field is used to ensure that controlling the field at these
points leads to attenuation over some useful region of the field. The main physical
elements of an active control system are illustrated in Fig. 1, which shows a system
acted upon by a number of primary and secondary sources. The signals driving the
secondary sources are adjusted to minimise a cost function derived from measure-
ments made on the system which can either give an indication of the system’s global
or local response. :
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Fig. 1. The physical elements of an active control system.

Although the principle of active noise control dates back to 1936 (Lueg, 1936), and
manually adaptive analogue control systems were developed in the 1950’s (Conover,
1956), the modern era of active control was spurred by the availability of affordable
DSP processors which allowed adaptive multichannel digital controllers to be imple-
mented.

The effective implementation of an active control system relies on an understand-
ing of both the electrical control issues involved (Elliott and Nelson, 1993) and the
physics of either the acoustic or structural system being controlled (Nelson and Elliott,
1992; Fuller et al., 1996).

In this review paper the physical limitations on the performance of an active
sound or vibration control system are first illustrated by considering both the min-
imisation of total energy and the creation of a zone of quiet for the vibration on a
plate and the sound inside an enclosure. This clearly shows that there is a frequency
above which active control cannot generally be usefully applied, which depends on
either the size of the whole system or the size of the zone of quiet compared with the
wavelength of the disturbance.

The control issues are then introduced by considering two exam.ples of the plant
response in active control systems. The first system is for the control of vibration
on a plate, and this shows clearly modal behaviour over a wide range of frequencies.
The second system considered is the response between a secondary loudspeaker and
a microphone in an acoustically well-damped enclosure such as a car interior. Al-
though the response in this case can be described in terms of a modal summation,
the separation between the modes is so small compared with the bandwidth that the
frequency response does not have resonany peaks.

In many cases where active control can be used to control low frequency sound or
vibration, the disturbance is originally generated by a rotating or a reciprocating ma-



Active noise and vibration control 215

chine. The measured disturbance is almost periodic for these cases, and its frequency
can be readily measured using a tachometer on the machine, for example. Feedfor-
ward methods have been widely used for active control systems in such applications,
with an external reference signal derived from the tachometer being used to drive
the secondary sources via a controller which is adapted to minimise the disturbance
measured at a number of error sensors (Elliott and Nelson, 1993). The algorithms
used to adjust these adaptive feedforward controllers were developed from those used
in numerical optimisation or adaptive signal processing, but will be analysed here
in terms of an exactly equivalent feedback system. This illustrates the “closed loop”
nature of adaptive feedforward control and also suggests how the tools of modern feed-
back control theory can be used to improve the performance and robustness of these
algorithms. It also demonstrates how the stability of such adaptive controllers can
be proved with relatively few, well defined, assumptions. For broadband disturbances
propagating in a clearly defined direction, a reference signal can often be obtained
from a detection sensor close to the primary noise source, which provides useful time-
advanced information about the disturbance to be cancelled. Adaptive feedforward
controllers have thus been extensively used for the active control of random sound
propagating in ducts, for example (Eriksson et al., 1987).

Finally, the active control of random disturbances will be discussed for the case
in which no external reference signal is available and so a feedback control strategy
must be used. It is difficult, for example, to obtain reliable reference signals if the dis-
turbance is generated by numerous uncorrelated primary sources spatially distributed
around the point at which control is required. An important example of such a case
is the sound generated by the turbulent boundary layer in an aircraft, which is due
to a very large number of eddies in the airstream outside the aircraft, each producing
their own random contributions. Analogue feedback controllers have previously been
used to control the sound inside active headsets and there is considerable interest
at the moment in being able to extend such feedback methods to control random
soundfields over larger regions of space. The aim of such a feedback control system
is the rejection of the disturbances due to the primary sources, rather than tracking
of a set point or desired signal. Feedback systems for the active control of sound and
vibration are analysed here using the Internal Model Control architecture (Morari
and Zafiriou, 1989). This allows the important trade-offs between performance and
robustness to be explored and also provides a very convenient method of calculating
the disturbance attenuation which can be optimally achieved with various delays in
the plant. In practice, this will determine the maximum distance between the sec-
ondary source and the error sensor in an active control system and thus the physical
size of the region which can be actively controlled.

2. Physical Limits to Active Control

In this section the physical limitations of two active control strategies will be illus-
trated for both the active control of vibration on a plate, and the active control of
sound in an enclosure. Because we are interested in the ultimate physical limitations
of these strategies, the electrical control problem will be made as simple as possible
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by assuming that the disturbance is tonal and of known frequency, so that only the
amplitude and phase of the secondary source(s) need be adjusted at any one frequency
to minimise a physically motivated cost function.

2.1. Active Control of Vibrational Kinetic Energy on a Plate

The complex out-of-plane velocity at a point (z,y) on a plate can be expressed as a
modal series, for steady state excitation at frequency w as (Fuller et al., 1996)

o 1,0) = 3 an@)n(z,1) (1)

n=1

where an(w) is the complex amplitude and ¢,,(z,¥y) is the corresponding mode shape
of the n-th mode. The structural modes are assumed to be orthogonal and normalised
so that

1 if n=m

1

where S is the surface area of the plate.

The total structural kinetic energy stored in the plate is given by the surface
integral over the plate area of half the local mass multiplied by the mean square
velocity, which for a uniform plate can be written as

kw 4Sf z,y,w mfl:w)dwdy (3)

where M is the total plate mass.

If the complex velocity is expressed in terms of the modal series (1), and using
the orthonormal property of the modes, the total kinetic energy can also be expressed
as

0 =23 fan) ()
n=1

i.e. is proportional to the sum of the modules squared mode amplitudes. To represent
realistic physical systems, the summation can be truncated to a finite number of
modes with arbitrarily small error. It is the total kinetic energy which is used here
as a global measure of the response of the plate.

When the plate is excited by a primary force distribution and M secondary point
forces, fsi,--., fsm, then the complex amplitude of the n-th mode can be written as

(w) = anp Z Bamfsm . (5)

where B, is the coupling coefficient between the m-th actuator and n-th mode,
which is proportional to ¢,(z,y) at the point of application of the m-th secondary
force.
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Since a finite number of modes are assumed, eqn. (5) can be written in vector
terms as

a:aP+st (6)

where anp(w) is the amplitude of the n-th mode due to the primary force distribution
and B is the matrix of coupling coeflicients.

The total structural kinetic energy can now be written as

M M ; H
By = afa="C [ffB”st +fIB%a, +aBf, + afap] (7)
where  denotes the Hermitian, complex conjugate, transpose. FEj, is thus a Her-
mitian quadratic function of the real and imaginary parts of each of the secondary
forces. This is guaranteed to have a global minimum, since the matrix B¥ B must
be positive definite, which is obtained for a secondary force vector of

-1
fi(opt) = - [B"B| B, (8)
which results in a minimum value of kinetic energy given by
M -1
Ej(min) = -Q—a;f {I -B [BH B} BHE } a, (9)

Thus, given the primary force distribution, the properties and boundary conditions
of the plate, from which the mode shapes can be calculated, and the positions of the
secondary sources, the minimum possible total kinetic energy can be calculated after
active control for each of a set of discrete excitation frequencies.

Figure 2 shows the physical arrangement for a computer simulation of active
minimisation of total kinetic energy on a plate. The steel plate was assumed to
have dimensions 380 mm x 300 mm x 1 mm thick, with an internal loss factor of 1% of
critical damping and to be simply supported at the edges.

The total kinetic energy of the plate due only to the primary point force, f,
positioned at (z,y) = (270,342) mm, is plotted for a range of discrete excitation
frequencies as the solid line in Fig. 3. The dashed line shows the level of total kinetic
energy after it has been minimised using a single secondary force, fs1, at (30,38) mm
and the dashed-dotted line shows the level after minimisation with this and two
additional secondary forces, f» and fs3, at (30,342) mm at (270,38) mm. These
results have been obtained by minimising the total kinetic energy at a large number
of individual discrete frequencies over the frequency range shown. This represents the
limits of performance due only to the physical aspects of the active control problem,
and the performance with a practical control system operating on a more complicated
primary waveform will inevitably be worse than this. The positions of the primary
and secondary sources close to the corners of the plate were chosen to enable them to
couple into all the low order structural modes of the plate within this bandwidth. The
single secondary force is clearly able to suppress the resonant response of individual
modes of the plate below about 200Hz. Above this frequency several modes with
similar natural frequencies can be simultaneously excited by the primary source, when
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Fig. 2. Physical arrangement for active control of vibration on a plate by a primary point

force, fp, near one corner and either a single secondary point force, fs, near the
opposite corner.

-30

1
S
o

T

Total Kinetic Energy (dB)
]
3
\
A

|
[~
o
T
~
~
N
\

=70+

_80 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Frequency (Hz)

Fig. 3. Total kinetic energy of vibration on a plate when driven by the primary point force,
fp, alone at discrete frequencies (solid line) and after the total kinetic energy has
been minimised by a single secondary force, fs1, optimally adjusted at each excita-
tion frequency (dashed line) or three secondary forces, fs1, fs2 and fs3, optimally
adjusted at each excitation frequency (dash-dot line).
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driven at 280 Hz for example, which cannot all be controlled by this single primary
source. The use of three secondary forces solves this problem since the combination
of secondary forces can independently couple into the two modes contributing to the
primary response at 260 Hz and thus achieve control. Notice, however, that between
the frequencies at which the resonant responses occur, relatively small reductions in
energy can be achieved because of the large number of modes which contribute to the
response at these frequencies.

2.2. Active Control of Total Acoustic Potential Energy in an Enclosure

The complex pressure in an enclosure due to an acoustic source distribution operating
at a single frequency can be represented by a modal summation exactly analogous
to eqn. (1) (Nelson and Elliott, 1992). The total acoustical potential energy in such
an enclosure is proportional to the space average mean square pressure and can be
written as

Byw) = s | bty 2 av (10)

where po and co are the density and speed of sound in the medium, p(z,y, z,w) is
the complex acoustic pressure at the point (z,y,2) and at the frequency w in the
enclosure and V is the total volume of the enclosure. The total acoustic potential
energy provides a convenient cost function for evaluating the effect of global active
control of sound in an enclosure.

Because of the assumed orthonormality of the acoustic modes, E, can again be
shown to be proportional to the sum of the squared mode amplitudes, and these mode
amplitudes can again be expressed in terms of the contribution from the primary
and secondary sources, as in eqn. (6). Thus the total acoustic potential energy is
a Hermitian quadratic function of the complex strengths of the secondary acoustic
sources, which can be minimised in exactly the same way as described above.

A simulation has been carried out of minimising the total acoustic potential
energy in an enclosure of dimensions 1.9 x 1.1 x 1.0 m as illustrated in Fig. 4, in which
the acoustic modes have an assumed damping ratio of 10% of critical, which is fairly
typical for a reasonably well damped acoustic enclosure such as a car interior at low
frequencies. Figure 5 shows the total acoustic potential energy in the enclosure when
driven by only the primary source placed in one corner of the enclosure and when the
total acoustic potential energy is minimised by a single secondary acoustic source in
the opposite corner (dashed line) or by seven secondary acoustic sources positioned
at each of the corners of the enclosure not occupied by the primary source (dash-dot
line). The positions of the secondary sources were chosen to allow them to couple
into the acoustic modes within the enclosure (Nelson and Elliott, 1992). Better active
control performance could be obtained if a secondary source was positioned very close
to the primary source, but only because of the unrealistic assumption that the primary
source only acts at a point in this example.

In this case the response of the system does not show clear modal behaviour for
excitation frequencies above about 150 Hz, and very little attenuation can be achieved
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Fig. 8. The spatial extent of the acoustic “zone of quiet” generated by cancelling the pres-
sure at /L = 1 in a three dimensional free field using a point monopole acoustic
secondary source at the origin of the co-ordinate system for (a}) L = 0.03\ and
(b) L = 0.3 where X is the acoustic wavelength. The solid line corresponds to
a 10dB attenuation in the diffuse primary field, and the dashed line to a 20dB
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Fig. 9. The near-field velocity due to a point force acting on an infinite plate (solid line)
and the near-field pressure due to an acoustic monopole source in free space (dashed

line).
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a “shell” of cancellation. At higher frequencies in the acoustic case, when L > A/10,
then the zone of quiet does not form a complete shell but is concentrated in a sphere
centred on the cancellation point, whose diameter is about A/10 (Elliott et al., 1988a;
1988b).

The advantage of a local control system is that the secondary source does not
have to drive very hard to achieve control, because it is very well coupled to the
response at the cancellation point. Local zones of quiet can often thus be generated
without significantly affecting the overall energy in the system.

At low frequencies, where the wavelength of the disturbance is comparable to the
dimensions of the system under control, then global active control is feasible, and at
higher frequencies it is still possible to achieve local active control over a region of the
system which is small compared to the wavelength of the disturbance.

3. Plant Response

In order to allow active control systems to be easily adapted, they are often im-
plemented “digitally”, i.e. as a sampled data system. Because the frequencies being
controlled are relatively low in audio terms, as explained above, any distortion gener-
ated by the digital to analogue converters would occur in a frequency region in which
the ear is particularly sensitive and so this is generally avoided by the use of analogue
reconstruction filters. Similarly, analogue anti-aliasing filters are generally used to
remove disturbances above half the sample rate before digital to analogue conversion,
which would otherwise cause audible distortion. If driven by an analogue pure tone,
the digital controller and data filters in this case thus only produce an analogue pure
tone response and so act linearly with respect to the outside world. Hence the full
theory of sample data-systems, with a transformation from the s domain to the z
domain which includes aliased components (Franklin et al., 1990), does not need to
be used in this case, since aliasing is specifically prevented, and the sampled version
of the sensor signals can be taken as a reasonably complete representation of these
signals within the bandwidth of the controller. The disadvantage of using these anti-
aliasing and reconstruction filters is their significant group delay, which contributes
to the overall delay in the plant and can become comparable with the physical delays
in the system under control.

The plant response in a digital active control system is assumed to include all of
these analogue filters, together with the dynamic response of the secondary actuator
and disturbance sensor, and the structural or acoustic response of the physical system
under control. The measured plant responses from two examples of active control
systems are presented here to illustrate the typical differences between a structural
and an acoustic response.

Figure 10 shows the measured frequency response and impulse response of an
aluminium plate excited by a small piezoceramic (PZT) actuator bonded to one side of
the plate and measured using a distributed piezoelectric (PVDF) film sensor, designed
to measure the net volume displacement of the plate (Johnson and Elliott, 1995). In
this example of a structural response the response of individual modes can be clearly
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seen over the whole frequency range, because the modal overlap is relatively low in
this case, as discussed in Section 2. The impulse response has a strong reverberant
component and continues at a significant level for about 90 ms.

For many control algorithms the plant response must be internally modelled by
the controller. For the structural response shown in Fig. 10 a recursive (IIR) model is
clearly appropriate and it was found that when sampled at 2 kHz an acceptable model
could be designed with 24 direct and 24 recursive coefficients, whereas 180 coefficients
would be required for an FIR filter of comparable accuracy.

Figure 11 shows the frequency responses and impulse response measured from a
loudspeaker, acting as a secondary actuator, to a pressure microphone, acting as a
disturbance sensor, inside the passenger cabin of a car. In contrast to the structural
case, there is almost no modally resonant component in this frequency response. The
acoustic enclosure is very heavily damped in this case and the most noticeable features
are the zeros in the frequency response, caused by interference between the various
acoustic modes at the location of the microphone. The impulse response shows a
delay of about 5 ms which is partly due to acoustic propagation time and partly
due to delays in the analogue data conversion filters. Most noticeable, however, is
the short duration of the impulse response compared with the structural case. The
impulse response in Fig. 11(c) is concentrated in a region from about 5ms to 30 ms.
The sampling frequency of the control system in this case was 1kHz and an accurate
model of the plant could be obtained with only 25 coefficients by directly modelling
the impulse response with an FIR filter. Such a filter is unconditionally stable and
it is very easy to directly adapt its coefficients, which makes it well suited to rapid
system identification (Widrow and Stearns, 1985).

4. Adaptive Feedforward Control

Adaptive feedforward methods are very widely used in active control to reject periodic
disturbances of known frequency. The algorithms which are used in these adaptive
systems generally have their origins in either the signal processing literature (Widrow
and Stearns, 1985) or the numerical optimisation literature (Press et al., 1986), and
operate in either the time domain or the frequency domain. Some of these algorithms
will be described in this section, together with an interpretation of their behaviour in
terms of an equivalent feedback controller.

4.1. Frequency Domain Algorithms

We begin with the simple case of a single channel, SISO, controller adapted in the
frequency domain using the steepest descent algorithm to reject a tonal disturbance.
The block diagram of such a system is shown in Fig. 12 and we will initially assume
that the disturbance, d(jwp), is stationary and any transients in the plant caused by
a prior change have died away, so the plant is operating in its steady state and can
be characterised by its complex response at the excitation frequency wg only, which
is G(jwo). The complex error signal under these conditions is thus given by

e(jwo,n) = d(jwo) + G(jwe)u(jwe, n) (13)
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Fig. 10. The modulus and phase of the frequency response of an aluminium plate excited by
a piezoceramic actuator and measured using a distributed piezoelectric film sensor.
The impulse response of the system is also shown.



228 S.J. Elliott
)
o
o
o
=
.
E
<
-40 1 ) | L I 1 ! 1 ]
50 100 150 200 250 300 350 400 450 500
Frequency (Hz)
400 T T i T T T T T T
__ 200} .
&
k=)
o OfF -
8
£
o
-200 =
_400 1 1 1 1 1 i 1 Il 1 -
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)
0.15 T L T T T L)
o 0.1 ]
2
S 0.05 .
17
2 o
8
2-0.05 =
E
- 01F -
] 1 1 ,’ L k]
0 50 100 150 200 250 300
Time (ms)
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by a loudspeaker and measured using a pressure microphone. The impulse response
of the system is also shown.
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u(jcoQ,n)

Fig. 12. Block diagram of a single channel feedforward control system
operating at a single frequency, wo.

where u(jwg,n) is the complex input to the plant from the controller at the n-th
iteration of the controller.

The modulus squared error is a quadratic function of the real and imaginary parts
of u(jwo,n) with a unique global minimum. The complex gradient of this quadratic
function can be defined to be (Elliott and Nelson, 1993)

dlewo,n)|” . BleGwo,m)|° . . _
9Re (u(jwo,n)) +'781Hl (u(ng,n)) =2G (.70-)0)6(.7“)07”) (14)
where the (real) derivatives with respect to the real and imaginary parts have been
gathered together into a single complex number for convenience and * denotes con-
jugation. Note that we are not using a derivative with respect to a complex number
and so the problems associated with the cost function not being analytic (see e.g.
Haykin, 1996, Appendix B) are avoided. If the real and imaginary parts of u(jwp,n)
are now adjusted using the method of steepest descents then using (14) the update
algorithm can be written as

u(jwo,n + 1) = u(jwo,n) — aG* (jwo)e(jwo,n) (15)

where « is a (real) adaptation coefficient, and G(jwo is an estimate of the complex
plant response used by the adaptive algorithm.

It could be argued that if the error is given by eqn. (13), and the plant estimate
G(jwo) was perfectly accurate, then e(jwo,n+1) could be set to zero in one iteration
by using the algorithm

u(jwo,n + 1) = u(jwo, n) — G~ (jwo)e(jwo, n) (16)

Notice, however, that the phase of G~!(jwp) is the same as that of G*(jwo) and
if a = (|G(jwo)|?)~" in eqn. (15), it is identical to eqn. (16). In the SISO case the
iterative exact least squares solution is thus obtained as a special case of the steepest
descent algorithm, with a particular value of convergence coefficient.
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We now consider the sequence of complex steady state values of u(jwo,n) and
e(jwo,n) as a sampled time history, with z transforms u(z) and e(z), and take the
z transform of eqn. (15), to give

-

G (jwo)e(2) (17)

z)=
u(2) = ——
The adaptive feedforward controller in this case can be interpreted as a fixed feedback
controller, sampled at a slow enough rate for the plant transients to die away between
sample times. Taking the z transform of eqn. (10), we obtain

e(z) = d+ Gu(z) (18)

The equivalent block diagram for this interpretation of the adaptive feedforward con-
troller is thus of the form shown in Fig. 13, where G is now just a complex gain, and
the negative “feedback controller” has the transfer function

~

H(z) = —2-G* (jwo) (19)

z—1

The term A/(z — 1) is a digital integrator and so, provided the system is stable,
the "control loop will exactly compensate for any observed error over a timescale
determined by the ‘gain’ parameter A.

The function of the term G*(jwo) in eqn. (19) is to compensate for the phase
of the plant at the excitation frequency, so that ideally, if G(jwo) = G (jwo), the real
and imaginary parts of e(n) respond independently. The feedback controller shown
in Fig. 13 has a single pole given by

z=1—aG(jwo)G* (jwo) (20)
and will thus be stable providing « is small and positive and the real part of

G(jwo)G*(jwo) is positive, which is ensured providing that the phase of G (jwo)
is within +£90° of that of G(jwg), (Elliott et al., 1987; Morgan, 1980).

d

u(z) N + e(2)

_H(z) -t

Fig. 13. Equivalent feedback system for the iteratively adapted frequency-domain
feedforward algorithm.
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Multichannel (MIMO) frequency domain adaptive feedforward control systems
can be treated in an exactly analogous way. In this case the vector of complex steady-
state error signals at the n-th iteration is given by

e(jwo,n) = d(jwo) + G(jwo)u(jwo,n) (21)

where G(jwp) is now the matrix of complex responses between each secondary actua-
tor and each error sensor at the excitation frequency. Similarly, the adaptive steepest
descent algorithm becomes

u(jwo,n + 1) = u(jwo,n) — aéH(jwo)e(jwo,n) (22)

Taking the z transform of eqn. (22) leads to the equivalent MIMO feedback controller
in this case, so that in the z domain the vector of error signals becomes

-1
e(z) = [I-{-Gﬂ(z)] d(z) (23)
where in this case G is equal to G(juwp) and
a - H,,
H() = —2-G" (juwo) (24

The stability of the MIMO system is governed by the poles of the system. These are
the roots of the characteristic equation obtained by setting the determinant of the
equation

A H
I+GH(z) =TI+ z"‘TlG(jwo)G (jwo) (25)
to zero. The pole positions are thus given by

Z; = 1- CIA.L' (26)
where A; is the i-th eigenvalue of G(jwo)éH(jwo). The MIMO system will thus be
stable provided |z;] <1 for all );, which is equivalent to the condition

2Re ()\.L)

O<a<
|Xil?

for all \; (27)

For slow convergence, small ¢, eqn. (27) implies that for stability the real parts of each

of the eigenvalues of G( jwo)éH( jwo) must be positive. This condition has previously
been derived (Elliott et al, 1992) from an analysis of the iterative convergence of
eqn. (22).

Assuming the plant model is perfect, the iterative algorithm is guaranteed to be
stable, for small «, since the eigenvalues of the Hermitian matrix G (jwo) G (jws)
are either positive or zero. Under these conditions the convergence of the control
system can be decomposed into a set of “modes” which each converge independently
with a time constant proportional to 1/X; (Elliott et al., 1992). The non-zero eigen-
values of the matrix G(jwo) G¥ (jwo) calculated from a measured matrix of transfer
responses are shown in Fig. 14 (Elliott et al, 1992). The transfer response matrix
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Fig. 14. The eigenvalues of the matrix G(jwo) G¥ (jwo) for the acoustic transfer response
measured from 16 loudspeakers to 32 microphones in an enclosure excited at 88 Hz.

G(jwo) was measured from 16 loudspeakers to 32 microphonesin a6m x 2.2m x 2.2m
enclosure at an excitation frequency of 88 Hz. The eigenvalues are entirely real in this
case and have a range of about 10%. The large range of eigenvalues suggests that in
this case the system is very ill-conditioned. This is because a larger number of loud-
speakers have been used to control the soundfield at this excitation frequency than
were necessary from an analysis of the number of acoustic modes being excited. This
is a not-uncommon situation in active control, however, where the number of actu-
ators may be chosen to ensure good control under worst-case conditions, e.g. higher
frequency excitation, but the system often has to operate under conditions in which
the number of actuators is over specified.

An example of the convergence of the sum of the squared errors at the 32 micro-
phones is shown in Fig. 15 for an adaptive feedforward active sound control system
operating in this enclosure. Several control modes with large eigenvalues are signif-
icantly excited by the primary disturbance and these decay away relatively quickly
to give an attenuation of 20dB in the sum of squared errors. The modes with the
smaller eigenvalues die away more slowly, and the sum of squared errors is eventually
reduced by more than 30 dB. In practice, however, it is the rapid initial convergence
which has the largest subjective effect.

In practice the plant model is not perfect and for systems with large numbers of

W H
actuators and sensors it is likely that some of the eigenvalues of G(jwo) G (jwo) will
have small negative real parts, which gives rise to slow unstable modes. One method of
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Fig. 15. The level of the reduction in the sum of squared errors against time for the overall
convergence of an iterative multichannel feedforward controller controlling the sum
of squared errors at 32 microphones with 16 loudspeakers (dashed curve). Also
shown is the convergence behaviour of the individual ‘modes’ of the control system
(solid lines).

making the control system more robust to such uncertainty is to implement a steepest
descent algorithm which minimises the sum of squared errors and a real parameter,

B, times the sum of squared control efforts. Equation (22) then becomes (Elliott et
al., 1992)

w(wo,n +1) = (1 — af)u(jwo,n) — aG (jwo)e(jwo,n) (28)

which is referred to as a ‘leaky’ algorithm in the signal processing literature (Widrow
and Stearns, 1985). The equivalent feedback controller in this case is equal to

H(z) = z—;—ﬁ—aﬂéfl (jwo) (29)

and the perfect digital integrator in eqn. (24) has been replaced by a ‘leaky’ integrator.

The stability of this control system is now determined by the eigenvalues of the
~ H

. . . . . ~H .

matrix [G(jwo)G (jwo) + BI] so that any eigenvalue of G(jwo) G (jwg) with a
small negative real part can be compensated for by an appropriate positive value
of 8. Even if the plant model is perfect, the effort weighting parameter has the

effect of reducing the range of eigenvalues in the control problem, thus reducing any
ill-conditioning.
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Fig. 16. The level of the sum of squared error signals when an adaptive feedforward control
system with errors in the estimated plant response matrix is used to control the
tonal disturbance at 32 microphones using 16 loudspeakers with no effort weighting
in the cost function (solid line) and when a sufficient effort weighting (8) is included
in the cost function to stabilise the system (dashed line).

The convergence behaviour of the multichannel controller described above when
rather large random errors were introduced into the matrix G(jwo) is shown in
Fig. 16 (Elliott et al, 1992). The solid line shows the behaviour with the effort
weighting parameter, 3, equal to zero, in which case some of the control modes have
small negative eigenvalues and are unstable. The unstable behaviour is only evident
after the fast initial convergence, however, since the modes associated with the large
eigenvalues are relatively unaffected. The exponential increase in the sum of squared
errors is limited in practice by saturation of the loudspeaker amplifiers. If a suitable

value of effort weighting parameter is included in the adaptive algorithm, the real
S~ H
parts of all the eigenvalues of the [G(jwo) G (jwo) + BI] matrix will be positive

and the control system is stabilised, as shown by the dashed line in Fig. 16. This
level of 8 does not significantly affect the larger eigenvalues and thus the initial rapid
convergence behaviour is largely unaffected.

If the slow modes of convergence in the steepest descent algorithm are a problem,
algorithms based on Gauss-Newton methods could be used. This leads to an itera-
tive algorithm of exactly the same form as eqn. (22) with the pseudo-inverse of the
estimated plant response replacing its Hermitian transpose. Assuming there are more
error sensors (L) than secondary sources (M), so that the problem is overdetermined,
this pseudo-inverse is equal to

&' (jen) = [ Guo)G i) & () (30)
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The transfer function matrix of the plant can be decomposed using the singular value
decomposition, so that

G(jwo) = RE QY (31)

where 3 is the square diagonal matrix of singular values, or “principle gains” of the
plant response at wy (Maciejowski, 1989).

The Hermitian transpose of the plant response matrix is thus
G (jwo) = QX R¥ (32)
and the pseudo-inverse of G(jwp) is equal to
G'(jwo) = QE'R? (33)

Assuming a perfect plant model, the convergence rates of modes of the steepest descent
method have been shown to depend on the eigenvalues of the matrix

G(jwo)G* (jwe) = RE?RY (34)

which are thus equal to the squared values of the principle gains. The convergence
rates of the Gauss-Newton algorithm, however, will depend on the eigenvalues of the
matrix

G(jwo)G' (jwo) = RR? (35)

which are either unity or zero. Thus the Gauss-Newton algorithm will, in principle,
have modes of convergence with equal time constants.

The problem with the Gauss-Newton method is that there can be a number of the
very small singular values, as seen in Fig. 14, which are subject to large uncertainties
due to measurement errors or changes in the plant. The effect of these uncertainties
is enormously amplified by the inversion of the singular values in eqn. (33) and can
easily result in rapid instability if the plant model is not exactly equal to the true plant
response. One solution to this robustness problem is to divide the singular values into
two classes, based e.g. on the number required to achieve acceptable attenuations in
the disturbance. A modified inverse matrix is then generated for use in eqn. (33) in
which the larger singular values can be inverted, and the others are not. The modes of
convergence associated with the well-conditioned singular values will thus all converge
at the same, rapid, rate but the modes associated with the smaller uncertain values
will be prevented from becoming unstable and may have small positive constants
added for stabilisation.

4.2. Time Domain Algorithms

One of the most widely used adaptive algorithms used in active control is a variant
of the ‘LMS algorithm’ introduced for the adaptation of digital filters by Widrow
and Hoff (1960). This algorithm operates in the sampled time domain and the plant
behaviour must now be represented by its full dynamic response, represented here by
the set of impulse response operators, characterised by 9im (g), which is the one from
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Fig. 17. Block diagram of a multichannel adaptive feedforward control system.

the m-th secondary actuator to the [-th error sensor. The time history of the I[-th
error sensor is thus given by

M
a(n) = di(n) + Y gim(Q)um(n) (36)

m=1

where u,,(n) is the signal driving the m-th secondary actuator. These signals are
obtained by filtering a set of K reference signals, zx(n), by a matrix of control filters
with finite impulse response operators wmk(g), as shown in Fig. 17, so that

K
U (n) = Y Wk (g)k (1) (37)
k=1
The I-th error sequence can thus be written as
M K
a(n) =d®)+ > > gim(@wnk(@)zk(n) (38)
m=1 k=1

or in a simpler form as

M K
el(n) = di(n) + ) > Ok (@)7mk () (39)

m=1 k=1

where the set of filtered reference signals is defined to be

Titmk(n) = gim(@)2 (1) (40)

Notice that in reversing the order of the filtering in eqn. (38) we are implicitly assum-
ing that both gim(g) and wm,i(g) are time-invariant at this stage. Equation (39) can
now be written in matrix form as

e(n) = d(n) + R(n)w (41)

where R(n) is a matrix of filtered reference signals and w is a vector of control filter
coefficients. If these filter coefficients are adapted at every sample time to minimise
the sum of the squared errors using an instantaneous estimate of the local derivative
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of the error surface, then the adaptive algorithm can be written as (Elliott et al.,
1987),

w(n+1) = w(n) — aRT(n)e(n) (42)

where RT(n) is the filtered reference signals used in practice which are obtained
from estimated plant responses. This algorithm is a multichannel generalisation of
the filtered reference version of the LMS algorithm (Widrow and Stearns, 1985) and
is known as the Multiple Exrror LMS algorithm. It has been widely used in systems
actively to control propeller noise in aircraft (Elliott et al., 1990) and engine noise in
cars (Elliott et al., 1988).

Figure 18, for example, shows the pressure distribution at 32 microphone po-
sitions in the passenger cabin of a propeller aircraft at the blade-passing frequency,
88 Hz, measured during a flight trial before and after control with an adaptive control
system using 16 loudspeakers. Reductions of 14dB in the sum of the squared micro-
phone signals were measured at this frequency, and similar levels of reduction would
be very difficult to obtain using passive control methods without a very significant
weight penalty.

In the special case where the reference signal is a synchronously sampled sinu-
soid, the behaviour of the Multiple Error LMS algorithm can be shown to be ezactly
equivalent to the fixed multichannel feedback controller in which the feedback path

from the I-th error signal to the m-th secondary actuator is given by (Elliott et al.,
1987)

al

H —
mi(2) 2(1 — 2z coswg + 22

] [Aimz cos(wy — ¢rm) — cos dim]  (43)

where wy is the frequency of the reference signal and the complex plant response from
the m-th secondary actuator to the [-th error sensor at this frequency is modelled as

Gim(Gwo) = Amel®m ' (44)

The first term in the expression for H,,;(z) can be recognised as an oscillator, whose
amplitude will rise if the average value of the remaining part of eqn. (43) multiplied by
the error signal is positive and fall if this driving term is negative. Whatever the value
of the error signal, the equivalent feedback controller thus drives the plant with a time-
varying sinusoid, as expected from eqn. (37). In the case of slow adaptation, small
@, only the response at z = e/“¢ is significant and the second term in the expression
for Hpi(2) in eqn. (43) becomes proportional to é’l*m(ej“’o). The feedback controller
in this case thus reduces to that for the iterative frequency domain controller. In
general, however, the complete behaviour of the adaptive time domain controller in
this case can be described by coupling the feedback controller given by eqn. (43) to
the full dynamics of the plant in a negative feedback arrangement (see e.g. Elliott et
al., 1987; Morgan and Sanford, 1992; Sievers and von Flotow, 1992).

Of particular interest is the effect of plant delay on the bandwidth of the equiva-
lent feedback controller. The plant delay limits the maximum value of the convergence
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Fig. 18. Spatial distribution of the normalised sound pressure level at 88 Hz measured in the
passenger cabin of a BAe 748 with (b) and without (a) active noise control. (After

Elliott et al., 1990).
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coefficient, @, which can be used in eqn. (42) to a value which is inversely proportional
to this delay (Elliott et al., 1987). Hence the bandwidth, over which the gain of the
feedback loop, eqn. (43), is high, will also be limited. The bandwidth over which
significant disturbance attenuation can be achieved is thus of the order of the inverse
of the plant delay.

As well as controlling tonal disturbances, the Multiple Error LMS algorithm
can be used for MIMO control of random disturbances if a set of suitable reference
signals is available. The most widely studied example of feedforward active control for
random disturbances is the control of random noise in ducts, for which an upstream
detection microphone can be used to provide a convenient reference signal (Eriksson
et al., 1987). Another example is the control of road noise in cars, where the reference
signals in this case are derived from accelerometers on the car body and give time-
advanced information about sound inside the car when driving over rough roads. The
performance of such a multichannel feedforward control system can be predicted from
the exact least-squares solution to eqn. (41). This least squares solution has been used
with a set of measured data taken from six accelerometers and a microphone in a car
to predict the performance of such a feedforward system, with the result shown in
Fig. 19 (Elliott and Sutton, 1996; Sutton et al., 1994). Reductions of up to 10dB are
predicted over a frequency range from about 50 Hz to 200 Hz. The plant response in
these calculations has been assumed to have a delay of either 1ms or 5 ms, and it can
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Fig. 19. A-weighted power spectral density of the pressure measured in a car (solid line)

and the predicted level of the residual spectrum after feedforward control operating
with a plant delay of 1 ms (dashed line) or 5ms (dotted line).
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be seen that the performance of the feedforward controller is not significantly affected
by plant delays in this range. An adaptive real time controller using the Multiple
Error LMS algorithm was also implemented in this investigation and was found to
give a performance very close to that shown in Fig. 19. For stochastic disturbances
the adaptive feedforward controller does not have an obvious equivalent feedback
interpretation, since the reference signals are supplying time-advanced information.

5. Adaptive Feedback Control
5.1. Internal Model Control

It is often the case that no prior knowledge or time-advanced information can be ob-
tained for a stochastic disturbance. The disturbance may be generated, for example,
by many individual primary sources at different positions in space, each operating
independently. Boundary layer noise in aircraft is an example of this, where the dis-
turbance is created by many small and incoherent eddies convecting past the outside
of the aircraft fuselage. Under these conditions a feedback control system can be used
for active control, as illustrated for the multichannel case in Fig. 20(a).

In order to contrast the performance of such a feedback system in controlling
random noise with that of the feedforward controller discussed above, we will con-
sider the Internal Model Control, IMC, architecture of controller (as described e.g.
by Morari and Zafiriou, 1989), which is illustrated in Fig. 20(b). The use of this
architecture in the analysis of feedback control systems can be traced back to Newton
et al. (1957), and it is also known as Youla Parameterisation (Youla et al., 1976) or
() parameterisation (Boyd and Barratt, 1991). In this arrangement an internal model
of the plant G is used to extract an estimate, x, of the disturbance from the error
signal, and this is “fed forward” via the control filler W to the plant. If we assume
for the moment that the plant model is perfect, G = G, then the system becomes
purely feedforward as shown in Fig. 20(c) and the time domain formulation presented
above can directly be used to calculate the optimum least-squares performance for
a given disturbance and a given plant response. The difference now is that instead
of the performance being dependent on the cross-correlation between the disturbance
and the reference signal, as in the feedforward case, the performance depends only
on the autocorrelation function of the disturbance signal. If the plant, G, contains a
pure delay, for example, it is clear that the control filter W must act as a predictor
for the disturbance.

Figure 21 shows an example of such a performance calculation using the same
road noise data as was used for demonstrating the performance of the feedforward
controller in Fig. 19 (Elliott and Sutton, 1996). In this case, however, no separate
reference signals were taken into account, but the measured pressure signal was used
as both an error signal and a reference signal in the IMC arrangement shown in
Fig. 20(b). The plant response was again assumed to be a pure delay of either 1ms
or 5ms, and in this case the different plant delays produce a significantly different
result. With a plant delay of 1ms the residual spectrum after control is almost flat,
indicating that all the predictable components have been removed and the residual
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Fig. 20. Block diagram of a multichannel feedforward controller in direct form (a), using
internal model control (b) and the equivalent feedforward block diagram if the
plant model is perfect (c).

error is uncorrelated over this bandwidth. With a 5ms plant delay the residual
spectrum is more coloured but still smoother than the original disturbance, indicating
that the control filter cannot predict the disturbance signal with any accuracy over a
timescale of 5 ms. :

Internal Model Control thus provides a common formulation within which the
performance of feedforward and feedback controllers can be compared. Figure 22,
for example, shows the overall attenuation in mean-square level of the A-weighted
pressure calculated, for various plant delays, with the road noise disturbance using
either a feedforward system, with six reference signals derived from accelerometers on
the body, or a feedback system, with only an internal reference signal (Elliott and
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Fig. 21. A-weighted power spectral density of the pressure measured in a car (solid line)
and the predicted level of the residual spectrum after feedback control operating
with a plant delay of 1ms (dashed line) or 5 ms (dotted line).
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Fig. 22. The variation of the attenuation of the mean square value of the A-weighted pres-
sure with plant delay for a feedforward control system (dashed line) and feedback
control system (solid line).
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Sutton, 1996). The prior information available to the feedforward controller makes its
performance relatively insensitive to plant delays of up to 5ms, whereas the feedback
controller can hardly achieve any overall attenuation for such a, plant delay. The feed-
back controller does perform better than the feedforward controller for plant delays
of less than about 1.5 ms, however. It should be noted that such a small delay would
require the error microphone to be positioned close to a secondary loudspeaker, since
the acoustic propagation delay is about 3ms/metre in air, which would restrict the
spatial extent of the zone of quiet which could be achieved, as described in Section 2.
Also, the feedback system would attenuate all the sound in the car within its band-
width, potentially including speech and warning signals. The feedforward system
has the advantage that it is selective in that it will only control the sound which is
correlated with the external reference signals, the road noise in this case.

It is thus clear that in active sound control applications, where disturbance rejec-
tion is most important, both the optimum controller and the optimum performance
will depend not only on the non-minimum phase characteristics of the plant but also
on the autocorrelation properties of the disturbance, which are largely determined
in this case by the autocorrelation properties of the primary sources. In applica-
tions where the disturbance is non-stationary the controller must thus be adaptive
to maintain optimum performance even if the plant response does not change. The
IMC architecture provides a convenient framework within which to design such an
adaptive controller, as discussed in Section 5.3.

In active vibration control systems, however, the structure under control is usu-
ally highly resonant, as discussed in Section 2, and the disturbance is generated by
the primary source acting on this structure. The disturbance is heavily influenced
by the resonances of the structure under control and becomes more predictable, and
thus easier to control with a feedback controller, as a result of these resonances. The
performance of many active vibration control systems is less dependant on the auto-
correlation properties of the primary sources than is the performance of many active
sound control systems, since the autocorrelation structure of the disturbance is dom-
inated by the response of the system under control. It is a common assumption in
the analysis of feedback control systems that the plant and the disturbance model
share the same poles. Whereas this is a reasonable assumption for most active vi-
bration control systems, where the plant dynamics and autocorrelation structure of
the disturbance are dominated by the resonances of the structure under control, it
is often not a reasonable assumption for active sound control systems, in which the
plant response is dominated by the dynamics of the secondary actuator and the elec-
troacoustic delay, and the acoustic environment has a relatively small effect on the
autocorrelation function of the disturbance.

5.2. Robustness

An obvious danger with the IMC architecture shown in Fig. 20b is that of instability
if the response of the plant model & is not equal to that of the plant G. Although
with a perfect plant model the system is effectively feedforward, and thus stable for all
stable control filters, W, a control filter with a, high gain could combine together with
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a small plant modelling error to cause instability. Fortunately, the stability robustness
of a feedback controller to changes in plant response has been widely studied in recent
years (see e.g. Doyle et al., 1992; Maciejowski, 1989; Morari and Zafiriou, 1989) and
some of this knowledge can be directly applied in this case. If we assume that the
plant model was initially perfect for some nominal plant, so that G = Gy, but that
the plant response is then subject to unstructured multiplicative output uncertainty,
so that

G(jw) = [T+ Ac(jw)] Goljw) (45)
where the largest singular value of Agjw) is bounded by
7|As(iw)] < B) (46)

and B(w) is the upper bound on the uncertainty, then the condition for robust
stability is that (Morari and Zafiriou, 1989),

&[To(jw)] < E(lw_) for all w (47)

where To(jw) is the complementary sensitivity function, which for the conventional
feedback controller shown in Fig. 20(a) is

To(j) = Goljw) H(je) [T + Goli) H(jw)] (49)

If an IMC architecture of feedback controller is used, as in Fig. 20(b), then the com-
plementary sensitivity function is equal to the simpler expression,

To(jw) = Go(jw)W (jw) (49)

and the condition for robust stability becomes

Er[Go(jw)W(jw)] < E%;) for all w (50)
or
|Go(j)W (jw)BW)], <1 (51)

The robust stability condition can thus be seen as a constraint on the control filter W
which depends on the frequency response of the plant and the frequency dependence
of the multiplicative uncertainty. If the objective were to minimise the maximum
spectral component of the error, an H,, control requirement (e.g. Doyle et al., 1992)
may be

minimise | e(jw) ” subject to ||Go(jw)W H (52)

In the case of active sound and vibration control we are generally interested in min-
imising the mean square value of the error, since this is proportional to the perceived
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sound level, and thus to achieve this objective while maintaining robust stability the
controller requirements become

minimise He(jw)”2 subject to ”Go(jw)W(jw)B(w)”m <1 (53)

which is a mixed Hy/H,, problem, considered e.g. by Titterton and Olkin (1995)
and Rafaely and Elliott (1996a).

There are some difficulties in solving eqn. (53) directly and so we have also
investigated the related quadratic problem, whose solution can be readily found, of
minimising the cost function J given by

minimise J = ”e(jw)“z + B||Go(jw) W (jw) B(w) H; (54)

which could be called “robust Hy control.” It is interesting to note how this cost
function is similar to, but not the same as, that described in Section 4 which included
mean square control effort with mean square error. Parseval’s theorem can be used
to write this quadratic cost function in the time domain and it can be analytically
minimised for various values of the parameter 8 (Elliott and Sutton, 1996). The
optimum solution for each value of 3 gives a different compromise between perfor-
mance, i.e. the minimum value of ||e||2, and robustness, i.e. the value of B(w) for
which [|Go(jwW (jw) B(w)|lee < 1. This variety of compromise solutions is plotted
in Fig. 23 for the example of the road noise data with a plant delay of 1ms and a
frequency independent multiplicative uncertainty. For small values of 8, more than
8dB of overall attenuation of the mean square signal can be obtained, but the system
is only robustly stable for fractional plant uncertainties of less than about 6%, which
corresponds to 0.5dB gain variation or 3.5° phase variation. In order to make the
feedback controller robust to fractional plant uncertainties of 33%, i.e. 2.5dB gain or
20° phase variation, S must be increased until the attenuation in mean square value
is only about 6 dB. By iteratively adjusting B(w) so that at each iteration it is pro-
portional to Go(jw)W (jw), higher powers of ||Go(jw)W (jw)B(w)]|2 in eqn. (54) can
be minimised by iterative quadratic optimisation (Elliott and Sutton, 1996; Rafaely
and Elliott, 1996b; 1996¢). The dotted line in Fig. 23, for example, shows the result
of minimising

J = [[Gw)[3 + ]| Goliw) W (ju) B(w) (55)

for various values of 8. By raising the final term in eqn. (55) to higher powers, the
robust stability limitation becomes ’harder’ as it tends towards the H, constraint,
given by eqn. (53). In this example, where the plant response is pure delay, the resul-
tant compromise between performance and robustness which results from minimising
eqn. (55) is not very different from that obtained from the robust H, formulation,
eqn. (54). Current work is focused on investigating how general this observation may
be (Rafaely and Elliott, 1996a).

It has already been observed in Section 4 that the inclusion of an effort weighting
term in the cost function being minimised ensures the robust stability of an adaptive
feedforward control system. In this section a modified form of effort weighting has
been developed which ensures the robust stability of a fixed feedback control system
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Fig. 23. Variation of the attenuation of the mean square disturbance signal with the maxi-
mum fractional plant uncertainty (Bmax) for robust stability, as the parameter 3
is varied in (54), solid line, and (55) dashed line.

when a purely quadratic cost function is minimised in the time domain. This cost
function will be used in the following section to ensure that when the controller is
being adapted it always remains robustly stable.

5.3. Adaptation

It is clear from the discussion above that the optimum performance of a feedback
controller depends on both the statistical properties of the disturbance and on the
plant response. The IMC architecture provides a convenient framework within which
the feedback controller can be made independently adaptive to each of these changes
in the system under control. If we assume that the plant response does not change
significantly, then it is only the control filter which has to be adapted to cope with
a non-stationary disturbance, as illustrated in Fig. 24(a). Because the system is now
essentially feedforward, the time domain adaptation algorithms discussed in Section 4
can now be used to adjust the control filter W. In practice, however, the plant model
will never be perfect and/or the plant response is bound to change to some extent. The
control filter must then be adapted so that it is always robustly stable. A relatively
simple modification to the time domain LMS algorithm has been developed which
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Fig. 24. Block diagram of an IMC feedback controller adapted to track a non-
stationary disturbance (a) and a time-varying plant response (b).

incorporates the quadratic robust stability term of eqn. (54) and this has proved to be
successful in adapting robust feedback controllers to track non-stationary disturbances
(Rafaely and Elliott, 1996b). Adaptive algorithms operating in the frequency domain
which converge to a least square optimal filter within the robust stability constraint,
and thus approach the solution to the H,/H., problem defined by eqn. (53), have
also recently been suggested (Elliott and Rafaely, 1997).

If the changes in the plant response become too large, then even though the
system can still be made robustly stable, the performance will be severely degraded.
Under these conditions it may be preferable to use the adaptive controller shown in
Fig. 24(b), in which the plant model is adapted to track the changes in the plant re-
sponse (Rafaely and Elliott, 1996b). In order to adapt the plant model, it is generally
necessary to inject identification noise into the plant, and if the level of this noise is
too high in an active sound control system the resultant acoustic noise can be louder
than it was without control! The level of the identification noise must thus gener-
ally be somewhat below that of the residual error, although the level of identification
noise could be scheduled on the measured error (Wright, 1988) or the spectrum of the
identification noise could be tailored such that it was least objectionable (Coleman
and Berkman, 1995). If both the control filter and the plant model are adapted over
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Fig. 25. Disturbance attenuation of an active headset with a fixed analogue controller (solid
line) and an adaptive digital controller after convergence with a broad-band distur-
bance (feint line) or a tonal disturbance (dotted line).

similar time frames there can be significant interaction between the two adaptive
processes. One solution to this, which has been successfully implemented in practise,
is to 'freeze’ the response of one filter while the other is being adapted. Generally
though, the restriction on the level of the identification noise limits the adaptive
plant identification to the tracking of relatively slow drifts in the plant response, and
more rapid variations in plant response must be dealt with by making the feedback
controller robust to these plant uncertainties.

As an example of the performance which can be obtained from a robust,
disturbance-adaptive feedback controller, Fig. 25 shows the sound attenuation mea-
sured in a commercial open-backed active headset with the fixed analogue controller,
as supplied, and with an adaptive digital filter after it had converged in two different
noise fields (Rafaely and Elliott, 1996b). The fixed analogue controller gives good
attenuation from about 50 Hz to 500 Hz, which is generally the frequency region over
which the listener would want to attenuate noise in an aircraft for example. The
digital controller was adapted to minimise the mean square error at the microphone
when the disturbance spectrum was either a band of noise centred on 500 Hz, or a
pure tone at 500 Hz. By using the modified form of the time domain LMS algorithm
to adapt the control filter, the robustness of the adaptive controller was constrained
to be no worse than that of the original analogue controller. Clearly the adaptive
controller is able to give a better performance for these types of disturbances than
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the fixed analogue controller and is also able to track changes in the disturbance spec-
trum. The active headset is a rather severe test for an adaptive feedback system since
the plant frequency response, from headset loudspeaker to close-spaced microphone,
can increase in amplitude by up to 10dB over very short timescales, as the headset is
adjusted on the listener’s head. It is difficult to track these very rapid changes with
a plant identification scheme using an acceptable level of identification noise, and so
in this case the control filter is adapted using an algorithm which made the stability
of the resulting feedback controller very robust to plant uncertainty.

6. Conclusions

The successful application of active methods in controlling noise and vibration re-
quires an understanding of both its physical limitations and its &lectrical realisation.
The physical limitations are determined by the fact that the spatial variation of the
disturbance is governed by a wave equation and so are limited by the wavelength of
the disturbance in the system under control. This may be the flexural wavelength for
the control of vibration on a plate or the acoustic wavelength for the control of sound
in an enclosure. Provided the system under control is not too heavily damped or too
large compared with ‘this characteristic wavelength, then it is generally possible to
achieve global control of the system, i.e. reduce its total energy, with a reasonable
number of secondary actuators. Even if global control is not possible, a zone of quiet
can still be created close to the secondary actuator, although its dimensions will be
relatively small compared with the wavelength.

The control problems associated with active attenuation are rather different from
those encountered in many control systems. This is partly due to the nature of the
plant response in this case which, particularly for active sound control systems, (a)
have very little resonant behaviour, (b) have considerable propagation delay com-
pared with the periods of the disturbances being controlled, and (c) generally have
a number of d.c. zeros. These acoustic plant responses also tend to be subject to
rapid variations, as people move around within an enclosure for example. In many of
the applications of active control, the low frequency disturbances are almost periodic
and of known frequency. Thus feedforward control techniques, which were originally
developed for controlling sound propagating along ducts, are very prevalent. In order
to track non-stationarities in the disturbance the feedforward controllers are typically
made adaptive. Modern systems use adaptive digital filters and it has been shown
that for a harmonic reference signal such adaptive feedforward controllers behave
in exactly the same way as fixed feedback systems. This suggests that the design
of such centrollers could benefit from the theoretical formulations which have been
widely used for multichannel feedback control systems, particularly w1th regard to
their robustness in the face of plant uncertainty.

For a random disturbance, if the location of the original sotirce of the noise or
vibration is well defined, it may ‘still be possible tg.pse feedforward techniques in
the active control system. Certainly any advance knoWledge of the disturbance can
significantly improve the ultimate attenuation achieved. In an example of controlling
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road noise in a car, for example, a feedforward controller was able to give significantly
more attenuation than a feedback controller for realistic plant delays.

By considering the Internal Model Control, IMC, architecture for a feedback
controller, a consistent treatment of the control problem can be formulated across
both feedforward and feedback control systems. The IMC architecture also allows a
relatively simple interpretation of the robust stability limit of a practical controller. It
has been shown how this robust stability limit can be improved by the minimisation of
a purely quadratic cost function, and that the resulting trade-off between performance
and robustness is quite similar, in an example application, to that which could be
achieved using a harder robust stability limitation, which approximates the Hc,
constraint.

Finally, the IMC arrangement also motivates the design of an adaptive feed-
back controller, which has two separate adaptation processes to maintain optimal
performance for either a non-stationary disturbance or a time-varying plant. The
adaptation can be achieved in the time domain while maintaining a specified level of
robust stability.

References
Boyd S.P. and Barratt C.H. (1991): Linear Controller Design, Limits of Performance. —
Prentice Hall.

Coleman R.B. and Berkman E.F. (1995): Probe shaping for on-line plant identification. —
Proc. Active’95, Newport Beach, pp.1161-1170.

Conover W.B. (1956): Fighting noise with noise. — Noise Control Vol.2, pp.78-82.
Doyle J.C. et al. (1992): Feedback Control Theory. — MacMillan.

Elliott S.J. et al. (1987): A multiple error LMS algorithm and its application to the active

control of sound and vibration. — IEEE Trans. Acoustics, Speech and Signal Proc.
ASSP-35, pp.1423-1434.

Elliott S.J. et al. (1988a): Active cancellation at a point in a pure-tone diffuse soundfield.
— J. Sound Vibr., Vol.120, pp.183-189.

Elliott S.J. et al. (1988b): The active control of engine noise inside cars. — Proc. Inter-
Noise’88, pp.987-990.

Elliott S.J. et al. (1990): In-flight experiments on the active control of propeller-induced
cabin noise. — J. Sound Vibr., Vol.140, pp.219-238.

Elliott S.J. et al. (1992): The behaviour of a multiple channel active control system. —
IEEE Trans. Acoustics, Speech and Signal Proc. ASSP-40, pp.1041-1052.

Elliott S.J. and Nelson P.A. (1993): Active noise control. — IEEE Signal Proc. Mag.,
pp.12-35.

Elliott S.J. and Sutton T.J. (1996): Performance of feedforward and feedback systems for
active control. — IEEE Trans. Speech and Audio Proc., Vol.4, pp.214-223.

Elliott S.J. and Rafaely B. (1997): Frequency domain adaptation of feedforward and feedback
controllers. — Proc. Active’97, Budapest.



Active noise and vibration control 251

Eriksson L.J. et al. (1987): The selection and epplication of an IIR adaptive filter for
use in active sound attenuation. — IEEE Trans. Acoustics, Speech and Signal Proc.
ASSP-35, pp.433-437.

Franklin G.F. et al. (1990): Digital Control of Dynamic Systems (2nd Ed.). — Addison-
Wesley.
Fuller C.R. et al. (1996): Active Control of Vibration. — London: Academic Press.

Garcia-Bonito J.J. and Elliott S.J. (1996): Local active control of wibration in o diffuse
bending wave field. — ISVR Techn. Memorandum, No.790.

Haykin S. (1996): Adaptive Filter Theory, 3rd Ed. — Prentice Hall.

Johnson M.E. and Elliott S.J. (1995): Ezperiments on the active control of sound radiation
using & volume welocity sensor. — Proc. SPIE Conf., Vol.2443, pp-658-668.

Lueg, P. (1936): Process of silencing sound oscillations. — US Patent No.2, 043, 416.

Maciejowski J.M. (1989): Multivariable Feedback Design. — Addison-Wesley.

Morari M. and Zafiriou E. (1989): Robust Process Control. — New Jersey: Prentice Hall.
Morgan D.R. (1980): An analysis of multiple correlation loops with a filter in the auziliary
path. — IEEE Trans. Acoustics, Speech and Signal Proc. ASSP-28, pp.454-467.
Morgan D. and Sanford C. (1992): A control theory approach to the stability and transient
response of the filtered-x LMS adaptive notch filter. — IEEE Trans. Signal Proc.

SP-40, pp.2341-2346.

Nelson P.A. and Elliott S.J. (1992): Active Control of Sound. — London: Academic Press.

Press W.H. et al. (1986): Numerical Recipes. — Cambridge: Cambridge University Press.

Newton G.C., Gould L.A. and Kaiser J.F. (1957): Analytical Design of Feedback Controllers.
— New York: Wiley.

Rafaely B. and Elliott S.J. (1996a): H»/Ho active control of sound: Design formulation,
solution and implementation. — IEEE Trans. Contr. Syst. Techn., (in print).

Rafaely B. and Elliott S.J. (1996b): Adaptive plant modelling in an internal model controller
for active control of sound and vibration. — Proc. Conf. Identification in Engineering
Systems, University of Wales, pp.479-488.

Rafaely B. and Elliott S.J. (1996¢): An edaptive and robust controller for active control of
sound and vibration. — Proc. CONTROL’96, Exeter, No.427, pp.1149-1153.

Sievers L.A. and von Flotow A.H. (1992): Comparison and extension of control methods for
narrowband disturbance rejection. — IEEE Trans. Signal Proc. SP—40, pp.2377-2391.

Sutton T.J. et al. (1994): Active control of road noise inside vehicles. — Noise Contr. Eng.
J., Vol.42, pp.137-147.

Titterton P.J. and Olkin J.A. (1995): A Practical method for constrained-optimisation
controller design: Ha or Hoo optimisation with multiple Hy or Hoo constraints. —
Proc. 29th IEEE Asilomar Conf. Signals, Systems and Computers, pp.1265-1269.

Widrow B. and Stearns S.D. (1985): Adaptive Signal Processing. — New Jersey: Prentice
Hall.

Widrow B. and Hoff M. (1960): Adaptive switching circuits. — Proc. Ire Westcon, pt.4,
pp-96-104.

Wright M. (1988): Active control in changing environments. — B. Sc. Project Dissertation,
University of Southampton.

Youla D.C. et al. (1976): Modern Wiener-Hopf design of optimal controllers, Part 1: The
single channel case. — IEEE Trans. Automat. Contr., Vol.AC21, pp.3-13. )





