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TWO-POINT PADE APPROXIMANTS FOR STIELTJES
FUNCTIONS AND THEIR APPLICATION TO
COMPOSITE MATERIALS

STaNISEAW TOKARZEWSKI*, J6zEF J. TELEGA*

By employing special continued fractions to asymptotic expansions at zero and
infinity, the convergence of the balanced and unbalanced two-point Padé approx-
imants (2PPA) to a Stieltjes function is studied in a real domain. We prove that
certain balanced and unbalanced two-point Padé approximants form a mono-
tone sequence of upper and lower bounds uniformly converging to a Stieltjes
tunction. The observed monotone and uniform convergence of 2PPA is exempli-
fied in the evaluation of bounds on the effective transport coefficients of periodic
inhomogeneous media.

1. Introduction

The mathematical properties of one-point Padé approximants to a series of Stieltjes
functions have been extensively investigated in the past two decades by Baker (1975),
Baker and Graves-Morris (1981a, 1981b), Bultheel (1987), Gilewicz (1978), Jones and
Thron (1980), and Wall (1948). In particular, necessary and sufficient conditions for
a monotone and uniform convergence of one-point Padé approximants constructed for
Stieltjes functions were established, cf. Thms. 16.1-16.3 in (Baker, 1975).

On the other hand, two-point Padé approximants (2PPA) to Stieltjes functions
represented by power series developed at zero and infinity have not been examined as
thoroughly as the one-point Padé ones. The studies reported in the relevant literature
by Gonzalez-Vera and Njastad (1990), Gragg (1980), Jones et al. (1983) and Jones and
Thron (1970) are concerned mainly with 2PPA having the same number of coefficients
of power expansions at zero and infinity (a balanced situation). A 2PPA with finite,
non-equal numbers of coefficients of two formal series of Taylor and Laurent types
has been investigated by Tokarzewski et al. (1994a, 1994b) and Tokarzewski (1996).
Some special 2PPA was examined by Casasts and Gonzélez-Vera (1985). Recently,
the problem of estimating the exact rate of the convergence of 2PPA to a Stieltjes-
type function has been solved by Lagomasino and Finkelshtein (1995). A method of
interpolation of a Carathéodory function by means of some modified approximants
was proposed by Bultheel et al. (1995).

In the present work, the convergence of both balanced and unbalanced, two-point
Padé approximants to asymptotic expansions of a Stieltjes function at zero and at
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infinity is studied. An application of the results to the theory of composite materials
is also given.

The paper is organized as follows: In Section 2, we introduce basic definitions,
notations and assumptions concerning Stieltjes functions and diagonal two-point Padé
approximants. In Section 3, we recall the results regarding one-point Padé approx-
imants, important for our further developments. In Section 4, special continued-
fraction representations of two-point Padé approximants are derived. Some basic
inequalities for 2PPA are discussed in Section 5. In Section 6, the uniform and mono-
tone convergence of two-point Padé approximants to a Stieltjes function is proved.
The general recurrence formulae for finding two-point Padé approximants are given in
Sections 7 and 8. In Sections 9 and 10, numerical examples illustrating the theoretical
results are presented. The last section summarizes the achieved results.

2. Preliminaries and Basic Notions

We consider a Stieltjes function zfi(z) defined for 0 < z < oo by means of the
following Stieltjes integral:
% dyi(u)
— 21 1
vhiz) ==z o l4+zu (1)
The spectrum 7 (u) (y(u) in the relevant paper (Tokarzewski et al., 1994b)) is a real
and non-decreasing function defined for 0 < u < co and such that the asymptotic
expansion of zf;(z) at z = 0 satisfies Carleman’s criterion

o0 x
zf1(z) ~ Z cnz™, M = oo (2)
n=1 n=1
where the coefficients
o0
Cn = (—1)”“/ u™ " dyy (u) (3)
0

are finite. The second of Carleman’s conditions (2) is sufficient for the convergence
of a sequence of one-point Padé approximants to the Stieltjes function (1), see Theo-
rem 5.5.1 in (Baker and Graves-Morris, 1981a).

The asymptotic expansion of zfi(z) at © = co takes the form

[e0}
whie) =Y Cu(l/a)" (4)
n=1
As previously, we assume that the moments

Cn = (-1)"H /0 w (),  n=12,.. (5)

are finite and satisfy Carleman’s criterion.
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The diagonal two-point Padé approximants for series (2) and (4) have the fol-
lowing general form:

a1kT + age® + - - + appa™M

14 b1 + bogz? + -+ + bprpz™’

Let us consider now the power expansion of (6) at zero

[M/M)i(z) = 0<k<2M  (6)

[M /M ( Z Cor™ (7)

and infinity
[M /M ( Z Crx(1/2)"~ (®)

By definition, the rational function (6) is the two-point Padé approximant, [M /M 1 ()
to Stieltjes function (1) if

cnk =c¢, for n=1,2,...,p, p=2M —k (9)
and

Couy=C, for n=1,2,...,k (10)

According to (9) and (10), the Padé approximant [M/M];(z) given by (6) matches
p coefficients of the series (2) and & coefficients of the series (4), where p+ &k = 2M.
Hence [M/M]o(z) and [M/M]sp(z) stand for the one-point Padé approximants to
the Stieltljes series (2) and (4), respectively.

Multiplying both sides of (1), (4) and (2) by s = 1/z, we arrive at the Stieltjes
function

_ [T dn(u) _ _ % dyi(u) _
@)= | Ty =) =s [ B a=1p (11)
with power expansions
T) ~ Z Cns™, s=1/z (12)
n=1
(@~ en(l/s)" Y, s=1/z (13)
n=1

at s =0 and s = co, respectively.

By comparing (2) with (12) and (4) with (13) we conclude that the two-point
Padé approximants [M/M]i(z) to (2) and (4) can be obtained from those [M/M]p(s)
to (12) and (13) by means of the following important identity:

[M/Mi(z) = 2[M/M),(s), s=1/s, p=2M —k (14)

Therefore general recurrence formulae for evaluation of [M /M]p(s) for (12) can be
obtained from algorithms computing [M/M]y(z) for (2) and (4) by replacing ¢, by
Ch,p by k and z by s.
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3. One-Point Padé Approximants [M/M],

We start by recalling some most important results for one-point Padé approximants
[M/M]o(z) to the Stieltjes function zfi(z) defined by (1), indispensable for our
further investigations:

1) [M/M]o(z) has the continued fraction representation of type S (Baker, 1975;
Baker and Graves-Morris, 1981b):

e e e S

2) The coefficients of the continued fraction (15) are positive,
en >0, n=12,...,2M (16)
3) For each real and non-negative z, the Padé approximants [M/M — 1]o(z) and
[M/M]o(z), M =1,2,... form monotone sequences of upper and lower bounds

on zfi(x):

[M/M = 1]o()

Y

[M +1/M]o(z) = zf1(2)

(M +1/M + 1o(z) > [M/M]o(x) (17)

\

4) The bounds [M + 1/Mlo(z) and [M + 1/M + 1]o(x) converge uniformly to
zf1(z) on compact subsets of (0, 00):

(M +1/M]o(z) = (M/M]o(z) = zf1(z) (18)

lim lim
M—oo M—oo
5) If fj(z) is a Stieltjes function defined by a spectrum 7;(u), then fji1(z) is

also a Stieltjes function with the spectrum v;.1(u), provided that (Baker, 1975,
Lemma 15.3)

£(0)

fi(z) = TTaf()

z>0 : (19)

4. Continued-Fraction Representation for zfi(x)

In this section, some special continued-fraction representations for the two-point Padé
approximants [M/M](z) to series (2) and (4) will be derived. To this end, we
introduce the family of Stieltjes functions f;41(z)( =0,1,...)

; % dyjr1(w)
) — G+ SHAIR)
fiti(z) =C + /0 1+ ou (20)
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interrelated by the following fractional transformation:

fi+1(0)

fj+1(75) = m,

i=0,1,..., x>0 (21)

with f1(z) given by (1), where C) = 0. Note that the constants CUT(j =
1,2,...) are uniquely determined by the transformation (21) applied j times to the
asymptotic expansions (2) and (4). For instance, from (2), (4) and (21), it follows
immediately that C®) =0, C® =¢,;/C; >0, C® =0,.... Hence, in general, we
have

ClUt) =0 for j=0,2,..., CUtD>0 for j=1,3,... (22)
By choosing = = 1/s in (20) one obtains

fi+1(2) = fi11(1/s) = s¢jra(s), 7=0,1,..., >0 (23)

where

A Al (T
spjia(s) = CUT) 45 ; ‘"ijf%a dljp (1) = —7dy11(1/7) (24)

Remark 1. The Stieltjes functions f;11(z) defined by (20)—(22) and Stieltjes func-
tions s¢;41(s) appearing in (23)-(24) are equivalent, provided s = 1/z.

We now turn to the derivation of a special continued-fraction representation for
the Stieltjes function zfi(z). Applying (19) to zfi(z) p times, we obtain

g1 | Tg2 Z9p
shi@) =T+ b g = f(0), n=12...p (25
file) = Ty =0 P (25)
Here the coefficients g, > 0 are uniquely determined by a given number of p coeffi-
cients of the power series (2). According to (23) and (24), we have

o dr
fp+1($) = S¢p+1 (8) - C(p+1) + s —P—M, s = 1/IL' (26)
0 1+s7
where C(P+1) are still defined by (21). The Stieltjes functions SPpt1(s) deter-
mined by (26) have the following continued-fraction representations which depend
on whether C(P+1) > 0 or C(**1) = 0 (Baker and Graves-Morris, 1981b, p.127, (5.1),
(5.5)):

clpty) 4 S92 0 S9aM if p=1,3,...
1 1 + 8¢2M+1(S)
s¢pr1(s) = (27)
S9pt1 4 S9M if p=2,4
1 1+ sdanrry1(s) T
The positive coefficients C®*+1) and gp+; (J = 1,2,...,k) are uniquely determined

by k coefficients of (4) and p parameters g, (n = 1,2,...,p) of (25). Substitut-
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ing (27) into (25) and setting C(P*Y) = g,,,, we obtain a special continued-fraction
representation for zfi(z) in the form

r ZT41 Zgp 9p+2 S0p+3
2ol +
1 o 1+ zgpt1 1 1
SgaM . .
o — T if pisodd
(@) 1+ spanm(s) P (28)
rn\xr) = 28
fﬂ 4ot Z9p + Ip+1 __Sgp+2
1 1 1 1
SgaMm . .
4o if piseven
\ 1+ S¢2M+1(S) p

where s = 1/z. By dividing the right-hand side of (28) by = = 1/s and replacing
g,p,x by d,k,s, respectively, we arrive at an equivalent continued-fraction represen-
tation for zfi(z), namely

(dy do sdy, dpt2 | Tde43
SR R S upv: e s B
zda . .
4 — if kisodd
1+ 2z faprr+1()
while) = d d d d d (@)
1 2 Sag E+1 Tap42
1 + 1 + + 1 1 1
zdan e
o — if k iseven
\ 1+ zfopr1(z)

The continued fraction (29) can also be derived by applying the procedure given
by (20)—(28), to the asymptotic expansions (12) and (13). All the coefficients g, and
d, (n=1,2,...,p+ k) appearing in (28) and (29) are positive, i.e.

gn >0, dpn>0, n=12...2M=p+k (30)

From (27) and (28), we conclude immediately the special continued-fraction repre-
sentations for two-point Padé approximants defined by (6)—(10). For s = 1/z and
k+p=2M we have

( Tg1 zgp Jp+-2 SGp+3
I L. +
1 o 1+zgpt1 1 1
Sg2M if pi
MMy, @)= T pisodd @)
\319_1_*_%13_*_919;1 59§+2+...+ﬁi—% if p iseven
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and
+ .- +sz2M if pisodd
[M/M],, (z) = . (32)
\ 4ot mdfM if piseven

It is worth noticing that [M/M]ap—p(z) = [M/M]i(z) if p+ k = 2M. In the next
section, some basic inequalities for two-point Padé approximants [M/Mspr—p(z) and
[M/M]i(z) are derived.

5. Basic Inequalities for [M/M],,, , and [M/M],

To simplify the notation for [M/M]ap—p(z) and [M/M]i(z) given by (31) and (32),
it is convenient to introduce the following continued-fraction operator:

gnf'l_+y._gaﬁ+...+w—qﬂ+-y—lz if n=0,2,...
GoiTyf = 7 (33)
gn+1+@+---+@%+% if n=1,3,...

where y =z or y =5, s = 1/z. On account of (33), the relations (28), (29) and (31),
(32) take the following forms:

zfi(z) = 2GY G2 (boria(s) = G ,GHY, , forria (z) (34)
[M[Map—p(2) = 261 G331 0, [M/M]i(z) = GE ,G¥L 0 (35)

Now we are in a position to write down the inequalities valid for two- point Padé
approximants zGY ;G310 and G¥ ,G3Y, 0:

(-1)PzGYL0 > (=1)PeGt G5 ;0> (-1)P2GE L0 (36)

(-D*GI7M0 > (-1)*GE G L0 > (-1)GE 0 (37)
and

(-1)P2G] ;G ,0 < (-1)PzGY G220 (38)

(=161, Gl .0 < (-1)*GF G20 (39)

where 0 < z < 00, s = 1/2. The inequalities (36)-(39) are a direct consequence of
the inequalities (30) and the simple recurrence relations for the C- and S-continued
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fractions of the type G{’yO appearing in (36)—(39) (Baker and Graver-Morris, 1981a,
Chap.4).

To discuss the formulae (36) and (37), let us note that =G} 0 = zG%f‘f‘kO are
the one-point Padé approximants to the p coefficients of the series (2), as G’f’SO =
fo‘j"’o are to the & terms of the expansion (4). Both meff‘s"’_kO (k is fixed) and

G%AS/I ~PQ (p is fixed) converge to z fi(z) as M — oo, cf. Carleman’s criterion assumed
for asymptotic expansions (2) and (4). Thus we have

[M/Mlap—p(z) = 2 f1(2), [M/M)i, = zf1(2) (40)

lim lim
M—oco M—oo

Remark 2. For a fixed p the two-point Padé approximants [M/M]snr—p(z) and for
a fixed k the [M/M](z) converge to the Stieltjes function zfi(z) for z € (0, 00)
as M — oo.

The relations (38) and (39) combined with (40) yield
(=R +1/M + ey (@) > (DM Many(2), @>0  (41)
(~DFM g £y () > (~)MD[M/Myan @), @ >0 (42)
where k(M) is given by
2M —p if p is fixed

k(M) = { k if k is fixed (43)

Remark 3. For z > 0 the inequalities (42) provide the best estimates for the Stieltjes
functions 2z fi(z) with respect to given numbers of coefficients of the asymptotic
expansions of zfi(z) at z =0 and at z = oo.

6. Convergence of [M,/M,ly,y and [Mn/Myly,y,) to ©f1(x)

Now we are prepared to study the general case of the two-point Padé approximants
[Mpn /M),y to zfi(z) given by (1)-(5). For that purpose, we assume that M, is
a monotone sequence of natural numbers and k(M,,) stands for a monotone sequence
of either odd or even natural numbers, where n =1,2,....

Theorem 1. Let k(M,)(n =1,2,...) be a monotone sequence of even or odd natural
numbers satisfying the inequalities

Q(Mn—i—l) - Q(Mn) Z k(Mn—H) - k(]\{n): 2Mn 2 k(Mn) (44)

Then any sequences of two-point Padé approzimants [My/Mnlx(m,) to asymptotic
expansions of a Stieltjes function defined by (1)-(5) converge to zfi(z)

JLH;O[MH/MH]I@(M”) = zfi(z) (45)
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and for © > 0 they obey the following fundamental inequalities:

(= 1) My Mol ar,y < (=1 M+ [ M1 /Mo Je(Ma ) (46)
(_l)k(M")[Mn/Mn]k(Mn) < (“UHM")xfl(x) (47)

as n — oo. The relations (45)-(47) imply that the Padé approzimants [Mn/M]k(,)
form: monotone sequences of upper (if k(My)’s are odd) and lower (if k(M,’s are
even) bounds converging uniformly to xzfi(z) in compact subsets of (0,00).

Proof. Let us assume that k(M,) (n =1,2,...) is a sequence of even natural numbers
only (for odd numbers the proof is analogous). We start from the two-point Padé
approximant identity

[M"/Mn]k(Mn) = [Mn/Mn]ZMn——p(Mn) (48)

where 2M, = p(M,) + k(M,). If k(M) is fixed, then by increasing p(M,) to
p(Mn41) we arrive at

[Mn(n+1)/Mn(n+l)}k(Mn) = [Mn(n+1)/Mn(n+1)]2Mn(n+1)—;D(Mn+1) (49)
where 2M,,(n11) = [k(My) + p(Mn41)]. From (41)-(43) we deduce that

[Mn/Mnlkat,) < [Mnine1)/ Manen) k() (50)

Conversely, keeping p(M,1) fixed we increase k(M,) to k(Mp41), cf. the as-
sumption (44). On the basis of the identity

(Mns1/Mni1]on, 1 —p(Mai1) = [Mnt1/Mng1li(as, 1) (51)
from (41)—(43) and (50), (51), it follows that

(Mn/Mypli(a,)y < [Mpt1/Mugale(, 1) (52)
Analogously, for an odd k(M,)(n =1,2,...) we obtain

[(My [ Mn]xat,y > [Mngr /Meng1 k(Mo 1) ‘ (53)

On account of (52) and (53), the inequalities (46) are established.

To prove the convergence of [My /My, ) @) to zfi(z), let us note that for
z > 0 we have

(—1)PM2GEM 710 > (—1)PW @M @M Mo > (—1)P MG Mo (54)

where we have introduced p(n) = p(M,). Since one-point Padé approximants
fof: ) appearing in (54) converge to zfi(z), the two-point Padé approximants
[My/Mp)i(a,)(z) also converge to zfi(z), cf. (44). |
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A direct consequence of Theorem 1 is the following remark useful for practical
applications:

Remark 4. The bounds [My,/My]yas,) are obtained using 2M,, —k(M,) coeflicients
of the series (2) and k(M,) coefficients of the series (4). The use of additional
coefficients (cf. (44)) improves these bounds.

Theorem 1 is the main theoretical result of the present paper, since it solves the
problem of the monotone and uniform convergence of both balance and unbalanced
two-point Padé approximants to a Stieltjes function xfi(z) defined by (1)-(5). It
is worth noticing that for the particular cases defined by: (i) M, = n = M and
E(M)=M; (i) M, =n=M and k(M) =1,2; (iii) My =n=M and K(M) =0
the fundamental inequalities (45) and (46) reduce to the results reported earlier by (i)
Gonzalez-Vera and Njastad (1990, Th.2.3); (ii) Tokarzewski et al. (1994b, Thms. 1
and 2); (iii) Baker (1975, Thm. 15.2), respectively.

In Sections 7 and 8, a general algorithm for evaluation of two-point Padé approx-
imants to the asymptotic expansions of Stieltjes functions at zero and infinity will be
constructed.

7. Basic Equation for the Continued-Fraction Parameters g,

In the first step, we derive a system of equations for determination of the coefficients
gn of continued fractions (31). We assume that p terms of the power series (2) and
k terms of the power expansion (4) are available. Hence

p
sfie) ~ Y Dz, zfi(s ZC’“ (1/z)" (55)
n=1

The linear fractional transformation (22) applied to (55) p times leads to the system
of algebraic equations

p"il () wc)?
g™ = A , 1=1,2,...,p (56)
n=1 " 1 + zn:l Cﬁ]+1)$n

which determines the unknown coefficients g; = cgj) (j = 1,2,...,p). Note that
n (56) we have

k
> en=0 if p<k (57)

n

The next step is to find & coefficients C'(p+l (n =1,2,...,k) of the power
expansion of zfp+1(z) at s =0, Le.

&fpii(e ZC“’“ Loos=1z (58)



Two-point Padé aproximants for Stieltjes functions . .. 427

from k terms of the expansion of zf;(z), i.e.

k

sfi@) ~ Y CW™, s=1/e (59)

n=1

By substituting (55) and (58) into (25), for z = 1/s we obtain the system of equations

which enables us to determine the coefficients C’,(Ip"'l) (n=1,2,...,k):
: g g g
C;Ll)sn;lz—l-—l-—g--i--”—!- —

1;1 s 1 o+ Z’;,:I Ot gn1

(60)
1, if p isodd

a = . .
s, if p iseven

Now we can construct an S-continued fraction to (55). On account of (26) and (27),

the recurrence equations determining the coefficients Ipti = C’fp +9) (G=1,2,...,k)
are as follows:

(i) If p is even, then

k—j+1 i sCP+)

Clr+ign — 1 : , J=1,2,...,k (61)
2 L+ X of s

(i) If p is odd, then
k—g+1 (p+7)
: C

CP+gn=1 _ S i=1,2...k—-1 (62)

7;2 1+ ZZ;‘Q C',g,,p+]+1)s ’

The formulae (55)-(62) allow us to find the parameters g (n = 1L,2,....k + p)
from given p coefficients of the power series (2) and k coefficients of the power
expansion (4).

8. Recurrence Formulae for the Continued-Fraction
Parameters g,

This section deals with some algorithms for the determination of parameters g, (n =
L,2,...,p+k) of the continued fractions [M/M](z). By solving (56) with respect
to gm (m =1,2,...,p), we obtain

m=1,2,...,p, gm=c§m)

n=12....,p—m
(63)

(m) ntl—j

n—1
(1+m) _ (1+m) L (1+m) (m)
¢ =1, ¢ =—— C; c
° " &) J—ZO !



428 S. Tokarzewski and J.J. Telega

Here cii)’s (m =1,2,...,p) are the input data, see (2). Equation (59) takes then
the following form expressed as a recurrence formula:

n=13,...,p, C"™=g./c"
j= 1,2,...,k— 1
C(:—Z -m (CT(TVLH_l) + 62771,)

(n+1) _ _
Cj+1 - C]En) y

23

j=1,2,...,k—1

i ) (ant2)
pnea) __ 2om=1 Covaom (05 + 61m)

L 1 = o+ = dj
1

Here g, (m = 1,2,...,p) and cV (m = 1,2,...,k) are defined by (63) and (4),
respectively. The formulae (64) determine the coefﬁments C(p +1) (j=1,...,k) in
the following recurrence relations:

(i) For an odd p

(g =CP, oV =c, j=2,3,.. .k
m:1,2,...,k—1, gp+1+m=0’§m)

¢ (n=1,2,....k—1—-m (65)

n—1
1
14+m 1+m (14m)
ot =1, ¢t = - (Z ot C'M_J)
\ 1 7=0

(ii) For an even p

(C) =i, =1,k

J
m=12....k gpm=C"™

¢ n=12.. k-m, (66)

1 m
oyt =1, ot = (Z oot J)

o \i=

\

Given p terms c( ) of the power expansion (2) and k terms 01(11) of the power
series (4), the formulae (63)—(66) provide the coefficients g, (n = 1,2,...p+ k) for
the continued fractions (31). The relations (63)—(66) can also be applied to find the
coeficients d,, (n = 1,2,...p+ k) for the continued fractions (32). To this end, one
has to replace = by s, p by k and ¢, by C, in (63)-(66).
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In the next sections we present some illustrative examples of evaluation of the
parameters g, for continued-fraction representations of two-point Padé approximants

[M/M;, cf. (32).
9. Numerical Test

As an illustration of Theorem 1, the following Stieltjes function is now investigated:

1000
du 1 . 1+1000z
zfl(z)"z/l T+zu W00 " 1tz (67)

According to our general developments, the Stieltjes expansions at x = 0

1 < (-1)"(-1000") ,
Z( )™ ( ),

=h(®) = Fo00 P n (68)
and at z = o0
_ I (=D (1 -0.001"Y) _
mfl(x)_1+ln10007; p— "7, s=1/z  (69)

are the input data for the recurrence relations (63)-(66). The values of gn (n =
0,1,2,...,8) for the continued fractions [4/4]; (k = 0,1,...,8) are displayed in
Table 1. Monotone sequences of one-point Padé approximants [M /Mo constructed
from the power series (69) and two-point Padé approximants [M /My corresponding
0 (68)—(69) are shown in Figs. 1 and 2.

Table 1. Coefficients g of the continued fraction zG¥ ,G%,, ,0 represent-
ing two-point Padé approximants [4/4];, to the Stieltjes function
(In((1 + 1000z)/(1 + z))]/ In 1000.

n=1{n=2|n=3|n=4n=5|n=6|n=7|n=2=8

k=0, gn | 144.6 | 500.5 | 166.1 | 334.3 | 199.0 | 301.4 | 212.7 | 287.7

k=1, go | 1.000 | 0.007 | 2.461 | 233.7 | 266.8 | 249.4 | 251.1 | 255.5

k=2, g, | 1.000 | 0.145 | 19.91 | 373.7 | 215.8 | 288.9 | 227.3 | 275.5

k=3, gn | 1.000 | 0.145 | 0.359 | 0.018 | 5.679 | 253.8 | 250.9 | 261.7

k=4, g, | 1.000 | 0.145 | 0.359 | 0.234 | 12.07 | 344.1 | 227.5 | 279.9

k=5, gn | 1.000 | 0.145 | 0.359 | 0.234 | 0.267 | 0.022 | 6.602 | 262.0

k=6, gn | 1.000 | 0.145 | 0.359 | 0.234 | 0.267 | 0.249 | 10.29 | 327.9

k=7 gn | 1.000 | 0.145 | 0.359 | 0.234 | 0.267 | 0.249 | 0.251 | 0.024

k=8, gn | 1.000 | 0.145 | 0.359 | 0.234 | 0.267 | 0.249 | 0.251 | 0.255
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In((1 + 1000z)/(1 + z))/D, D = In 1000.



Two-point Padé aproximants for Stieltjes functions . .. 431

10. Application to a Physical Problem

To asses the usefulnsess of our results, we are going to study the effective conduc-
tivity of an inhomogeneous material which includes regularly-spaced, equally-sized
cylinders (Fig. 3). First, let us introduce an appropriate notation: & = 7p? is the
volume fraction, p stands for the radius of cylinders, A; and )y are the conductiv-
ities of a matrix and inclusions, and z = (A\2/A;) — 1. The bulk conductivity Ae(z)
is defined by a linear relationship between the volume-averaged temperature gradient
(W) and heat flux (7)

(7) = A (2)(VT) (70)

The averaging (-) is performed over the unit square cell, see Fig. 3. The temperature
appearing in (68) satisfies the linear conductivity equation

V- [(1+28)VT] =0 (71)

where 6 is the characteristic function of cylinders. The continuity condition for the
normal component of the heat flux 7 = 1+ xﬁ)ﬁ at the surfaces of the cylinders
is expressed by

m-T =T (72)
p— 1 o
et =1 .

////'\\
pY
p.~
/ /
|
//
.
A

Fig. 3. Unit cell of a square array of equally-sized cylinders.

Here 77 is the unit vector normal to the surface of a cylinder, while 72 and T.: de-
note respectively the heat flux on the inside and on the outside of the cylinder surface.
It was shown by Bergman (1978) that the effective conductivity A.(z) determined
by (70)-(72) is a Stieltjes function of the type (1).

As the input data for the calculation of [M/M] one takes the coefficients of the
expansion of A¢(z) at z = 0, which have been obtained by Tokarzewski et al. (1994a)
from the set of equations (70)~(72). Low-order coefficients of the expansion of A.(s) at
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s = 0, where s = 1/z, are reported by McPhedran et al. (1988). Starting from these
two truncated series, the sequences of two-point Padé approximants [M/M], (k =
0,1,2; M = 1,2,...,18) to the effective conductivity Xe(z) were calculated via (63)-
(66). The numerical results are presented by Tokarzewski et al. (1994a).

Let us concentrate on the two-point Padé approximant [2/2]; corresponding to
A@/M—1=cVz+cPa? +oz?), V=@ &)=1-2 (73)
and

Ae(@) /M —1=00 +cPst +o(sh), Y =nd-1)-1 (74)

with C{V = —2nd(d — 1)In(d), d = /7/(x — 4¢), ¢ = 7p?, s = 1/z. The truncated
series (73) and (74) are given by Bergman (1978) and McPhedran et al. (1988),
respectively. By using (63)-(66) and (32) we obtain

Hlﬂi(l -+ H4IE)
(1 + H4.'13)(1 + H2.’L‘) + Hizzx

[2/2]2(23) = G%,ng,s = (75)

B R O Ao AL AR
o’ o o gt + (o2

The numerical values of the function (74) are shown in Fig. 4. For comparison, the
asymptotic solution proposed by McPhedran et al. (1988) and upper bounds [M/M};
reported by Tokarzewski et al. (1994a), are also depicted. From Fig. 4, it follows that
the accuracy of the simple formula

Ae(@)/M = 1+[2/2]> (77)

is acceptable for a wide range of the parameters ¢ and z.

11. Concluding Remarks

By using special continued fractions representing two-point Padé approximants it has
been proved that: (i) Carleman’s criterion derived for one-point Padé approximants
applies also to two-point Padé ones, (ii) under some assumptions the balanced and
unbalanced two-point Padé approximants form in a real domain monotone sequences
of lower and upper bounds converging to a Stieltjes function, (iii) the fundamental
inequalities for one-point Padé approximants given by (17) have been extended to the
case of two-point Padé ones, cf. (46) and (47).

The main theoretical result of this paper given by Theorem 1 solves the problem
of the monotone and uniform convergence of both the balanced and unbalanced two-
point Padé approximants to a Stieltjes function zf (z) represented by the asymptotic
expansions of zf;(z) at x =0 and z = oo.

The general recurrence formulae (63)-(66) for finding two-point Padé approxi-

mants from the asymptotic expansions (2) and (4) has been derived and tested suc-
cessfully for correctness (Figs. 1 and 2).
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Ae/M |
1000 MMy 60, M=2,4,6,12,18 |
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Fig. 4. One- and two-point Padé approximants to the effective conductivity A (z)/A;
of a square array of cylinders for ® = 0.78539.

As an example of a practical application, the effective conductivity of a square
array of equally-sized, highly-conducting cylinders has been investigated in terms of
two-point Padé approximant bounds on A, (z)/);, cf. Fig. 4.

Theorem 1 also applies to the analysis of mathematically similar quantities, e.g.

the overall electrical or magnetical conductivities, dielectric constants and many oth-
ers.
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