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NON-SINGLETON FUZZY MODELS

Danuta RUTKOWSKA*

This paper presents an approach to design non-singleton fuzzy-logic systers.
The relation between non-singleton and singleton fuzzy-logic systems is derived.
Simulation results illustrate the effect of uncertainty of the input variables on
the truck trajectories in the truck backer-upper control problem.

1. Introduction

Over the past few years fuzzy sets and fuzzy logic (see e.g. Driankov et al., 1993;
Mendel, 1995; Pedrycz, 1993) have been used in a wide range of problem domains
including process control, pattern recognition and classification, management and
decision making. Specific applications include TV colour tuning, camcorder focus-
ing, washing-machine automation, automobile transmissions and subway operations.
We are also witnessing a rapid development in the area of neural networks (see e.g.
Tadeusiewicz, 1993; Korbicz et al., 1994; Zurada, 1994). Fuzzy inference systems are
frequently converted into fuzzy neural networks (Rutkowska, 1996, 1997a; Rutkowska
et al., 1997) which exhibit advantages of neural networks and fuzzy systems. In
particular, fuzzy neural networks combine learning abilities of neural networks and
natural language description of fuzzy systems. An excellent survey of such combi-
nations is presented by Linkens and Nyongesa (1996). It is well-known that fuzzy
inference systems process crisp data which are mapped into fuzzy sets in the fuzzifier.
The most popular is the singleton fuzzifier (Wang, 1994). The non-singleton fuzzifier
is applicable when the input signals are corrupted by noise and there is a need to
account for uncertainty in the data.

Some heuristic methods to deal with non-singleton fuzzy systems have been cited
by Mouzouris and Mendel (1997). The same authors in their paper presented a formal
derivation of general non-singleton fuzzy-logic systems by making use of the modified
height defuzzifier. The method developed by Mouzouris and Mendel is a sort of a
direct approach to handling uncertainty in input data. Some non-direct approaches
are discussed by Pedrycz (1995). In this paper, contrary to Mouzouris and Mendel,
we investigate non-singleton systems by making use of the centre-of-sums defuzzifier.
Moreover, we shift fuzziness from the input into rule antecedents. This operation
allows us to observe (see Section 4) a deteriorating effect of fuzzy inputs on the
control.
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In Section 2 we present singleton fuzzy-logic systems based on the centre-of-sums
defuzzification. In Section 3 we derive an explicit formula describing non-singleton
fuzzy systems and their relations with singleton ones. Simulation results shown in
Section 4 illustrate the effect of uncertainty of the inputs (after they have been fuzzified
using the non-singleton fuzzifier) on the truck trajectories in the truck backer-upper
control problem.

2. Singleton Fuzzy-Logic Systems

In this paper, we consider multi-input, single-output fuzzy systems mapping X — Y,
where X C R® and Y C R, see Fig. 1.
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Fig. 1. Fuzzy-logic system.

The fuzzifier performs a mapping from the observed crisp input space X C R”® to the
fuzzy sets defined in X. The most commonly used fuzzifier is the singleton fuzzifier
which maps & = [Z1,...,Zn] € X into a fuzzy set A C X characterized by the
membership function

1 if x=2
= 1
pale) {0 if @4z @
The fuzzy rule base consists of a set of N rules in the following form:
R®. IF z; is A* AND ... AND =z, is A* THEN y is B¥ (2

where A¥ and B*,i=1,...,n and k=1,..., N, are linguistic terms characterized
by fuzzy membership functions p4x(z;) and pgs(y), respectively.

The fuzzy inference engine determines a mapping from the fuzzy sets in the input
space X to the fuzzy sets in the output space Y. Let G be an arbitrary fuzzy set in
X. Then each of N rules (2) determines a fuzzy set B* C Y given by the sup-star
composition

par(y) = sup {16(@) * par . ar B (2,9) } (3)
z

where * could be any operator in the class of t-norms. It is easily seen that for a
crisp input & € X, i.e. a singleton fuzzifier (1), formula (3) becomes

P‘Ek(y) = “A’fxwaﬁ—}B"(j:y) (4)
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The defuzzifier performs a mapping from fuzzy setsin ¥ to a crisp point § €Y.
The most popular defuzzification methods are:

(i) centre average defuzzification
N _
Dkt s (7Y)
N —
2 k=1 Hpe (TF)
where §* is the centre of the fuzzy set B* such that
pee () =1 (6)

(ii) centre of area defuzzification

g:

_ Jyyes(y)dy

g= rorn (7)
where

uB(y) = max 4+ (y) (8)

In this paper, instead of (5) and (7), we apply the centre-of-sums defuzzification
method given by the formula

_ fy Sl pe @) dy .
! fY Zszl i (y) dy ©)

If we assume the product inference rule, then eqn. (4) takes the form

rpx(y) = ppe(y H pak(Z (10)

We choose the Gaussian membership functions of fuzzy sets A¥ and B* given by

kN 2
tax (z:) = exp [— ( p ) } (11)
and ' .
y—g*\’
ppr(y) = exp [-( ok ) ] (12)
For the Gaussian functions we have
[o0]
[ )y = o7 (13)
o .
[o0]
[ vnm iy = ot v (14)

—~—00
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Combining (9)-(12) and using (13) and (14), one gets
N ok k|17 T — &} ’
Yok=1For | Tlimexp |~ %
g4
- 7 — 18\’
N n iy
> op=1 0F (Hi:l exp [_ (T) })

Formula (15) describes the fuzzy logic system with the centre-of-sums defuzzification,
product inference rule and singleton fuzzifier.

¥

3. Non-Singleton Fuzzy-Logic Systems

The non-singleton fuzzifier is characterized by the membership function

pe;(z:) = exp [— (%—1—7) 2} (16)

For the product inference rule, formula (3) becomes

panly) = suwp {#Bk (v) H (1. @nay (m)} (17)
Let )
g (y) = pp f[ " (18)
where .
ot = sup { (uc (@)par (29) (19)

i=1,2,...,n, k=1,2,...,N. Wefind the value of 'yf by maximizing the expression

ol (252 o (52

which attains its maximum at

_ 2 .
ot + (o}) .

Consequently,

7 = exp {— (mf;jf)z} exp {— (jf; z’)? (22)
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A simple algebra leads to the final result
o T; — ff 2
7 = exp [—( o ) (23)
g;

5F = Jo? + (oF)” (24)

where

Now we apply the centre-of-sums defuzzification method. Let

n
M =[]k (25)
i=1
Substituting (25) into (18) and using (9), one gets

- o A Sy g (y)dy 26)
Zk 1Ak fy ppx (y)dy

From (13), (14), (25) and (23) it follows that formula (26) takes the form

L kN2
N g kT mi—xf
2ok ¥ [Ty exp | - 3
7

y= SN oF TR, exp [_ (&“k_ff)z} (27)

Assuming that the centre #; of the fuzzy input set G; is approximated by the crisp
input z;, we get the description of the non-singleton fuzzy inference system in the

form
g 2
N =k _kTTD i — T}
Ek—_qy g Hi:l exp | — 5k

i

o ees - (352)

where §* and o* are the parameters of the membership function (12), z¢ is the
centre of the membership function (11), &% is given by (24) and depends on the pa-
rameters o; and of of the membership functions (16) and (11), respectively. Com-
paring formulae (15) and (28), we see that fuzziness has been shifted from the input
into rule antecedents.

y= (28)

It is easily seen that when the uncertainty of the input is zero, i.e. 0? =0, then
the non-singleton fuzzy inference system (28) reduces to the singleton one described
by formula (15). It should also be noted that the singleton system (15) can be
transformed to the non-singleton one with fuzzifier (16) if the parameters o¥ are

replaced by +/(0f)? — o2, where 0f >0;, i=1,...,n and k=1,...,N.
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4. Simulation Study

The purpose of the simulation is to illustrate the effect of uncertainty of the fuzzy
system inputs, after they are fuzzified using the non-singleton fuzzifier, on the truck
trajectories in the truck backer-upper control problem. Subsections 4.1 and 4.2 are
based on the concept developed by Wang and Mendel (1991) and Wang (1994).

4.1. Problem Formulation

Figure 2 shows the truck and its loading zone. The truck position is exactly deter-
mined by three state variables z € [—150,150], y € [0,300], ¢ € [-180°, 180°], where
¢ specifies the angle of the truck with the vertical. Control to the track is the steering
angle § € [—45°,45°]. The truck moves backward by a fixed unit distance every stage.
For simplicity, we assume that there exists enough clearance between the truck and
the loading dock so we can ignore the y-position coordinate. The goal is to design
a fuzzy inference system making the truck arrive at the loading dock at the angle
¢(ts) =0 and the final position z(ts) = 0.
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Fig. 2. Truck and loading dock illustration.

4.2. Generation of the Learning Sequences

We describe the movement of the track by making use of the following approximate
kinematics derived by Wang and Mendel (1991):

z(t + 1) = z(t) + sin [6(t) + ¢(t)] — sin [8(t)] cos [¢(1)] (29)
¢t + 1) = ¢(t) — arcsin {%ﬂ} (30)

where b is the length of the truck. In the simulation b = 20.
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Based on the above equations we generate 14 learning sequences

((t0), #(t0), 8(t0)), (2(t1), B(t1),6(t1)) - - -, ((ts), B(ts), 8(2s))
starting from different initial states (z(to), ¢(to)). The steering angle 6 at every stage
is chosen by a trial-and-error method such that the kinematic equations finally give
:B(tf)f’é’.»o, (ﬁ(tf)zo

The fourteen learning sequences of different lengths form one epoch of length 282.

4.3. Learning Procedures

Based on the learning sequences we train the parameters §*, o, ¥ and oF of the
singleton fuzzy logic system (15) such that the error

e=3[5(t) - 6(1)]" | (31)

for ¢ = 0,1,2,..., is minimized. The linguistic variables z; and z, in the fuzzy
rule base (2) correspond to the truck position z and the angle ¢, respectively. In
the simulation N = 36, the variables z; and z, are represented by six different
linguistic terms, i.e. some fuzzy sets A¥ in (2) overlap.

We apply the following training procedure (for details, see Rutkowska, 1997b):

Hn:1ﬂA’F(ji)
7Pt +1) = g°(t) - n(G — d)o* o
7HE+1) = g5t —n(@ - d) S 07 Ty ps (&) )

)
+a(7*(1) ~ g4t - 1)) (32)

_ _ H?:l tar(Z:)
cft+1) = of(t) - —d)(g* - -
t+1) = o"@t) —ny—d)(y y)zy=1 7 Ty s 30

ZE(t+1) = 2(t) - (5 - (G - §)(z: - z¥)

2
= _ =k
[T5_, exp | - 2= %
p=1 o

LN\ 2
T — d
N P T Tp mp
Ej;:]_ oJ Hp::] €Xp | — ( a’j

+a(ZH(t) - 2t - 1)) (34)
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ob(t+1) = of(t) - 2n( - @ - 9)(z: — &)’

= _ =k\”
H‘ll ex _ $p 'LP
p=1 p ok
ok p

N 2
Ty — IY
N : n P P
Zj:l a? szl €xp | — ( 3 )

+alof@)—of(t-1) (35)

where n € (0,1) and a are the learning and momentum coefficients, respectively.
We assumed that n = 0,25, a = 0,1. Algorithms (32)—(35) run for 10 000 iterations.

4.4. Simulation Results
Once the parameters §*, o, ¥ and of are optimized, we check the performance
of the system (15) starting from various initial testing states. The result is shown
in Fig. 3. We observe that the singleton fuzzy logic system successfully controls the
truck to the desired position. Next we assume some level of uncertainty about the
inputs ; = z and z» = ¢. The truck trajectories due to the non-singleton fuzzy
logic system (28) are shown in Fig. 4 for o, = 03 = 20,40,60. We conclude that the
effect of uncertainty is minor for oy = oy = 20, becomes visible for o, = g3 = 40
and is not acceptable for o1 = g2 = 60.

Fig. 3. Truck trajectories using the singleton fuzzy-logic system (o1 = o2 = 0).
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Fig. 4. Truck trajectories using the non-singleton fuzzy-logic system (o1 = o2 = 20, 40, 60).
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5. Conclusion

In this paper we derived an explicit formula describing non-singleton fuzzy systems
with the centre-of-sums defuzzification method. By shifting fuzziness from the input
into rule antecedents we observed a deteriorating effect of fuzzy inputs on the control
of the truck. This effect can be neglected for small o} and o, and becomes visible
(or unacceptable) for larger values of these parameters.
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