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n-ANALYSIS AND ROBUST STABILITY
OF POSITIVE LINEAR SYSTEMS

DiepERICH HINRICHSEN*, NGUYEN K. SON**

In this paper, we develop a p-analysis for nonnegative matrices and apply the
results to analyse robust stability of positive linear continuous-time systems un-
der arbitrary affine parameter perturbations. It is shown that real and complex
stability radii of positive systems coincide for arbitrary affine perturbation struc-
tures, in particular for block-diagonal disturbances. Estimates and computable
formulae are derived for these stability radii. The results hold for arbitrary per-
turbation norms induced by absolute vector norms (e.g. p-norms, 1 < p < co).

1. Introduction

The notion of structured singular value (or p-value) introduced in (Doyle, 1982) is
an important linear-algebra tool to study robust stability of uncertain linear systems.
Parameter uncertainties in control can often be represented by block-diagonal per-
turbations (Packard and Doyle, 1993) and the study of this class of perturbations is
the subject of p-analysis. In general, p-values are difficult to determine, but there
exist algorithms for computing upper and lower bounds in the complex case (Packard
and Doyle, 1993) Very little is known about the real case (where only real perturba-
tions are considered). Because of these difficulties it is of interest to look for system
classes of practical importance for which p-analysis can be carried out more easily
and effectively.

The aim of the present paper is to develop a p-analysis for nonnegative matri-
ces and to examine robust stability of positive linear systems under arbitrary affine
parameter perturbations. An n-dimensional linear system

P3N z(t) = Az(t), t>0

is said to be positive if it leaves the positive orthant R} = [0,00)™ invariant in the
sense that edtz, € R} for all ¢ > 0 whenever zo € R} . It is well-known that
a system X is positive if and only if A is a Metzler matrix, i.e. all off-diagonal
elements of A are nonnegative. The mathematical theory of Metzler matrices has
a close relationship to the theory of nonnegative matrices founded by Perron and
Frobenius. As references we mention (Berman and Plemmons, 1979; Gantmacher,
1959; Luenberger, 1979).
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Suppose that the system X is asymptotically stable and that the matrix A is
subjected to parameter perturbations of the form

A~» A+ DAE, A€D

Here D and E are given matrices specifying the structure of the pertubations, D is
a given class of perturbations and A € D is an unknown disturbance matrix whose
size is measured by some operator norm ||A||. If complex perturbations are allowed,
the maximal number p for which all the perturbed matrices in the set

{A+DAE,A e DA < o}

are asymptotically stable is called the complex stability radius (Hinrichsen and
Pritchard, 1986). If only real perturbations are considered, the real stability radius
is obtained. These two stability radii are in general distinct. The complex stability
radius is known to be more easily analysed and computed than the real one.

Up till now the theory of stability radii has mainly dealt with single block per-
turbations where D = K> K =R, C. A detailed analysis of the complex stability
radius can be found in (Hinrichsen and Pritchard, 1990). A general formula for the
real stability radius (for single block perturbations) was given in (Qiu et al., 1995).
The computation of the real stability radius requires the solution of a complicated
global optimization problem. It was shown in (Hinrichsen and Pritchard, 1992) that
the real stability radius may be an overoptimistic indicator of robustness in the pres-
ence of time-varying, nonlinear or dynamic perturbations of the system. Therefore it
is of interest to know under which conditions the real and the complex stability radii
are equal. It was shown in (Son and Hinrichsen, 1996) that if A is a Metzler matrix,
D, E are nonnegative and A is subjected to single block perturbations,

A~» A+ DAE, AeK*¢ (1)

the real and complex stability radii coincide and can be determined via a simple
computable formula.
In the present paper, we shall extend the results of (Son and Hinrichsen, 1996)

to arbitrary affine parameter perturbations of the system X. We consider multi-
perturbations of the form

N
A~ A+ Z D;A\E; (2)

i=1
and arbitrary affine perturbations of A:

N
Arns A+ 6iAs (3)

=1
where the matrices A;, D; and E; are given nonnegative matrices defining the struc-
ture of the perturbations and A; (resp. d;) are unknown matrices (resp. scalars). We
will prove that real and complex stability radii coincide and can be computed by
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formulae which extend the formula of (Son and Hinrichsen, 1996) to affine pertur-
bations (3). For multi-perturbations (2), a lower bound for the real stability radius
will be given. Throughout the paper the size of the disturbances A; is measured by
arbitrary operator norms induced by absolute norms. This extends the applicability
of the formulae beyond the limits of usual p-analysis where only spectral norms are
considered.

The paper is organized as follows. In the next section, we present some prelimi-
nary results concerning Metzler matrices. The equality of real and complex stability
radii is established in Section 3. Computable formulae and estimates are derived in
Section 4.

2. Preliminaries

In this section, we introduce some notations and present some preliminary results
which will be of use in the later sections. For more details and proofs we refer to (Son
and Hinrichsen, 1996).

Let K= C or R and n, I, ¢ be positive integers. The set of all nonnegative
[ x g-matrices is denoted by Rﬁf‘ 7. Inequalities between real matrices or vectors will be
understood componentwise, i.e. for two real I x g-matrices A = (a;;) and B = (bi;),
the inequality A > B means a;; > b;; for i =1,...,1, j=1,...,¢q. If z € K* and
P c K¢ we define

|zl = (), 1P| = (Ipss])

For any matrix A € K™ the spectral radius and spectral abscissa of A are respec-
tively denoted by

p(A) = max{l)\|; Ae a(A)}, 7(A) = max { Re); \ € a(A)}

where o(A) C C is the spectrum of A. The spectral radius has the following mono-
tonicity properties: If P,Q € K?*? and |P| < Q then

p(P) < p(IP]) < p(Q) (4)
By the Perron-Frobenius theorem
p(B) =v(B) € 0(B), BeR"

Hence, if A € R™" is a Metzler matrix, then y(A4) = p(tl, + A) —t if tI, + A > 0.
As a consequence, the spectral abscissa of a Metzler matrix has similar properties as
the spectral radius of a nonnegative matrix. The following proposition follows from
the Perron-Frobenius Theorem (Berman and Plemmons, 1979; Gantmacher, 1959;
Luenberger, 1979).

Lemma 1. Suppose that A € R*"*"™ is a Metzler matriz. Then

(i) v(A) is an eigenvalue of A and there exists a nonnegative eigenvector x > 0,
T # 0 such that Az = y(A)z. »



256 D. Hinrichsen and N.K. Son

(ii) Given a € R, there exzists a nonzero vector x > 0 such that Az > az if and
only if v(A) > a.

(iii) (tI, — A)~' ezists and is nonnegative if and only if t > v(A).
With every matrix A = (a;;) € R™*™ we associate the Metzler matrix
M(A) = Ag+|A~- A4 (5)

where Ay = diag(ai1,-..,ann). The following lemma will be an important tool in
the later analysis. For a proof, see (Son and Hinrichsen, 1996).

Lemma 2. Suppose A€ R**", Be R}*", C € C™*". Then

IC|<B = ~(A+C)<y(M(A)+B) (6)
In particular,
1(4) <y (M(4)) (7)
and if A is o Metzler matriz
v(4) <~(A+ B) ®)
A norm ||-]] on K" is said to be absolute if ||z|| = |||z||| for all z € K*. Every

p-norm on K", 1 < p < o0, is absolute. The operator norm of a matrix M € K™*"
is defined by

M| = max [|My]
lyli=1

Suppose that K™ and K" are provided with absolute norms. Then the cor-
responding operator norm || - || will in general not be an absolute norm on K™*™.
However, one has the following monotonicity properties (Son and Hinrichsen, 1996):

Lemma 3. Suppose that K™, K" are provided with absolute norms and ||-|| denotes
the corresponding operator norm on K™*™. Then

(i) If Pe K™™, Q e R{™*™ and |P| < Q, then ||P|| < [[|P|I} < [IQIl-
(ii) If P € K™" is of rank one, then ||P|| = |||P}|l.

3. p-Values and Stability Radii

In this section, we study the structured singular values of nonnegative matrices and
apply the results in order to study stability radii of positive systems with respect to
arbitrary block-diagonal perturbations.

Structured singular values, or p-values, were introduced by Doyle (1982) as a
tool to analyse structured perturbations of control systems for which the availabl
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singular-value-based techniques gave only conservative results. He considered complex
block-diagonal perturbations of the form

A€D = {diag[dlln,...,5SIT3,A1,...,Af] € Cixs

6 € C,A; eclfx"f,lsiSS,lstf}

where I, denotes the r xr identity matrix and r;,1;,¢;,5, f > 1 are given natural
numbers. The associated p-value of a matrix M € CI%! is defined as

up(M) = [inf {5(A); A € D, det(I, — MA) = 0}] B

where 6(A) is the largest singular value of A. The following two facts are easily
verified from the definition. If D = C**¢, then pup(M) =5&(M). If ¢ =¢, D =CI,
then pp(M) coincides with the spectral radius p(M).

The following definition extends Doyle’s notion allowing for more general per-
turbation sets (including sets of real perturbations only) and arbitrary perturbation
norms. Throughout the paper we set inf ) = 0o, co™ =0, and 07! = co.

Definition 1. Suppose that M € C*¢, § #D c C*? and spanD is provided with
anorm || -||p. Then

pp(M) = 1/inf {||A|]D; A €D, det(l, - MA) =0} (9)

is called the p-value of M with respect to D and || - ||p.

If M is nonnegative, it is of interest to compare pup(M) with the p-values
pps (M), pp, (M) obtained by replacing the perturbation set D by the sets of real
or nonnegative matrices in D, respectively

DR:DDIRZX'J, D_,_:DﬂRf:q (10)

Throughout the paper spanDg and spanD, will always be endowed with the norm
induced from D. Clearly,

pp(M) 2 pp, (M) > pp, (M)

The following lemma gives a technical criterion under which equalities hold.

Lemma 4. Suppose that M € Rq:l, D c C* and || -||p is a norm on spanD
such that for all A € D and y € CI there exists A € C*9 satisfying

Ay=Ay, [AleD, |[|Alllo < |AllD (11)
If Dy is a cone, then

po(M) = ppy, (M) = pp, (M)

Proof. Since pp(M) > pp, (M) > pup, (M), it suffices to show that for any A € D
such that det(l; — MA) =0 there exists Ay € D, satisfying det(l, — MA,) =0
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and ||Ay|p < |Allp. Now let (I, — MA)y =0 where y € C?, y # 0. Choose A as
in (11). Then MAy =y and, by (4),

§:=p(MIA|) > p(MA) > 1

Hence Ay = 0~'A| € D, satisfies ||At|lp < ||Allp and det(l, — MAL) = 0 (by
the Perron-Frobenius Theorem). u

The following assumption specifies the type of norms of block-diagonal pertur-
bations for which the results in this section can be established. The assumption is
trivially satisfied in classical p-analysis.

Assumption 1. D is a block-diagonal perturbation class, i.e. there exist integers
;i >1,¢>1for ie N:={1,...,N} and a subset J C [N such that

Dzz{dmgAh”.¢Lﬂ;AieDhieﬂ}
Cixe if deJ

D; = (12)
CI, if ieN\J

The vector spaces €, C% are provided with absolute norms and D; with the

associated operator norm || - ||p,, for each ¢ € N. D is endowed with the norm
NP (e T (13)
where || - ||g~ is a given absolute norm on RY.

D given by (12) is a linear subspace of C'*4, where [ := Zil l;, q:= Zi\; q;-
In the case of a single full block (i.e. N =1, J = {1} in (12)) the above assumption
means that C',C¢ are provided with absolute norms and D = C*? is endowed
with the associated operator norm (if the absolute value is used as the norm on
RY = R'). Note that, in general, || - ||p defined by (13) is not an operator norm on
Dif || [lrw # ] - [loo-

Proposition 1. Suppose that M € ]R{i”, D C C*9 satisfies Assumption 1 and
Dr, Dy are defined by (10). Then

pp(M) = pp, (M) = pp, (M)
Proof. 1t is clear that D, is a cone. It suffices to prove that Assumption 1 implies the

condition (11) of Lemma 4. Suppose A = diag(Ay,...,An) € D, y = (yi)ien € T,
y #0, u=(u)iey = Ay. Then u; = Ajy;, i € N, and we define

A i ieN\J
A = diag(Ay,... ,Ax) e D, A= 0 if ied, ;=0
wyP Myl i ieJd, y #0
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where yP € (C%)* is a linear form on C% such that ||yP||(cu) =1 and yPy,; =
llyillc: (Hahn-Banach Theorem). Here (C%)* denotes the dual space of €% and
Il - ll(cei y» the dual norm of || - ||ce: . Then

Aiyizui and ||Al|

p; < I]AiHDn i€N

and so Ay = Ay. By definition |A| € D. Moreover, by the fact that all A; are either
in CI,, or of rank one and the norm || - ||g~ is absolute (and hence monotonic, see
(Horn and Johnson, 1985)) it follows from Lemma 3(ii) that

1131l = || anadi

I

D")i€ﬂl'RN

|01din,) ]

Thus (11) is satisfied and the proposition is proved. N

I

<| i

. 'Di)iEEHRN =[lAllp

We will now apply the above results to analyse stability radii of positive sys-
tems with respect to arbitrary real, complex or nonnegative parameter disturbances.
For this purpose, we first adapt the definition of stability radius to the more gen-
eral perturbation class considered here (Hinrichsen and Pritchard, 1986; 1990). The
definition is given for arbitrary complex triplets (4, D, E).

Suppose that A € C**™ is a given Hurwitz stable matrix, i.e. y(4) < 0. We

view A as the nominal system matrix and consider arbitrary affine parameter pertur-
bations of the type

A~ A(D)=A+DAE, A€D (14)

Here D € C**! and E € C/*™ are given matrices and D C C*¢ is an arbitrary given
subset of disturbance matrices. The structure matrices D, E and the disturbance
class D together determine the structure of the perturbations DAE of A.

Definition 2. Given a subset D C C'*¢ and norm || - ||p on spanD C C*¢,
the complez stability radius of a Hurwitz stable matrix A € C"™™ with respect to
perturbations of the form (14) is defined by

rp = rp(4; D, E) = inf {HAHD; A €D, v(A+DAE) > o} (15)

If the disturbance matrices A in (15) are restricted to the sets Dr or D, then
we obtain the real stability radius rp, and the nonnegative stability radius Dy,
respectively.

In the following examples we illustrate the above definition by discussing sta-
bility radii for various perturbation classes. We begin with the case of single block
perturbations (N =1).

Example 1. (Single block perturbations) Suppose that D = C'*9, i.e. we consider
perturbations of the form

A~ A(A)=A+DAE, AeCx¢ (16)
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Let || - |lp be a given norm on C*%. The corresponding complex stability radius is
denoted by

re(4; D, E) := rp(A; D, E) = inf {HAHD; A € C%%, y(A+ DAE) > o} (17)

If (A, D, E) are real matrices, it is natural to consider only real disturbances, i.e.
A € R*? = Dgp. The associated real stability is denoted by

re(4; D, B) = rp, (4; D, E) = inf {|Allo; A € B*%, y(4+ DAE) >0} (18)

In a similar manner, the nonnegative stability radius rr (4;(Ds, Ei)ien) =
rp, (A;D,E) is defined. In general, the complex, real and nonnegative stability
radii of (4, D, E) are different (Hinrichsen and Pritchard, 1990).

In the unstructured case (D = E = I,) the real and complex stability radii
rk(A) = rx(4;1,,1,), K = R, C represent the distances of A € K™" from the
set of non Hurwitz stable matrices in K**™, with respect to the given norm | - [jp
(Hinrichsen and Pritchard, 1990). ¢

Remark 1. At first sight it seems unnatural to consider complex perturbations
of a positive system. However, in the case of single block perturbations (16), it
was shown in (Hinrichsen and Pritchard, 1992) that the complex stability radius (in
contrast to the real one) remains invariant when more general (e.g. nonlinear, time-
varying and/or dynamic) perturbations are considered. In fact, it was proved that
the complex stability radius rc(4; D, E) is equal to the stability radius with respect
to real dynamic perturbations (ibid., Theorem 4.4). Therefore the complex stability
radius is of interest when nonlinear, time-varying or dynamic perturbations of the
nominal system ¥ have to be dealt with.

The following two examples describe two special classes of block-diagonal distur-
bances corresponding to the two extreme cases J = N and J = in Assumption 1.
The first one corresponds to J = N and plays an important role in g-analysis.

Example 2. (Multi-perturbations) Suppose that the system matrix A is perturbed
as follows:

N
A~ A(D) = A+ DiAE;, A;eCie (19)

=1

where D; € C»k E; € C%*", j € N are given matrices defining the scaling and
structure of the parameter uncertainty. Setting

D= {diag(Al,...,AN); A; € Chxoi, ie]_\f_} (20)
= 21111 li, g = Z,{Y__l g; and defining the structure matrices
Ey

D=[D:...Dn], E=]| : (21)
En
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we see that the multi-perturbations (19) can be written in the form (14). The corre-
sponding complex stability radius will be denoted by

rc(A; (Ds, Ei)ien) = mp(A4; D, E)

N
= inf {HA”D, A €D, ’y(A + ZDzAzEz) > O}

i=1

In a similar manner, we can define the real stability radius rg(A4; (D, E;)qc N) =
rp,(A;D,E) and the nonnegative stability radius re,(A;(Di, E)icy) =
rD+(A;D,E) if A,D;,E; are real (resp. nonnegative). ¢

The next example corresponds to the special case J = @ in Assumption 1.
Arbitrary affine parameter uncertainties can be represented in this way.
Example 3. Consider perturbations of the form:
N
Ans A(A)=A+) 64, 6€CieN (22)
=1

where A; € C**™, i € N are given matrices and §; € C are unknown scalar parame-
ters. Let A; = D;E; be any factorization of A; into D; € C**%, E; € C&*™ e N
(e.g. Dy =1I,, E; = A;). Define D, E as in (21) and set

= 4§ diag(61ly,,...,0nI;y); : €C, 5 € N (23)
q q

Then clearly the affine perturbations (22) can equivalently be described in the
form (14). If we provide D with the operator norm induced by an arbitrary ab-
solute norm on C? then, for each A € D,

“A”'D = ” diag(éllqu LR JNIQN)”D = %%qéll (24)
(see e.g. (Horn and Johnson, 1985)) and Definition 2 yields the following complex
stability radius:
rc(A4; (Ai)ien) = rp(A;D,E)
N
= inf {max[& ;8 €C, 7(A+Z§A) o} (25)
i=1

For real (resp. nonnegative) triplets (A, D, E) the stability radii rr(A4; (A:)icn)
and R, (A;(A;)ien) are defined in a smular way, by taking §; € R and §; € Ry,
respectively, in the above definition.
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The following proposition establishes a relationship between p-values and stabil-
ity radii.

Proposition 2. Suppose that (A, D, E) € C™*" xClx CT* " G(s) = E(sI —
A)1D s the associated transfer matriz, A is Hurwitz stable, D C C*9 4is a cone

and spanD is provided with a norm || -||p. Then
-1
rp(A; D, E) = [su%up (G(zw))] (26)
s

Proof. Suppose that A € D is destabilizing, i.e. y(A+ DAE) > 0. By continuity
of ~(-) there exists « € (0,1] such that y(A + aDAFE) = 0. Let w € R and
¢ € C*, z # 0, such that (4 + aDAE)z = iwz. Then z = (iwl — A)"'DaAEz
and multiplying this equation by E from the left we obtain y = G(iw)aAy for
y = Ex # 0, hence det(I,—G(iw)aA) = 0. Therefore |A|| > al|Al] > [up(G(iw))]
(since aA € D) and it follows that

rp(4; D, E) > [Sup pD (G(iw))y1

weR
Conversely, suppose that A € D satisfies det(I; — G (iw)A) =0 for some w € R and
let y € C7, y # 0 be such that G(iw)Ay = y. Then by setting = = (iwl — A)~' DAy
we get Exz =y and hence (A + DAF)z = iwz. Thus v(A+ DAE) > 0 and A is
destabilizing. It follows that, for every w € R, up(G(iw))™" > rp(4; D, E) and this
concludes the proof. =

We now turn to positive systems.

Proposition 3. Suppose that A € R*™*™ is a Hurwitz stable Metzler matriz, (D, E) €
R < RY™ are given nonnegative structure matrices and the perturbation class D C
C* 9 satisfies Assumption 1. Then

rp(4;D,E) =rp,(4;D,E) =rp (A;D,E)
Proof. The case rp(A;D,E) = oo is trivial. Suppose rp(A; D, E) < co. Clearly,
it suffices to show that rp,(A;D,E) < rp(4;D,E). As shown in the proof of
Proposition 1, Assumption 1 implies that the condition of Lemma 4 is satisfied. Let
A € D be a minimal norm destabilizing disturbance so that y(A + DAE) > 0 and

lAllp = rp(A; D, E). Let (A+ DAE)z = az, Rea >0 for some z € C*, z # 0,
a € C. Then there exists A € D such that

ABz=AEBz, |AleD, [IAlllo <[Allp

Hence (A + DAE)z = az. Since |[DAE| < D|A|E, it follows from Lemma 2 that
v(A+ D|A|E) > y(A+ DAE) > Rea >0

Thus |A| € D, is destabilizing for (4, D, E) and
rp, (4;D,E) < |||Al|lp < ||Allp = rp(4; D, E)
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The following example illustrates that the nonnegativity of the structure matrices
D, E is essential for the validity of Proposition 3.

Example 4. Consider perturbations of the form (22) where N =1
0 -1
1 0
Note that in this case A, cannot be factorized into nonnegative matrices D, E. The
perturbed matrix is
-1 a-94§
a+d -1

Since o(A(d)) = {—1+ va? — 62}, it follows that there does not exist a real desta-
bilizing perturbation 4, i.e. rr(4; A1) = co. On the other hand, it is easily seen that
0 = +/1—a? is a complex destabilizing perturbation of the smallest absolute value.

Thus r¢(4;4;) = V1 - a2 ¢

A= -1 o
a -1

}, 0<a<l, A =

A() =

4. Stability Radii and Transfer Matrices

In this section, we derive a computable formula for the stability radii of positive
systems XY under arbitrary affine perturbations. Suppose that A is a Hurwitz stable
Metzler matrix, (D, E) € RP*! x RY™ and

G(s) = E(sI — A)~'D (27)

is the associated transfer matrix. If R, R? are provided with absolute norms, || - ||
is the corresponding operator norm and y(4) < ¢; < ts, then (Son and Hinrichsen,
1996)

G(t1) 2 G(t2) 20, |G| > [|G(t2)]| > 0 (28)

Lemma 5. A disturbance matriz A € Rﬁf" is destabilizing, i.e. y(A+ DAE) > 0,
if and only if there exist a nonzero vector y € R?I_ and t > 0 such that

y = G(t)Ay (29)

If A€ Rl:q is a minimum-norm destabilizing perturbation, then (29) holds with
t=0.

Proof. If A € IRE:" is destabilizing, then ¢ := y(4 + DAE) > 0. If A is minimum
norm, then additionally ¢ = 0. By Lemma 1(i) ¢ is an eigenvalue of A + DAE
and there exists an eigenvector € R}, z # 0 such that (A + DAE)z = tz. Hence
z = (tI-A)"' DAEz and multiplying this equation by E from the left we obtain (29)
for y = Bz >0, y # 0. Conversely, if (29) holds for some t > 0 and y € R, y #0
then by setting z = (t/ — A)"'DAy we get Ez =y and hence (A + DAE)z = tz.
Thus y(A+ DAE) >t >0 and A is destabilizing. |
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In the case of a single block perturbation structure (D = C*), the following
theorem yields a simple formula for the three stability radii of a positive system (we
use the notation of Example 1).

Theorem 1. Suppose that A € R™™ is a Hurwitz-stable Metzler matriz, (D,E) €
R}« RY™ are given nonnegative structure matrices and C, C¢ are provided with
absolute norms. Then, with respect to the induced operator morms || -] on K*9,
K=R, C,
-1

re(4; D, E) = rg(A; D, E) = e (4; D, E) = ||G(0)|| (30)
where G(s) = E(sI — A)7'D, and ||G(0)|| is the operator norm of G(0): C' — C7.
Proof. The first two equalities in (30) follow from Proposition 3. If A € Rﬂ_xq is
destabilizing, then by Lemma 5 and (28) we get for some ¢ > 0

lco lall > el Al = le@a] =1

(the norms being understood as operator norms). Hence g, (A; D, E) > [|G(0)]|™*.
On the other hand,

-1
re¢(A4; D, E) = [rﬁgﬁg “G(zw) H] (31)

(Hinrichsen and Pritchard, 1990) and this implies r¢(A; D, E) < [|G(0)]|7". |
Under the conditions of the theorem, the function s — ||G(s)|| attains its maxi-
mum value on the imaginary axis at s =0 and G(0) > 0, see (30) and (31).

We now return to block-diagonal perturbations. We only consider the unmixed
cases where the perturbations are either of the form (22) (J = @ in Assumption 1) or
of the form (19) (J = N in Assumption 1).

First, consider perturbations of the form (22) and recall that in the case of
perturbations (22) the structure matrices D;, E; are obtained by choosing arbitrary
factorizations A; = D;E; of the matrices A;,i € N. If D, E are defined by (21),
the associated transfer matrix G(s) = E(sI — A)~'D is of the form

Gn(s) cen GlN(S)
G(S): s Gij(s) :Ei(sl - A)ile, 'l,] eEN (32)
GNl(S) GNN(S)

Making use of Proposition 3 one can prove the following general formula for the
stability radius of positive linear systems under arbitrary affine perturbations of the
form (22). Here rc(A4; (A:)ien), ™r(A; (Ai)ien) and rr. (A; (A;)ien) are defined as
in Example 3.

Theorem 2. Suppose that A € R™*™ is a Hurwitz-stable Metzler matriz and A is
subjected to perturbations of the form

N
AMA(A)=A+Z51A1', 0, €C ieN

i=1
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If
A;=D;E;, D;e Ry%, E;eRY{*™
are given factorizations of A;, 1 € N and G(s) is defined by (32), then
-1
re(A; (Adien) =rr(4; (Aien) = rry (4; (Ai)ien) = v(G(0))] (33)

Proof. Define D by (23), D,E by (21) and endow D with the norm (24). Then D
satisfies Assumption 1, see Example 3, and so the first two equalities in (33) follow
from Proposition 3. By the Perron-Frobenius Theorem v = v(G(0)) is an eigenvalue
of G(0) and there exists an eigenvector u € R}, = R% of G(0) > 0such that G(0)u =
vyu. When choosing A = 47!, € D, it follows that G(0)Au = u. By Lemma 5
A € Dy is a destabilizing disturbance matrix of norm ||A||p = v~!. This shows
rr, = rp, < [7(G(0))]7". Conversely, suppose that A = diag(611y,,...,0n1,,) €
D, is a minimum-norm destabilizing disturbance. Then, by Lemma 5, there exists a
nonzero vector y = (y;)ien € RY such that y = G(0)Ay. Since

lAllp = v(A) = max {é1,...,6n}

it follows that [|[Ally > (diyi)ien = Ay and therefore G(0)||Ally > y. Applying
Lemma 1(ii) we conclude that ||A]| > [y(G(0))]~!. This completes the proof. n

Note that the stability radii in (33) only depend on A; and not on the individual
factors. However, the transfer matrix G(s) depends on the specific factorizations
chosen.

We now turn to multiperturbations (19). For the stability radius with respect to
this perturbation class, a computable formula is not yet known. In order to derive
estimates, we make use of the following balancing result due to Stoer and Witzgall
(1962).

Lemma 6. Suppose that M € Rf"N is positive and || - || is the operator norm
induced by any p-norm on RY, 1< p < co. Then

min || diag(as) M diag(a;)|| = p(M) (34)
where the minimum is taken over all scaling vectors a = (ay,...,an) > 0.

With the help of this lemma, the following estimates can be derived.

Proposition 4. Suppose that A € R*™*"™ is a Hurwitz-stable Metzler matriz and A
is subjected to perturbations of the form

N
A~ A(A) =A+ZDz‘AiEi, A eCixt e N

=1

where D; € R}* LB e RE*™, i € N, are given. Suppose that D is defined by (20)
and is provided with the norm

”A]Ipzrl%a}vx”Ai“, A = diag(Ay,...,AN) €D (35)
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where ||A;]| is the operator norm of A; induced by given absolute norms on Cli C%
Then

re(4; (Di, By)ien) = mr(A; (Ds, Byien) = v, (4;(Di, Ei)ien)  (36)
and

-1

ra (A5 (Do, Eieny) 2 | int [l@)| > [pt)] (37)
a>0

where G*(0) = (:Gij(0)a; V)i jen and H = (||Gs;(0)|])ijen-

The proof is similar to the discrete-time case (Hinrichsen and Son, 1996) and is
omitted. In the single perturbation case (IV = 1) the right-hand side of (37) is equal
to ||G(0)]|7!. Hence, in this case, the second lower bound is tight by Theorem 1.
However, there are counterexamples which demonstrate that already for NV = 2 the
second inequality in (37) is, in general, not an equality. Whether or not the first
inequality is in fact an equality is an open question. We conclude the paper with an
example illustrating Theorem 2.

Example 5. Consider the perturbed matrix

= , ,€C, i=1,2,3 38
1+ 6, —3+5J [ 1 —3]+[52 53} ' (38)

where 41, d2,d3 denote unknown parameters. The unperturbed matrix A = A(0) is a
Hurwitz-stable Metzler matrix. The uncertainty cannot be described by a single block
perturbation structure, i.e. there do not exist structure matrices D € C**!, E e Crxn
such that the set of perturbed matrices (38) coincides with {A + DAE; A € ¢4},
However, since the perturbation is affine, it can be represented in the form (22). In
fact, if

A(A) =

2 , E1:E3:[0 1], Ed:[l o]

1
Dlz[o], Dy =D3 =

then
3
A(A) = A+ 8DiE;
1

In order to determine the stability radius of A with respect to this perturbation
structure, we first have to choose a perturbation norm. If the size of a perturbation
A = diag(d1,d2,93) is measured by the operator norm ||Al| = max{|d1], |02, ]93]}, we
can apply Theorem 2. The transfer matrix (32) is given by

E, (SI — A)'lDl E, (SI - A)—IDZ El(SI - A)—-ID3

G(S) = EZ(SI - A)lel EQ(SI — A)71D2 EQ(SI - A)%1D3
Es (SI—A)#IDl E3 (SI— A)leg Eg(SI - A)71D3
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Any easy calculation yields

Lo 1/3 1/3 1/3
(—A)—lz[13 1/3}, GO=|1 0 0|, o(GO)={0,-1/3,1}
/ 1/3 1/3 1/3

so that v(G(0)) = 1. It follows from Theorem 2 that 7 = 1. In fact, the perturbation
A = diag(d1,d2, d3) = diag(1,1,1) is destabilizing and of norm 1, and it is easily ver-
ified that no smaller perturbation of the given structure can destabilize the matrix A.

¢

Remark 2. Suppose that (4, D, E) € Rvxn y RoxE  RIx™ g g given non-positive
stable system such that the associated transfer matrix

G(s) =E(sI-A)~'D
admits a positive realization
(4,D,E) € R™™ xR 4 R™ 5(A) ¢ C_

A being a Metzler matrix. Then G(s) = E}(s{ —A)7'D and A € D destabilizes
(A,D,E) if and only if it destabilizes (A,D,E). Thus, for any class D of block-
diagonal perturbations we have by Proposition 3

TD(A,D,E) = T‘DH,_(A,D,E) = T‘D+ (A,D,E)
If D =C*9, then by Theorem 1
re(4, D, E) = rp(4, D, E) = p,(4,D, E) = |G(0)|| "

In order to apply the above formulae to the data (4, D,E) it is not necessary to
construct a positive realization of G(s). It is sufficient to know that it does exist.
In the single-input single-output case (I = ¢ = 1), a complete characterization of
positively realizable rational transfer functions g(s) € R(s) can be found in (Anderson
et al., 1996).
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