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UNIFORM DECAY RATES FOR SOLUTIONS
TO A STRUCTURAL ACOUSTICS MODEL
WITH NONLINEAR DISSIPATION

GEORGE AVALOS*, IRENA LASIECKA**

In this work, the asymptotic behavior of solutions to a coupled
hyperbolic/parabolic-like system is investigated. It is shown that with both
components of the equation being subjected to nonlinear damping (boundary
damping for the wave component, interior for the beam), a global uniform sta-
bility is attained for all (weak) solutions.

1. Introduction
1.1. Statement of Problem

Let © be a bounded open subset of R*, n = 2 or 3, with Lipschitz boundary
80 = I'1 ULy, and with both T'; being open and nonempty. We further specify
that I'c be a simply connected segment of 92 and a smooth (C?) manifold. In
this paper, we investigate the stability properties of functions 2" = [2(t, %), 2(t, )]
and ¥ = [v(t,z),v¢(t,7)] which solve the following system consisting of a coupled
semilinear wave and “elastic” equation on finite time 7'

(2 = Az on 2x(0,7)
0z
) 5; =Vt— 0 (Zt) on F() X (O,T) (1)
2=0 on Ty x (0,7)
l Z(t=0)=12z € H(Q) x L*(Q)
vy = —Av — A%gz (z{%vt) — 2z on Iy x(0,T) (with fixed n € [0,1])
(2)

(t=0) = €D (4*) « L3 (o)
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where A : D(A) ¢ L2(Ty) — L*(T) is any positive definite self-adjoint operator,
with its fractional powers therefore being well-defined. The g; are functions on the
real line which satisfy the following assumptions for 7 = 1, 2:

(H1) (i) gi(s) is continuous and monotone increasing;
(i) gi(s)s >0 for s#0O0;
(111) m;s < gi(S) < M;s for |S| > 1 and 0<m; < M;.

In addition, we shall need the following geometrical assumptions:

(H2) There exists a [C?(Q)]™-vector field h = [h1(2), ha(z), ..., hn(2)] € [C2(Q)"
such that

(i) h-v <0 on I';, where v is the unit normal of I' pointing toward the exterior
of O
(ii) The Jacobla,n matrix H ( ) of h(z) is uniformly positive definite on Q.

The coupled system is a nonlinear version of the “structural acoustics” model em-
ployed in (Banks et al., 1991; Banks and Smith, 1995) to describe the active control of
acoustic pressure in a chamber through the placement and implementation of piezo-
electric ceramic patches on one of the (flexible) chamber walls. The modelling partial
differential equation is a wave coupled to an elastic equation, with the coupling being
accomplished through the velocity terms of the solution [z,v]. In the papers cited
above, the abstract operator A is taken to be the biharmonic A% with appropriate
homogeneous boundary conditions; and with n = 1, A1/? is the Laplacian operator
A. The implemented control term for this particular “smart materials” application
takes the form of a linear combination of derivatives of delta functions placed on
the beam component (2) so as to mathematically describe the bending moments in-
duced through the chamber wall Ty by the piezoelectric patches. In this paper, we
deal strictly with the uncontrolled PDE model (1)-(2), and our objective here is to
demonstrate that the “energy” E of the system, defined by

E(?,W,t)z—/ [|v,z |2+|zt(t)|2] dﬂ+%”ﬁu(t1

2
L2(Ty) 2 ” l L2(Tg)

decays uniformly as t — oo.

1.2. Preliminaries

Before dealing with the coupled system (1)—(2), we will consider its wave component
as an equivalent abstraction, for which we will need the following background material:

e Let the operator A: D(A) C L%(Q) — L?(Q) be defined by
-0} @

Note that A is self-adjoint, positive definite, and hence the fractional powers of A
are well defined.

Oz

Az = —Az; D(A4) = {z €H () > zlp, =0, 5=
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e By (Grisvard, 1967), we have the following characterization:

D(A%) = HE () = {zeHl(m 5 2=0 onFl}

with [[2|| 43y = 422

1
2

2 , ) )
L2(Q) = /Q )V2| dQl = HZHIJI]:‘l(Q)v z € D(A?)(5)
where the last equality in (5) follows from Poincaré’s inequality.

o We define the map N by

Ap=0 on 2
¢l., =0 onTy

=Ny <= 6
¢ 09| Yoot (6)
ov| 0
To
and elliptic theory will then yield that
N € £(L*(,), D(A%)) (7)

o Let v: H'Y()) — HY2(I'y) be the restriction to Ty of the familiar Sobolev
trace map; viz.

Vze H'(Q),1() = { . Iy - ?j (8)
It can then be shown easily that
N*Az=+(z) Yz € D(A7) (9)
o We define the energy spaces
H; = D(A?) x L2 (Q) (10)
Ho=D(A7) x L3(T) (11)

With these definitions in hand, the system (1)—(2) is equivalent to the following
abstract representation:

2y = —Az — ANgy (N*Az) + ANv;  on (0,00) x 2 (12)

vy = —Av — fi%gz (z‘{%’vt) — N*Az on (0,00) xTg (13)

We will hence proceed to look for solutions [2", @] of (1)-(2) (and hence (12)-(13))
existing in H; x Hy a.e. in time, and subsequently study their decay properties. Note
that the pointwise defined terms N*Az; and gg(An/ th), for i > 0, are initially only

formal representations, inasmuch as [z;,v:] are taken to live pointwise (in time) in
L?(Q) x L*(Ty) only.
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1.3. Literature

The uniform stability for each of the individual wave and beam components of (1)-
(2) has been well-established these past few years, and we spell out here a short
(necessarily incomplete) list of results. Concerning the (linear) uncoupled elastic
equation with 1 € [1,1], we have the result of Chen and Triggiani (1989) that the
associated abstract operator which models the PDE generates an analytic semigroup,
which automatically provides for the exponential decay of the solution [v,v:] of the
second-order system

vy = —Av— A", on (0,00) xT';

[v(0),v:(0)] = T4 € Ho (14)
For the wave equation with L?(0,T; L*(2))-Neumann feedback control; viz.
ze = Az on (0,00) x
[2(0,2),2(0,z)] =2  on Q
(15)
z(t,z) =0 on (0,00) x Iy
0z(t,z)

28 = gy (alt, 7)) on (0,00) < To

Chen (1981) proved the exponential stability of solutions (15), in the (linear) case that
g1(s) = s, under the geometrical conditions that 2 be “star-shaped.” Lagnese (1983),
and subsequently Triggiani (1989) through an alternate proof, showed the uniform
stabilization of (15), again with g;(s) = s, under the lessened constraint that there
exists a [C?(Q)]"-vector field h(z) such that

(hi) h-v <0on I'y, where v denotes the unit-normal vector to T';
(h.ii) h is parallel to v on T'g;
(h.iii) The Jacobian matrix H(z) of h(z) is uniformly positive definite on 0.

Also, Bardos et al. (1988) have derived stability results for linear wave equations
with more general boundary conditions than those in (15), under the assumptions
of geometric optics; however the techniques used in the proofs therein are not easily
adaptable to our particular situation, based as they are on microlocal analysis and
the propagation of singularities. In this work, we will pay particular attention to
the result of Lasiecka and Triggiani (1992), who have shown the exponential decay
of solutions of (15) without the constraint (h.ii). This result is proved by using the
standard multipliers h - Vz and zdivh, and invoking a (pseudodifferential) trace
estimate which we state here for future reference:

Lemma A. (Lasiecka and Triggiani, 1992). Let € > 0 be arbitrarily small. Let
z solve an arbitrary second-order hyperbolic equation on (0,T) with smooth space-
dependent coefficients. Then with Qr = (0,T) x £,

(0 er dt < C ! LAY ar, dt 2 16
€ To ot 0@ < & 0 JTo v +a 0 +||Z”H7+E(QT) (16)
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where the € on the left of (16) need not be the same as the € for the Qp-norm on the
right, and where 0/07 denotes the tangential, and 8/8v the co-normal derivative.

In addition, the works (Zuazua, 1990; You, 1990; Lasiecka and Tataru, 1993) all
deal with boundary stabilization of the wave equation (15) with the full nonlinearity
g1 in place, and varying geometrical conditions being assumed in each paper.

With regard to uniform stability for the linear version of the coupled model (1)~
(2); i-e. g1(s) = g2(s) = s, we have the recent result in (Avalos, 1996) that with the
geometrical condition (H2) in place, the coupled system decays exponentially for all
initial data in [25, 8] € Hy x Hy. (The coupled system in this cited work is studied
with 1 =1, but it is clear from the proof therein, although not explicitly stated, that
exponential stability of the model is obtained for all 5 € [0,1]). The strong stability
of the linearization of (1)-(2) was ascertained in (Avalos and Lasiecka, 1998).)

The technical approach adopted in this paper for the proof of uniform stability
of the nonlinear model (1)-(2) will essentially be that employed in (Avalos, 1996),
an approach which in turn originated in (Lasiecka 1989). Namely, we shall generate
appropriate estimates for the energy functional fo E(Z,7,t)dt, as opposed to the
classical method of constructing a particular Lyapunov functlon for a generally non-
linear equation, and subsequently proving differential inequalities with respect to this
Lyapunov function. Our initial estimate for the energy functional will be “tainted”
with lower order terms, these having to be removed through a compactness/uniqueness
argument. In attaining the preliminary estimate for our energy functional, the use
of Lemma A above will be critical. Note that the assumptions in (H2) include no
restrictions on the active portion of the boundary I'g. Indeed, it is owing to the
control of the tangential derivative provided by Lemma A that one need not impose
additional geometric assumptions upon the active portion of the boundary 1"0, e.g.
h-v >0 on Ty, or h being parallel to v on Ty.

1.4. Statement of Main Results

Theorem 1. (i) With the initial data [28, 98] € Hy x Hy and the parameter n € [0,1],
the system (1)-(2) has a unique solution [Z, ¥'] € C([0,00); Hy x Hp).

(it) In addition, the velocity terms of the solution have the following regularity:
2|y, € L (o,oo;L2(r0)) (17)
v € L, (0,00;D(A%)> (18)
(consequently, gi(N*Az), go(A"?v;) € L (0, 00; L*(To)) by (H1)(iii)).

(iii) Furthermore, the solution [, ¥ satisfies the following energy relation:

T
E(Z,7,0) = E(?,W},T)—I—/ [(g1 (N*Azt),N*Azt)
0

L2(To)

+ (92 (4%w) ,A%Ut) ]dt (19)
L2(To)
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Before stating our stability result, we must first define some needed functions.
Let f(z) be defined by

f(@) = fi(z) + fo(2) (20)
where the f; are concave, strictly increasing functions, with f;(0) = 0, and such that
fi(s9i(s)) > s> +gi(s) for [s]<1 (1)

note that such functions can always be constructed, given the hypotheses on the g;
in (H1) (Lasiecka and Tataru, 1993). With this function, we then define

~ T
f(w):f<m)’ x>0 (22)

where Zor = (0,T) x . As f is monotone increasing, then cl+ fis invertible for
all ¢> 0. For K a positive constant, we then set

plz) = (c] + f) ~ (Ka) (23)

The function p is easily seen to be positive, continuous and strictly increasing with
p(0) = 0. Finally, let

gy =z- (I +p)l1(a:), z>0 (24)

We can now proceed to state our stability result.

Theorem 2. Assume that the hypotheses (H1)-(H2) are in place. Let [Z, 0] be the
weak solution to the coupled system (1)—(2), assured by Theorem 1. With the energy
E(7Z,7,t) as defined in (3), there exists a Top > 0 such that

E(?,?,t)gS(%—l) for t>Tp (25)
0

with lim—0o S(t) = 0, where the contraction semigroup S(t) is the solution to the
differential equation

dits (H)+q(S®) =0, S(0)=E(Z,7.0) (26)

(where q 1is as given in (24)). Here, the constant K (from definition (23)) will
depend on E(7Z,7,0) and time Ty, and the constant ¢ (from definition (28)) is
taken here to be ¢ = (my' + M, +m3 ' + M;)/meas(Sor,).

Remark 1. The assumptions (H2) on the vector field h will be satisfied if T'; is a
sufficiently small portion of the boundary 8Q; viz. if meas (I'1) < (1/2) meas (98)
(Bardos et al., 1988).
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Remark 2. Concerning the boundary condition imposed upon the inactive portion
I'1, the Dirichlet boundary condition z =0 on I'; x (0,00) in (1) can readily be re-
placed with 9z/0v =0 on T'; x (0, 00) without fundamentally changing the stability
result for the system (1)—(2). Indeed, with dz/dv = 0 on I'; x (0, 00) the analysis will
remain unchanged by simply taking the energy space Hy = (H'(Q)/R) x (L?(Q)/R).

Since the heart of the matter here is the stability of the system (1)—(2), we
relegate the proof of well-posedness (Theorem 1) to the Appendix below, and
commence with the proof of uniform stability.

2. Proof of Theorem 2

Throughout, we will make use of the denotations Q7 = (0,7)xQ, X7 = (0,T)xT
and ¥;r = (0,T)xIy, i = 0,1, where T > 0 is arbitrary. The proof of Theorem 2
proceeds through several steps.

Proposition 1. There ezists a constant C, independent of time 0 < T < oo, such
that for all € > 0 the solution component @ of (1)-(2) satisfies

2
2

[l

v

1 2
+l1vell} 20y } dt<C Ul;{zv(T =) o 1T = g,

L2(Ty)

L3(To)

+[4ba)

2
L2(To) ||Ut(€)”L2(Fo)

T
N* Az + |42 \
+/0 (“ Zt”L (To) + L2(To)

+ oo (42w) U;(m) dt + Ilvlliz@m]

Proof. As A is boundedly invertible, we easily have that

IR L)

Moreover, multiplying (13) by v and integrating from 0 to T yields

T .
/ ” L'~’(I‘0) = _/0 (gz(fi%vt),fi%u>L2(Fo)dt—[(vt,v)Lz(Fo)]:

T
+ [ [l = 07 A, 0) (25)

T
/0 ||Ut”i2(r0)dt < Hfi—%

L2(Tg)
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(here we are implicitly invoking (17) and (18) so as to justify computations); using (27)
and Cauchy-Schwarz on the right hand side of (28) will then give
2
dt)
L*(To)

T T 9
(1 2)/0 “A v /0 ( N*Az L2(F0)+ A Vg
2
dt + ||vllz2 (s

o[ (5]

L2(Tg)
+ [ b,
L2(Ty)

2

Z

dt < C,

L2(To)

+ {0 ()| 21
1 Z S S O PN €

where Ce is independent of time. The result follows upon coupling (27) and (29),
and replacing the interval (0,7") above with (¢,T — ¢). |

We must likewise estimate the wave component 2z of (1)—(2), for which we need
the following:

Lemma 1. Let W = [w,w;] € C([0,T); Hy) satisfy the following wave equation:

wy = Aw  on Qr

[w(t=0),wt(t:0)] = 1w € Hy (30)

w=0 onXir

with we|p, and (Ow/0v)|p, € L*(0,T; L*(Ty)). Then for every e >0, w satisfies the
estimate

[

1

2 2 aw
L2(9)+ Hwt”m(n)} dt < CT[/ZOT [(E) + w;dZor

) 2
}w[HAM(T— e)‘ .

+ [lwll},

HE*(Qr

2
+ (T = )2y + [AFw(e)] L2(@)

+ @l aey } (31)

where the constant Cr depends upon time T, but constant C' does not.
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Proof. By Lemma 2.2 of (Lasiecka and Tataru, 1993), there exists a sequence
{w™}e, € C([0,T]; H2(Q)) N CL([0,T); D(AY?)) which satisfies

( wt(?) = Aw(™

[w("),wgn)] = [w,w;] inC([0,T); Hy)
N*Aw(™ = N*Aw,  in L?(0,T; L3(T))

Aw™ R ng
\ al/ (91/

in L?(0,T; L*(T'))

and it will thus suffice to prove the inequality (31) for a smooth solution w €
C([0,T]; H*(Q)) n C*([0,T]; D(AY?)). With the given vector field h(z) satisfying
(H2)(i)~(ii), we have upon multiplying the wave equation in (30) by k- Vw the stan-
dard identity (Triggiani, 1989, Appendix A):

1
HVw-VwdQr = i9fﬂh-:7u)c12;p+~~/ w?h-vdEr
Qr =r OV 2 /sy

1

_1! 2. _1/ 2 _1vwl?)d;
2[;@'%1 h-vdSr -3 QT{wt |Vl }dwthT

T
~ [ V) o) (33)
As [w,w] € D(AY?) x D(AY/?), we then note that

on Xi7: wy =0; B_w = |Vuwl|; h-Vw:h-z/@-
ov ov

and thus

1 1
a—wh-de21T+—/ wfh.ydz:ﬂ——/ |Vw|’h-vdS g
Z?1'1“61/ 2 Zir 2 Zir
1 2
= -/ |Vw|"h-vdEir < 0 (34)
2 Sar

after using the condition (H2)(i). Inserting (34) into (33) will therefore yield

1
HVw - -VwdQr < / -a—w—h~\7wd20T+ ~/ wtzh-deDT
QT EOT al/ 2 EOT
1 1
_ _/ |Vw|2h.yd20T——/ {w§—|vw:2}divthT
2 Zor 2 Qr
T
- [(wt;h : Vw)m(a)]o (35)
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Hence, the implementation of condition (H2)(ii) and Cauchy-Schwarz on the esti-
mate (35) will yield

2
p/ |Vw|’dQr < € / 0w 4 w2 |dSor
Qr Zor ov

+ / Vwl? dSor + BT, + 1T O,

1

_ §L {w;z — inIz} divhdQr (36)

Now, to handle the last term on the right hand side of (36), we multiply the wave
eqn. (30) by wdivh and integrate by parts to obtain

/ {w,? 3 |Vw|2}divthT = [(wt,wdivh)Lz(Q)]T
Qr ’
+/ wV(divh) - VwdQr
JQr
__/ é}lu—w div h dXor (37)
Sor OV

after using Green’s Theorem and the identity V(wdivh) - Vw = wV(div k) - Vw +
|Vw|?div h. We thus have upon majorizing the right hand side of (37) with the use
of trace Theory and Poincaré’s inequality,

2
< o{ [ waor+ [ () azor 17,

+ 1T 0)I3,

‘/QT{wf - |Vw|2} div hdQr

+ E/QT Vwl? dQr (38)

where € > 0 is arbitrarily small, and where the noncrucial dependence of C; upon
¢ has not been noted. Thus for € small enough, adding the inequalities (36) and (38)
together yields

(p—%)/@ Vul® dQr scl[/z [(g—f)gwi

+1 B D)y, + 1T O, + / w? dQT] (39)
Qr

dSor +/ |Vw|*dSor
Sor
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Moreover, (38) and (39) together give:

=9 ar sl [ [(5) o

D)l + 1D Ol + [ deQT} (40

Qr

dSor + / |Vaw|*dSor
Zor

(where the constants Cy and C; above are not necessarily the same throughout).
Replacing the interval (0,T) by (¢,T — €) in the estimates (39) and (40), using the
fact that on T, |Vw|* = (dw/0v)? + (Ow/d7)?, and a subsequent application of
Lemma A will give the desired estimate (31). The dependence on time of the constant
Cr results then from the use of the microlocal estimate Lemma A. |

Upon the combination of Proposition 1 and Lemma, 1 (applied now to the solution
component Z of (1)-(2)), we then have the preliminary estimate

T—¢ T n
E(Z,7,0)dt < CT[/ <||N*Azt||iz(ro) + “fffvtl
0

2

L2(Ty)

2

+ llgx (]\7*1‘1275)||iz(r0))dt+ /OT ng (A%Ut)‘

L2(T)
+ ”Z“j'{%"LS(QT) + ”UHEZ(ZOT)j!

+C[E(?,T’,T—e)+E(?,?,e)] (41)

where Cr depends upon T, but C' does not. Applying the dissipativity property
inherent in the relation (19), viz. ¥ T > tq >0

T
E(?,7,t) = E(?,?,T)-}-/ [(gl (N*Azt),N*Azt>
to

+ (92 (Agvt> , ﬁvt> ]dt (42)
12()

L2(To)

we can then couple (41) and (42) to obtain
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Proposition 2. For time T large enough and € > 0 sufficiently small, the following
estimate holds for the solution [Z, V] of (1)-(2):

Cr +2C T 2 3 P
T . — * 2

E(7z,v,T) < T=3(C+e) -/0 (”N AZt||L2(r0) + HA Ut‘ L2 (To)

2 T 7 2

* < 2
+ |lgr (N*Az,) ||L2(Fo)>dt+_/0 92 (A Ut) L2(To)
2 2
2l e gy nvum(m} (43)

Via a“nonlinear” compactness/uniqueness argument we now proceed to eliminate
2 2
the lower order terms ||”HL2(2OT) and |[z|| g1se+e (@)

Lemma 2. With T sufficiently large, the inequality (48) implies that there exists
a nonnegative constant C(E(Z,7,0)) such that the solution [Z, 7] to (1)-(2)
obeys the following inequality:

T
2 2 - = 2
||U”C([0,T];L2(Fg)) + IlZ”H%-‘-E(QT) < C(E( Z, v ’0)){/0 [Hzt IFQ L2(Ty)
A% 2 * 2
P
n 2
+ |lg2 (szt)HLz(Fo)]dt (44)

where the constant C(E(Z,7,0)) remains bounded for bounded wvalues of
E(Z,7,0). }
Proof. If the lemma is false, there then exists a sequence of initial data

{ 2™ ,v{™ )%, and a corresponding solution sequence {ﬁ ,1—1(75 }o2, which satisfies
for all n,

( Zgl) = Az(™ on Qx(0,7)
A (n)
o = Uy — g1 (Zt ) on PO X (0, T) (45)
2z =0 on Ty x(0,T)
| 2 =0)= z@ € HY(Q) x LX(Q)

oiW = — Ay(n) — A%y, (fi%'ut(n)) — 2™ on Ty x(0,T)

(46)
u<_n3(t =0) = 115,_"3 €D (A%) x L*(To)
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with
2 2
A
lim C([0,T};L?(Ty)) H (Qr)
n—oo 2 2 2
/ z™ +Hfi%v£") +Hgl (N*Azt("))” +|g2 (J';lfut(")){ dt
0 TollL2(rg) L2(To) L2(To) L2(To)
= (47)

while the sequence of initial energy {E(ﬁ ; m, 0)}92, is uniformly bounded in n.

By the energy relation (19), the sequence {E(2(™,v(" ¢)}2 is also bounded uni-
formly for 0 <t < T', and consequently there exists a subsequence, still denoted by

{ 20M,v(MYe2 and [Z, 7] = [z, 2,v,v] such that

z(—"g — % in L*®(0,T; H;) weak star (48)
v(_”s — @ in L*®(0,T; Hy) weak star (49)

We also have that z(™ — z weakly in H 1(Qr), and consequently by a classic com-
pactness theorem (Lions and Magenes, 1972, p.99, Theorem 16.1) and Sobolev Trace
Theory,

zZ™M 5z in H%“(QT) strongly (50)

Moreover, we deduce from (49) and a compactness result of Simon’s (1987, Corol-
lary 4) that

v(™ = v in C([0,T]; L*(To)) strongly (51)

We now consider two possibilities for the limit [Z, ¥]:

Case I. [Z, 7] # 0. Then with this assumption, the limit (47) implies that the se-
quences {N*Az{™}, {A"/2{™1, (g, (N*A2{™)} and {g2(A"20{™)} each converge
to 0 in L*(Zor). Upon passage to the limit in (45)—(46), we then have that [Z, 7]
satisfies the system

zie =Az on Qx(0,T)

)
55 =0 on Tox(0,T) (52)

z =0 on I'tyx(0,7)

0=Av on Tyx(0,T) (53)
As 4 is invertible, we immediately have that

v=20 (54)
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Moreover, if we make the change of variable, w = z;, then w solves

wy = Aw on Qx(0,T)

Ow
5o =w=0 on Lox(0,7) (55)
w =0 on I'1 x(0,T)

Holmgren’s Uniqueness Theorem and (55) then implies that z; = 0 on Q7, and
consequently

2 =0 (56)

after using the ellipticity of A. So [Z’, 7] = 0, which contradicts our opening
assumption.

Case II. [Z, 7] = 0. In this case, denoting

“zm)

;“(QT)) % &7
My

C([0,T};L3(To))

then

HN(") =1 foreveryn (59)

s
+ Hz H3V(Qr)
and as [Z', @] = 0, we have from (50) and (51) that lim, o Cn = 0. Also, one has

a fortiori that [2(™,5(™)] satisfies

C([0,T):L2(T0))

(M = Az on Qx(0,T)
(n)
0z _my 9 (=)
=g -/ r T
! o Ug c. on Tgx(0,T) (60)
zn =0 on T'yx(0,T)

Tt = 0)= 2V € HL(Q) « LA(Q)

4 fi%gz A%,U(n)
6;?) = —.[ia(n) — —-—-——(C(—t——> - Ein) on [ x (07T) ( )
3 61

L W(t = 0) = %ﬁ eD (/i%) x LZ(FO)

with [E_f,ﬁ,'ﬁ(()_"g = (1/Ch)[ _—;,1:0—5] In addition, (58) and (47) imply that
N*AZ™ | A3 50 in L2(0,T; L*(Ty)) as n— oo (62)
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Moreover, using the dissipative relation (42) (applied to [W , W]), followed by
the estimate (43), we have for all ¢t € (0,71,

E(ﬁ,ﬁ,t)dt < Cr —/T Hzt(”)
0

o (7258 | o * o (474) e,

0, ] (63)

2

ol

L2(Ty) L2(To)

e *
¢ ([0,T1;L2(To) )

H2t(Qr)

(where the constant Cp here is different from that in (43)). Dividing both sides of this
inequality by C2 and subsequently considering (47), we then have that E%Z(” ,W, t)
is uniformly bounded for 0 < t < T. Thus there is a subsequence {[z(" ,W]} and

[-?, ?] such that

T 5 7 in L0, T Hy) weak star
ﬁ — v in L*(0,T;Hy) weak star
7™ 4 % in Hzt(Qr) strongly

™ = % in C([0,T);L*Io)) strongly
The last two convergences above and (59) yield that

+ 112117, =1 (64)

“ “ ([OT L2(P )) H2+s Q )

But as g, (N*42{™)/Cr, = 0 and go(A"*0{™)/C, = 0 in L2(0,T; L*(To)), by (47),
we can then pass to the limit in (60)—(61), after recalling the convergences in (62).
Subsequently invoking ellipticity and Holmgren’s Theorem, as was done in the final
part of Case I, we arriveat Z =0 and v =0, a conclusion which contradicts (64).

The proof of Lemma 2 is hence complete.
We thus have upon combining Proposition 2 and Lemma 2

Proposition 3. For T > 0 large enough, the solution [Z, 7] to (1)-(2) satisfies
E(?,9.7) < Cr(E(2,7,0)) /T IN* Aze|[2a ) + “A%vtng
) ) = ’ ) 0 L (FO) LZ(FO)

7 2
+llgy (VA2 aqryy + g2 (A70e)|

]dt (65)

L2(Ty)

where the constant Cr(E (7,7 ,0)) remains bounded for bounded wvalues of

E(Z,7,0).
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2.1. Conclusion of Theorem 2

Let
Yo = {(t,x) € Xor 3 |ug| > 1 a.e.}
Eﬁ = EOT\ZQ

Then using hypothesis (H1)(iii), we obtain

/;(, (g% (A%vt)+(}i%vt)2> d¥, < (my' + Ma) /Eﬁgz (/i%vt)}i%vt d¥,(66)

Moreover, from (21)

[ (ot (A%0) + (4%) ) ama < |

Then by Jensen’s inequality,

/):,3 fa (gz (fi%vt) fi%vt> d¥s
< meas (Xor) f2 (m—eagl(mé g2 (}i%vt) A%vt dEﬁ)

= meas (Xor) fg (/2 g2 (}i%vt) A%Ut dEg) (68)

fa (Qz (fi%vt) A%Ut) d¥g (67)

B

where fa (s) = fa(s/meas(Eor)). Thus,
[ (e (AFu) + (4%)") azor

< (mz_l + MZ) / g2 (J‘ig’l}t) fi%vt d¥or

Zor

[SK]

+ meas (Zor) fg (/; g2 (A%'Ut) A

oT

UVt dEOT> (69)
In the very same way as was done above, we have

Yo

S (ml_l + M]) / g1 (N*Azt) N*Azt dEgT

Lo

+ meas (ZOT) f"vl (/ 9 (N*Azt) N*Az, dEOT) (70)
Lo
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where fi (s) = f1(s/meas(Xo7)). Splicing together (65) and (69)-(70), and further
recalling the definition (22), we have

E(Z,7,T)

< Cr (E (7, 7, 0)) {M/ [91 (N*Azt) N*Az + g2 (/i%’l)t) A%Uf,:’ dXor
Bor

+meas(20T)f( /E |91 (V" 42e) N* Az + g2 (AF0,) AP 0] dEDTﬂ (71)

where M = mfl + M, + m;l + M. Setting

K= ! c M
- Cr (E (7, T}, O)) meas (EOT) ’ meas (EOT)

we then obtain

plE(Z,7,T)] < /2 [gl (N*Az) N* Az + g2 (A%Ut) A%’Ut] d¥er

- E(?)?70) _E(77T}7T) (72)

where the function p is as defined in (23). To finish the proof of Theorem 2, we invoke
the following result from (Lasiecka and Tataru, 1993):

Lemma B. Let p be a positive, increasing function such that p(0) = 0. Since p is
increasing, we can define an increasing function q, q(z) = z— (I +p) "' (z). Consider
a sequence s, of positive numbers which satisfies

Smi1 + P (8mt1) < Sm

Then sy, < S(m), where S(t) is a solution to the differential equation

S50 +a(51) =0, S0 = s

Moreover, if p(z) >0 for z >0, then lim,_,o S(t) = 0.
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With this result in mind, we replace T (resp. 0) in (72) with (n 4+ 1)T (resp.
nT') to obtain

E(Z, 7, (n+1)T) + (E(?,w,(wm)) <E(?,7,nT) (73)
for n=0,1,.... Applying Lemma B with s,, = E(Z', ¥, mT) thus results in
E(Z,7,nT)<8(n), n=0,1,... (74)

Finally, using the dissipativity of E(%’,7’,t) inherent in the relation (42), we have
fort=nT+7, 0<7<T,

B(?,7,8) <E(Z,7,nT)<Sn) = S t”)

IA

S(—f—1> fort>T  (75)

where we have used the fact that S(-) is dissipative.

The proof of Theorem 2 is now complete.

3. Appendix—Proof of Theorem 1

Proof of Theorem 1(i). For the proof of well-posedness for the system (1)—(2), w
invoke here nonlinear semigroup theory (see (Barbu, 1976) for a general treatise). To
wit, for [2", @] = [21, 22,v1,v2] € Hi1 x Hp, we will define the operator A: D (A) C
H, ><H0 — H, xHy as

22
1 [ z } _| —An-ANg (N*Az) + AN, 76)
U V2

—~N*Azy — Avy — fi%gg (A%w)

with D(A) = {[Z, ?] € [D(AY2)]2 « [D(A*)]? 5 21 + Ngi (N* Az;) — Nvy € D(A)
and Ay, + A(ﬂ_l)ﬂgg(l"ﬂvz) € D(film)}, and proceed to show that —A is
maximal monotone.
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For the monotonicity: If [Z, @] and [?, ?] € D(A), then

CEIEHETED.

SIRNE

z9 — Zz
—Az — ANgy (N*Az) + ANvy — ( — A% — ANg; (N*A%) + AN172)
Vg — ’l72

—N*Azy — Av — f{%gz (Agvz) - (— N*4%, — Ay, — A%gg(ﬁ%'ﬁz)

)

21 —.;:1
22—52
’01—61
vg—’ﬁz

Hy x Hg

= (A%(zz — %), A¥ —zl)) + <AN(v2 - ), (22 —zz)>

L2(Q) [D(A)] x D(a})

_ (A%(zl - 21),A%(z2 — 32)) L2

= (ANG(N" Az) ~ ANGUN )22 = Ta) |

+ A%(vz—iz),fi%(vl—'zh)) L2(rg) ((N Azy — N*AEZ)’(02_62))L2(I‘)

A%gz (A2v2) f{zgz (szz) ,U2—52>

[D(Ai) xD(Af)

= (gl(N Az;) — gi(N" A%), N Az —N*Azz)m(F )
[¢]

~ (g2(A%v2) — g2 (A25,), 420, — At

L%(Tg) —

after using the hypotheses (H1)-(H2) (note in particular that (H1)(iii) implies that
91(N*Az), g2(A7%05) € L2(To) for 2 € D(AY?) and vy € D(A™?)). Thus —A
is monotone.

To show that —A is maxunal we will verify the equivalent statement R(I — A)

= Hy x Hy: For arbitrary [¢, 1/)] € Hy x Ho, if there exists [2’, 7] € D(A) such
that

} (77)

<ol
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then
2 —22=¢
2o + Az1 + ANg1 (N*Azy) — ANvy = ¢
v — v = Y1
n n
vy + N*Azy + AU1 + A292 (1&27)2) = 1)

<
29 + Azy + ANgl(N*AZQ) — ANwvy = ¢pg — Ady
vy + N*Azy + sz + A%QQ (A%'UQ) =1y — [{’lﬁl
<~
23 ¢2 — Adr
F+G = 78
(F+ )[Uz] %—A%} 8

where F, G: D(AY/2) x D(AY?) = [D(4Y/2))' « [D(A"*)) are defined by

| 1+4 -AN z ANgi(N*Az)
F:[N*A I+fi} andG[U] {A%gg(ﬁgzﬁ} (79)

I

In regard to the sum of these operators, we have the following:

Proposition 4. R(F+G) = [D (A%)y x [D (fi%)]’

Proof. A fortiori, F € L(D(AY?) x D(A1/2),[D(AY2)]' x [D(A)]) is coercive, so
if we can establish that G is maximal monotone as a mapping of D(A4!/?) x D(}il/ 2)
into [D(AY/?)] x [D(fil/ %)), the asserted result will promptly follow upon application
of Corollary 1.3 of (Barbu, 1976, p.48). To this end, we first consider the component
ANgi(N*Az) of G: As g1 is monotone increasing, then g;(-) = 0®(-) as a map-
ping from L?(Tp) into itself, where @ is some proper, convex, lower semicontinuous

functional'on L2(Tg), and 8% denotes the subgradient of & (Brezis, 1972, p.37). In
particular then,

91 (N*A(")) = 08 (N*A("))

as a mapping from D(AY/?) into L2(Tq). Since N*A: D(AY?) — HY/2(Ty) is sur-
jective, by (9) and Sobolev Trace theory, we then can invoke Lemma 2.1 of (Lasiecka,
1989) to obtain

B(BN*A()) = ANgy (N*A())

This above equality directly yields that ANg;(N*A(-)) is maximal monotone as
a mapping of D(A'Y/?) into [D(AY/?)]'. By an almost identical line of reasoning,

A"/zgz(fin/zﬁ)) is maximal monotone as a mapping of D(AI/Q) into [D([il/2)]',
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thereby giving that the entire structure G is maximal monotone. The proof of
Proposition 4 is concluded. ]

Proposition 1 thus provides the existence of [23,v2] € D(A/2) x D(AY/ 2) which
solves the operator equation (78), and setting
21 = 22+ ¢1
U1 = U2 + Y

then a fortiori [2, 7] = [21,2,v1,v2] € D(A), and using the equivalence between
the equations (77) and (78), we deduce that R(J —A) = H; x Hy. Consequently, —A
generates a nonlinear semigroup of contractions {7(¢)}:>0 on D(A) = H; x Hy, and

z
o3

so for initial data [Z3,73] € Hy x Ho, [2(t), ¥ (2)] = T(t)[ ] will be the (weak)

solution to (1)—(2), thereby proving Theorem 1(i).

We now endeavor to show the regularity posted in Theorem 1(ii), which is to be
used in the computations performed in the proof of the stability result of Theorem 2;
we start first with a preliminary result.

Proposition 5. Suppose, in addition to the hypotheses (H1), that g1 and g, are
coercive; viz. for all s1, sy € R, there exist positive constants a;, ©=1,2, such that
(9i(s1) — 9i(52)) (51 — 82) > als; — s5|%. Then the following regularity properties hold
true for the respective velocities of the solution [z,v] to (1)-(2):

2 ]Fo € L?(0, 00; L*(Ty)) ' (80)

v € L2 (o,oo;D(ﬁ)) (81)

Consequently, because of (H1)(iii), we have also that 91(N*Az) and gg(fin/zvt) €
L*(0, 00; L*(Ty)).

Proof. If [z8, 98] € D(A), then by the semigroup property the corresponding éolution
[Z’, 7] satisfies

d[?

a # J S LOO(O,OO,HI X Ho) (82)

with [2(¢), P (t)] € D(A) for ¢t > 0. So as N*A € £ (D(A%),LZ(PO)), we deduce
that

Ztll‘o € L™ (O,oo;Lz(Fo)) (83)
(82) further implies that
AE’Ut € LOO(O,OO,L2(F0)) (84)
Because of (H1)(iii), (83) and (84), we then have in turn
91(N*Az) e L? (0, 00; LZ(FO)) and g2 (fi%vt) € L™ (0, 00; L2(Fo)) (85)
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Thus mindful of (83)—(85), we can multiply the equation (12) by z, (13) by o,
integrate in time and space, subsequently integrate by parts and invoke the coercivity
assumption on the g; to obtain
2
}dt
L2(Ty)

<E(Z,7,0) (86)

T
E (—Z—), ?,T) + / {al “N*AztIﬁ:Z(ro) + Qs A%Ut
0

where E(Z,7,t) is as defined in (3). Since D(A) = Hi x Ho, the inequality above
can be extended to all [23, 73] € Hy x Hp so as to provide the regularity (80) and (81).

Moreover, the assumption (H1)(iii), (80) and (81) will give g1(N*Az), gz(An/th) €
L?(0, 005 L*(To))- n

Proof of Theorem 1(ii). Following a theme played in (Lasiecka and Tataru, 1993), we
will approximate the solution [Z*, @] to %—(2), corresponding to fixed initial data
(n

[z8, 93] € Hi x Ho, by the solution [z—(’;3 ,v{™] to the following parametrized system:

n n 1 Tk n n
A = -4z — ANg, (N*Azt( ’) ~ —ANN Az™+ ANW™  on (0,00)xQ (87)
Ugtn) = —A’U(n) — Aggg (fi%vgn)) - %A’?Ut(n) — NA*Z,gn) on (0,00) X FO (88)

[ (¢ =0), 7 (t=0)] = [, %] (89)

As the functions gin) (s) E&%S) +s/n, i = 1,2, satisfy the assumptions (H1), there

is indeed a solution [z(™,v(™] € C([0,00); Hy x Hp) to (87), and as each gi") is
coercive, Proposition 5 gives the additional regularity

2|, € L*(0,00;L*(To)) (90)
o™ € 12(0,00; D(4?)) (91)
We also have, after the use of (90), (91) and the hypotheses (H1)(iii), that
g1 (N* 42 € L?(0,00; L*(To)) (92)
g (A3u{M) € 17(0,00;L*(T0)) (93)

We work now to obtain a bound on E(m,m,t), for 0 < t < T and fixed
T > 0, which is uniform with respect to n. First of all, the inclusions (90), (91)

and (93) will allow for the equality in (88) to be taken in L?(0,T; [D(/il/z)]’); SO
taking the duality pairing of both sides of (88) with respect to vt(") and subsequently
integrating from 0 to ¢, 0 <t < T, followed by an integration by parts (this procedure
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being entirely justified by the regularity posted in (90) and (91)) will then give the
relation

t 2 (n 1.2 2
=2 [ (o0 (A7)4 LAt 4% >) I,
0 L2(

To)

dr
L2(Ty)

-t

| el
nf

:2/ (N*Azt”,vt(n) (94)
0

The same sort of energy method cannot be directly applied to the wave com-

)Lz(ra)

ponent of E(z(™ y(» ,t), since z(™ need not be smooth enough to justify an in-
tegration by parts. However, since 2" }r € L*(0,00; L*(Ty)) and g;(N*Az™) ¢

L?(0,00; L%(Ty)) for all n, Proposition 2.1 of (Lasiecka and Tataru, 1993, p. 512))
does in fact allow the desued energy relation for all ¢ > 0

t . 1 .
I, =2 7| (o0 (v°57) & Eveasf v a0

— () Arx 4, (0)
(Ut yN*Az, )L2(r0):’dT

+ “A2 PARIC )

L2(Tg)

2

2™(t) (95)

L2(9) } L2(Q)
Adding (94) and (95), we obtain for all n and t, 0<t<T,

E(ﬁmo) - E(ﬁv(_"ft)

t
+ / (gl (N*Az;”) +1N*Az§”>,N*Az§")) dr
0 n L2(Ig)

¢ Z n 1 n n
+/ (92 (421115 )) + —A%vt( ),A%UE )> dr (96)
0 n

L2(To)
The energy relation above immediately gives that for all n and t, 0<t<T,

B (0,00, 6) < 1212, + I, (97)

Moreover, the same relation (96) and (H1)(iii) yield that for all n

z,(n)

|30+ 4 A%y

<C (1l e, - 17311 ,) (98)

L2(3o7) “ L2(Zo7)
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Thus, {[2—5 —5 1}, is uniformly bounded in L*(0,7;HixHo) and
{[N*AZ™, A% 1% 1n L?(Zor); consequently there exists a subsequence,

still denoted as {% v(™]}%2,, and [ﬁ ﬁ] € L*™(0,T; Hy x Hy) such that
[z<">,z§”>] — [3,3,] weakly in L%(0,T; Hy) (99)
oW 7 weakly in L*° (O,T;D(A%)) (100)
o™ - %, weaklyin L (O,T;D(A%)) (101)

Moreover, by Simon’s compactness result (Simon, 1987) 2™ — Z in
L®(0,T; H'~¢(Q)) strongly V € > 0, and this convergence coupled with Sobolev
Trace Theory gives us that

20|, = ZIr, strongly in L%(0,T;L*(T0))

zt(n) lro — Z|r, weakly in L*(0,T; L*(To)) (102)

In addition, gi(N*Az{™) and go(4A"2v(™) are both uniformly bounded in
L?(0,T; L?(T)), usmg the hypotheses (H1)(iii) and (98), and so there are subse-

quences {g1(N*Az™)}32,, {g2(A"0{)}22, and wi, wy € L2(0,T; L3(Ty)), say,
which satisfy

o (N*Azt(")) — w; weakly in L2(0,T; L*(To)) (103)
g2 (A%Ut(")> — w, weakly in L? (O,T;Lz(I‘o)) (104)

Letting | z(—5 _; and ;:(_5 1_1(_5] be elements of the solutlon sequence, and using
the energy relation (96), this time applied to the solution [ zZ,0 ] [zT’J—;(_"S _5—-
1_)(_"5] to the system

2w = —AZ— AN (91 (N *Azt(m)) -0 (N*Azg")))

1 1 (n _
— ANN*A (~z§’”) — =4 ’) + AND, (105)
m n

~ ~ z z (m % n
Ve = —Av - A* (gg(/izvt( ))~g2(fi ’Ui )))
m) 1 n S
— A" (lut( - ﬁvg )) — NA*Z, (106)

m

[?(t =0), T (t= 0)] = [0,0]
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we obtain

“A% (z(m)(t) - z(“>(t))

2

)~ "0

L2 (Q) L2(Q)

o o i <t>>1

o0 - o)

L2 (Fu L2 1—‘O

< N Az™) — gy (N*Azt(“)) N*AR™ z§”’)) dr
L2(Ty)

( (Atoi) _gz(ﬁvt(")),ﬁvgm)_fi%ugm) dr
L2(F0)

s(i+ )[HNA("L +] %o (mI
m L2(%or) L2(Zor)
2 n 2
+ ”N*Azt")‘ +“1izv,§“) } (107)
L2(Zo7) L2(Zg7)

The estimate above thus implies that actually [ﬁ} , v(_”;] - [—2?, 7??] strongly in
C([0,T]; Hy x Hp), and of particular pertinence here,

i [ o loast?) st [ (0. a0 L

T 12
= /(; (UJl,N*AEt)Lz(FO) + (C«Jg, A2at) (108)

L2(To)

where w; (resp. ws) is the weak limit posted in (103) (resp. 104). With the limits
(99)-(104) and (108), and the fact that each g; is monotonic increasing, we can then
invoke Lemma 1.3 of (Barbu, 1976, p.42) to infer that

w = gl(N*AZt)
;'L~
Wy = gg(:&zvt)

With these convergences, along with those posted in (99)-(104), one can then
pass to the limit in (87)—(88) so as to obtain the deduction that the weak limit
[?, —??] = [Z, P), where again [Z", 7] is the solution to (1)~(2). In particular then,
we have by (102) and (101) the additional regularity

2t |p, € L*(0,T; L2(T0)), v € L*(0,T; D(A?))

for arbitrary T > 0. The proof of Theorem 1(ii) is concluded.

Proof of Theorem 1(iii). The details here are identical to the derivation of the
parametrized energy relations (94)—(96), and so will not be repeated.

The proof of Theorem 1 is now complete.
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