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THE LQ CONTROLLER SYNTHESIS PROBLEM:
AN OPERATOR CASE!

PiotR GRABOWSKI*

The aim of this paper is to provide a new, direct approach to the classical LQ
problem with an infinite time horizon. In our approach, the LQ problem is for-
mulated as a parametric optimization problem of a special type, and then anal-
ysed by the methods presented in our earlier papers (Grabowski, 1990; 1993).
The results simplify the well-known theory presented in (Curtain and Pritchard,
1978, Sec.4.4; Zabezyk, 1976).

1. Stabilizability and Detectability

In a Hilbert space H with the scalar product (-,-) we consider the following feedback
system:
%(t) = Az(t) — BGz(t), t>0
z(0) = zo (1)
y(t) = Ca(t)
where A: (D(A) C H) — H is the infinitesimal generator of a Cp-semigroup
{S(t)}¢t>0 on H; B € L(U,H), C € L(H,Y) where U, Y are Hilbert spaces

with scalar products (-,)u, (-,-)y, respectively; zo € H is a fixed element of H,
G € L(H,U) is an operator parameter describing the linear feedback u = —Gz.

Consider also the set

L= {G €L, U): Itz + l6ll20000) < Voo €H}  (2)

Definition 1. The semigroup {S(t)}+>0 is called ezponentially stable (EXS), if there
exist M > 1, a > 0 such that

ISl < Me™® VE>0

Definition 2. The pair (4, B) is called stabilizable if the set
Q= {G € L(H,U): the semigroup generated by A— BG is EXS}(3)

is not empty.
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Lemma 1. Let (A, B) be stabilizable. Then
(i) Q is an open set, Q CT.
(ii) The mapping 2 G — H(G) € S is well-defined, where S C L(H) denotes

the positive cone of all self-adjoint nonnegative operators and H(G) is a unique
solution to the Lyapunov operator equation

<(A - BG)Il,H(E2> + <I1,H(A - BG)iL"z)
= —<CCE1,CI2)Y - (GI]_,G[EQ)U Vzi,20 € D(A) (4)

Moreover,

(o0, H(G)zo) = [ [ICa(o + G20 o (5)
(i1i) For every zo € H, the mapping
23 G |19l 2(0,000) + 14T 2(0,0050) = (@0, H(G)wo) € [0,00)

18 continuous.

Proof. (i) Clearly, @ C T. If H € L(H) is such that ||H]|| is sufficiently small, then
by the fundamental perturbation result (see (Pazy, 1983, Th.1.1, p.76)) the type of
the semigroup generated by A — BG — BH is negative provided that the same holds
for the semigroup generated by A — BG. This establishes (i).

(ii) This follows from (Grabowski, 1990, Th.3, p.322, Th.4, p.323).
(iii) We recall the result from (Pazy, 1983, Cor.1.3, p.78)

Sara(t) = Sct)]| < M) ¥t20, o) = e TMIBIIHIDE _ gt ¢ >0

for some M > 1, where {Se+u(t)}i>0, {Sa(t)}i>0 are the semigroups generated by
A — BG — BH and A — BG, respectively, and w is the type of {Sz(t)}¢+>0. But,
for G € Q and a sufficiently small ||H||, the function ¢ belongs to L2(0, 00), and
its L2(0,00) norm tends to 0 as ||H|| tends to 0. Hence the mapping Q2 3 G —
CSg()zo € L*(0,00;Y) is continuous. Only minor modifications are required to
prove that the same holds for the mapping Q 3 G — G'Sg(-)zo € L?(0, co; U). [ |

Definition 3. The pair (4,C) is called detectable if there exists @ € L(Y,H) such
that the semigroup generated by A + QC is EXS.
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Lemma 2. Let (A, B) be stabilizable. Assume additionally that the pair (4,C) is
detectable. Then

(i) Q=T

(ii) The mapping

”y”%ﬂ(o vy + ||U||iz m, GEN
J: L(HU) > G 100;Y) (0,00:U) e,
"o {+m, cga [0

18 continuous.

Proof. (i) It is sufficient to prove that ! D I'. We take G € I' and represent the first
two lines of (1) in the form

©(t) = (A+ QC)x(t) — [QCz(t) + BGx(t)]
z(0) = zo

with @ € L(Y,H) chosen in such a manner that the semigroup {7'(t)};>0 generated
by A+ QC is EXS. The existence of @ is ensured by the detectability of (4, Q).
Indeed, employing the variation-of-constants formula, we get

eI < IT (#)zol| + max { IIQH,HBH}/0 IT(t = DI [ICz(D)lly + 1Gz(7)lly ]dr

By the definition of T', Cz(-) € L*(0,00;Y), Gz(-) € L*(0,00;U). Hence, from the
basic properties of convolution, it follows that ||z(-)|| € L?(0,00) for all 2o € H. The
last property is equivalent to the exponential stability of the semigroup generated by
A — BG (Pazy, 1983, Th.4.1, p.116) and thus G € 9.

* (ii) By (i) we have J(G) = oo on L(H,U)\ Q (we may assume that L(H,U)\ Q # @
as otherwise the result to be proved follows from Lemma 1(iii)) and, to show the
continuity of J, it suffices to prove that J(G) tends to oo as G tends to O from the
inside. Take any R > 0 and let {Gj}ren be asequence in Q with Gy — G € 69
as k — oco. We claim that, for almost all £ € N, we have J(Gy) > R. Observe that
the function

2 2
[0,00) 3t +— Hyoo||L2(o,t;Y) + ||U00”L2(0,t;U)

= / [1CZe0 (M) + 1 Goozoo (DI | dr

where 2o, Yoo, Uso denote respectively the state, output, and control functions due
to G, is nondecreasing and tends to oo as ¢ — co. Hence there exists T > 0 such
that

T
| [1Cam(@ + Moz 01 it = 27
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The mapping L(H,U) 3 G |]y]|ie(0}T;Y) + Hu|li2(0’T;U) € [0,00) is continuous.
Indeed, from (Pazy, 1983, Cor.1.3, p.78), we know that
[Scrn(t) —Sc®)| < M)  Vt>0

where {Sg+u(t)}i>0, {Sc(t)}i>0 are the semigroups generated by A — BG — BH
and A — BG respectively, and w is the type of {Sg(t)}t>0. But the function ¢
belongs to L?(0,T), and its L?(0,7T") norm tends to 0 as ||H]|| tends to 0. Hence the
mappings

L(H,U) 3 G +— CSe(-)zo € L?(0,T;Y)
L(H,U) 3 G — GSe(-)zo € L*(0,T; V)
are both continuous.

By the continuity of the mapping L(H,U) 3 G +—» ||y||iz(0’T;Y) + HuIIiz(U’T;U)
just proved, for any € € (0, R], we get

2 2 2 2
Ilyoolle(o,T;Y) + ||UooHL2(o,T;U) - ”kaLz(o,T;Y) - “UkHIﬁ(o,T;U) <e
where y; and uj denote respectively the output and control functions due to G,
for almost all k¥ € N. However, this implies that
2 2 2 2
J(Gr) = lyrlltz(0,005v) T 1UrllL2(0,00,0y 2 WWklIL2 0,75v) + lluzll20,r0) 2 R
for almost all £ € N, and the proof is complete. | |

2. The LQ Controller Synthesis Problem

Now we formulate the parametric optimization problem which consists in finding G €
Q such that

<$0, H(G).’L‘0> = %{nélé <.’130,H(K)[C0> Vo € H (6)

Theorem 1. If (A, B) is stabilizable and (A,C) is detectable, then the problem (6)
has a unique solution.

Before starting the proof, let us remark that this is a well-known fundamental result
concerning the LQ problem (see (Zabczyk, 1976) and (Curtain and Pritchard, 1978,
Sec.4.4)), reformulated above as a parametric optimization problem. However, a new
derivation of this result will be given. The main novelty, besides reformulation, is the
simple explicit proof of convergence of the Newton-Kleinman sequence of stabilizing
controllers.

Proof. Using (4), it is easy to show that, if G € Q, then for each F € L(H,U)
such that G + F € , the operator A = H(G + F) — H(G) is the unique bounded
self-adjoint operator satisfying the operator equation

<(A — BG — BF)xl,Aa:g)—l—(xl, A(A - BG — BF)IL’Q) = (.’1)1, [H(G)B - G*]F.’IQ)
+ ([H(G)B — G*Fz1,22) — (Fz1, Fxa)u Vzy1,29 € D(A) (7)
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Fig. 1. An auxiliary diagram for the proof.

Now we show that the following implication holds:
GeQ= B'H(G@) e (8)

Suppose for a moment that, contrary to our claim, B*H(G) ¢ Q. Since ) is an open
set, there is Asn € (0,1] such that (see Fig. 1)

Grn=(1-XNG+ AB*H(G)eQ for Ae [0, Asq) and Gy € 00

Consequently, putting F = Gy —G = A[B*H(G)—G], X € [0, \sq) in (7) we come to
the conculsion that A = H(G») — H(G) is a unique bounded, self-adjoint operator
satisfying the operator equation

((A = BG\)z1,Az) + (21, A(A — BG),)
= (2A - X)([H(G)B — G*] [B*H(G) — Glzy, 22)

for all z1,z2 € D(A) and all X € [0,Xs0). But 2X — A2 > 0 for X € [0, \sq), and
again by the results of (Grabowski, 1990, Th.3, p.322; Th.4, p.323), (—A) > 0 (in
the sense of quadratic forms). Hence the function

[0,A00) 3 X +— (20, H(G))z0) = ny|li2(o,m;y) + ||“/\||i2(o,oo;U)

is bounded from above by (2o, H(G)zo), where y,(t) = Cz(t) and uy(t) = Gz (1),
with z, denoting the solution of (1) with G replaced by G'. But, from Lemma, 2(1),
it follows that this function takes arbitrarily large values in a sufficiently small neigh-
bourhood of Asa. Hence our claim B*H(G) ¢ Q leads to a contradiction, and
thus (8) holds. By (8), the sequence {G}}ren given by

Gr+1 =AB*H(G1¢) ' ()
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where G is an arbitrary element of (2, is well-defined and contained in §}. Taking
G =Gy, F =Gy — Gy =B*H(Gy) — G in (7), one obtains

([A-BB*H(Gy)]z1,Az:) + (21, A[A — BB*H(Gy)] 22)
= <.’L‘1 [H(Gk)B - GZ] [B*H(Gk) - Gk] ,iL‘g) Vxy,29 € D(A), VkeN

Applying once more the results from (Grabowski, 1990, Th.3, p.322; Th.4, p.323) we
get (—A) > 0. Thus the sequence of the terms

2 2
(2o, H(Gr)wo) = [[Unll2(0.00iv) + klIT2(0,0050)

is nonincreasing and bounded from below. Now, by standard arguments (Weidmann,
1980, Th.4.28, p.79) there exists Ho, € L(H), with Hy = HZ > 0, such that
H(Gp)z — Heoox as k — oo, for each z € H. Since B* € L(H,U), we have

Gi12 = B"H(Gp)z — B*Hyoz = Go Vz € H (10)
By virtue of Lemma 2(ii),
<$0,H(Gk)$0> = ||yk||iZ(o,m;Y) + Huk”iZ(o,oo;U) — HyOOHiZ(O,oo;Y)
+ ”Uoo“iﬁ(o,oo;U) = (20, HooTo) < 00
Hence G € Q2. Now we can apply Lemma 1(iiil) to get

2 2
(zo, Hooo) = ||yo<>HL2(o,oo;Y) + ”uOOHLz(O,oo;U)

= /OOO [llcﬂi(t)”zf + ||Goo$(t)“%] dt = <z0>H(Goo)iU0> Vze € H

This means that H,, satisfies (4) with G = G, i.e.
((A = BGoo)m1, Hooa) + (21, Hoo (A — BGoo)Z2)
= —(Cx1,Cz2)y — (GooZ1,Goo2)U Vzy,z9 € D(A)  (11)
Substituting G = G in (7), for any F € L(H,U) such that G + F € Q, we get
((A— BGo — BF)z1,Az5) + (21, A(A — BGoo — BF)z2)
= —(Fzy1, Fz2)y Vz1,22 € D(A)

Recalling again the results from (Grabowski, 1990, Th.3, p.323; Th.4, p.322) we come
to the inequality H(Goo +F) > H(Gw), and thus G is a solution of (6). Moreover,
from (11) and (Grabowski, 1990, Th.5, p.324) it follows that H is a Hilbert-Schmidt
operator (HS operator) provided that G and C are finite-rank operators. |

Remark 1. The infinite-dimensional version of the Kleinman algorithm was used
for the first time in (Curtain and Rodman, 1990) to prove that (11) has a maximal
bounded self-adjoint positive solution (being the limit of the Kleinman sequence),
provided that (A, B) is only stabilizable.
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