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OBSERVER DESIGN FOR DISTRIBUTED-PARAMETER
DISSIPATIVE BILINEAR SYSTEMS

H. BOUNIT*, H. HAMMOURI *

This paper deals with the problem of observer synthesis for a class of infinite-
dimensional dissipative bilinear systems working for a class of inputs. First, a
simple observer (the estimation error converges strongly asymptotically to zero)
for strongly persistent input signals is presented. Next, sufficient conditions are
given which guarantee the existence of an exponential observer for skew-adjoint
bilinear systems based on the time-varying differential Riccati (or Lyapunov)
equations working for strongly regularly persistent inputs. These results are
illustrated by means of partial-differential systems.

1. Introduction

Many authors have studied the observer synthesis problem for bilinear control systems.
In the finite-dimensional case, the first results are due to Funahashi (1979) and Hara
and Furuta (1976) who have studied the cases when the system has no “bad inputs”
(inputs which make the system unobservable) or when the system has a bad input
and this leaves the system asymptotically stable.

Over the last decade, Bornard et al. (1988) and Celle et al. (1989) have shown that
an observer can be constructed for general finite-dimensional bilinear systems provided
that the inputs are “persistent” or “regular.” In (Celle et al., 1989), it is suggested that
a finite-dimensional complete nonlinear system with a finite-dimensional Lie Algebra
can be embedded into an infinite-dimensional one which is bilinear and skew-adjoint.
The authors also construct a rather simple infinite-dimensional observer system to
estimate the states of the original nonlinear system. Furthermore, the bad inputs
give rise to singularities in the observer design. In (Bornard and Gauthier, 1982), the
class of bilinear control systems which are observable for any input is characterized.

For infinite-dimensional bilinear systems which are generated by a dissipative
drift, an exponential Kalman-like observer which works for some bounded inputs
(Bounit and Hammouri, 1996) was proposed. By extending the regularly persistent
notion of inputs to the infinite-dimensional case, Gauthier et al. (1995) established,
for general infinite-dimensional skew-adjoint bilinear systems, a simple observer such
that the estimation error decays weakly to zero. The authors also showed that the
finite-dimensional structure assumption is not necessary for the construction of this
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observer. In other words, the observer exhibited in Celle et al. (1989) still works
for skew-adjoint systems whose dynamics is not necessarily related to some finite-
dimensional Lie group. In this paper, we show how to construct a simple strong
Luenberger-like (resp. Kalman-like) observer for dissipative (resp. skew-adjoint) bi-
linear systems. Nonhomogenous bilinear systems are not considered here since the
extension of the given results to this class of systems is straightforward. Our paper
essentially deals with strongly persistent (resp. regularly strongly persistent) inputs
which are introduced here.

An outline of the paper is as follows: In Section 2, we introduce some definitions
and notations. In Section 3, we give a simple observer for dissipative bilinear systems
which works for any positive strongly persistent inputs. Then, we establish the strong
convergence of the estimation error for any positive strongly persistent input. In
Section 4, we consider regularly strongly persistent (not necessarily positive) inputs
and give an exponential Kalman-like observer for skew-adjoint bilinear systems which
are based on some differential Riccati equations. In Section 5, the above theoretical
results are illustrated with two examples whose models are expressed by means of
partial-differential equations.

2. Definitions and Notations

In this paper, we study the observation problem for bilinear systems in an infinite-
dimensional state space. Let us consider the following bilinear system:

Ax(t) + u(t)Bz(t) )
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where t > 0. The element zo € H is called the initial state, z(t) is said to be the
state at time ¢, H denotes a real Hilbert space with the inner product (-, and
the norm || - ||, u(t) is an R-valued control, y(t) € Y stands for the known output
function of (1) and Y is a real Hilbert space of observation. Throughout this paper,
the operator A is an infinitesimal generator of a linear Cp-semigroup of contractions
on H denoted by €4 (in particular, ||et*z| < ||z|l,z € D(A)), B is a bounded
linear dissipative operator from H into itself (i.e. B € L(H,H) = L(H)) and C
is a bounded linear operator from H into Y (ie. C € L(H,Y). TH(H) ={T ¢
L(H)) T*=T and (Tz,z) >0, Vz € H} and L#*(H) = {T € ZH(H)/3a >0
st. (Tz,z) > o||z||?, Yz € H}. If E,F € $¥(H) and E—~F € X% (H), then we shall
write E > F. An admissible operator on [0,7] is a function t — G(t), t € [0,T],
with values in £(H) and the following properties: G(t) is bounded on [0,T] and
t — G(t)z is strongly measurable on [0,T] for all z € H. We will denote by
L (R",R) = L*®°(R") the space of measurable R-valued functions u on R* such
that ||ulleo = Supser+ [u(t)] < +oo and write L°([to,t1],R) = L®[to,t1] for the
restriction of L®(Rt) to the interval [to,t1]. LP(R') (1 < p < 4o0) signifies the
set of strongly measurable p-integrable R-valued functions on Rt and LP[to,t1] is
the restriction of LP(R") to the interval [to,1].
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Now, let u € L®(R*) and t, > 0. Then, for any T > 0, the unique mild
solution on [to, T to system (1) resulting from an initial condition zo € H at ¢ = ¢,
is given by the integral equation:

¢
z(t) = e(t—to)Agy +/ ety (s)Ba(s) ds = u(t, to)zo

to

where ¢,(t,s), 0 < s <t < T is the unique mild evolution operator associated
with Ay (t) = (A+u(t)B) (see e.g. Curtain and Pritchard, 1978) which satisfies the
following conditions:

1. (ﬁu(t,t) =1I; forall te [to,T],
2. dult,s)gu(s,r) = pu(t,r) for T>t>5>r >0,

3. ¢u(:,s) and @y(t,-) are strongly continuous on [ty, T].

Remark 1. From the dissipativity of A and B, it is easy to verify that for every
positive input u the associated operators ¢,(t,s) are contractive for all ¢ > s (ie.
ll¢u(t, s)zl| < ||z, Vo € H).

Now, consider the so-called observability Grammian associated with system (1):

t1
W(u7t07tl) = ¢Z(5:tO)C*C¢u(SatO) ds
to
where ¢7(s,to) denotes the adjoint operator of the mild evolution operator ¢, (t,to)
such that for all z,y € H we have

(W (u,to,t1)z,y) = / 1 <C¢u(s,t0)x,0¢u(s,to)y> ds

to

Definition 1. We call u € L*®°(R") a universal (U) input on [to,T], T > to if and
only if Vo € H; W(u,ty,T)x = 0 implies that z = 0.

This definition means that the map from H into L2([to, T],Y) defined by z —»
Coéu(-,to)x is one to one.

Definition 2. A function u € L®(R%) is a strongly universal (SU) input on
[to,T], T >ty for system (1) if and only if

n>0; Vze H, (W(u,to,T)z,z) > 7|z

Remark 2. Clearly, Definitions 1 and 2 are equivalent for the finite-dimensional
bilinear systems of the form (1). However, for the infinite-dimensional case, strong
universal inputs are universal and the converse is not always true since W(u,0,T)
can be a compact operator and therefore it cannot be bounded from below. In the
particular case where the input w is constant on some [0,7], T > 0 the universality
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(resp. strong universality) of u on [0,7] is equivalent to the condition that the
pair (C,A + uB) is initially (resp. L*-continuously initially) observable on [0,T]
(Curtain and Pritchard, 1978; Russel and Weiss, 1994). For example, when et4 or
C is compact (in particular, rank(C) < co) (Gauthier et al., 1995), any universal
input cannot be a strong one. Hence a necessary (but not sufficient) condition which
gives rise to the existence of a strong universal input is the noncompactness of €' and
eth,

On the other hand, it is well-known that a bounded set of L°°[0,7"] is precompact
with respect to the weak* topology. In other words, given a bounded sequence up,
we can extract a subsequence u,, with the property that there exists u* € L*[0,T]
such that for each f e L'[0,T]

/OT (un(s) - u(s))f(s) ds 5752 0

i.e. for each f € L*([0,T],H) (Gauthier et al., 1995):

k—+o00 0

H

/OT (un(s) - u(s))f(s) ds

In the sequel, we shall use the following definition which is the modified one from
(Celle et al., 1989).

Definition 3. Given an input u € L°(R"), we set upg(t) = u(t + 6). We say that
u is a strongly persistent (SP) input for (1) iff there exists an increasing sequence
(01) nen, with 31_13 8, = 400, and T > 0 such that

n o0

1. the restriction of up,) to [0,T] converges to u* in the weak®™ topology,

2. u* € L®(R") is SU for (1) on {0,7].
If, in addition, the sequence (), is such that 6,41 — 6, is bounded, u is said to
be a strongly reqularly persistent (SRP) input.

This means, as in the finite-dimensional case, that uf,; tends to malke the system
observable in the same way as u*. Since 0,41 — 6, is bounded, it also means that
the size of the interval on which u makes the system unobservable does not increase.
In particular, every T-periodic input function u which is SU is SRP.

3. An Asymptotic Observer for Dissipative Bilinear Systems
Let us consider the dynamical system

{ 3(t) = AZ(t) + u(t)Bi(t) — C* (C’:E(t) - y(t))

2
y(t) = Ci(t) ®

where A and B are as in Section 2. In this section, we will show that the system (2)
is an observer for (1).
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The Cauchy problem associated with (2) admits a unique weak solution which is
defined for all ¢t > 0 and u € L®(Rt):

{ &(t) = Az (t) + u(t)B&(t) — C*Ci(t) + C*y(t) )
§(t) = Ci(t)

As is the case above, one can show that there exists a unique mild evolution operator
Pu(t, s) associated with A +u(t)B — C*C. Since C*Cz(-) € L*([0,T]; H) for every
T' > 0, the unique solution to (3) is well-defined for any zy € H , t >0 (Curtain and
Pritchard, 1978).

Now, we state our main result:

Theorem 1. For an SP positive input u € L®(R"), the estimation error e(t) =
£(t) — x(t) converges strongly to zero in H.

To prove it, we need some preliminary technical results. Namely, consider
L*®[0,T] equipped with the weak* topology. The proof of the following Lemma
is standard and it can be obtained by using Gronwall’s Lemma (see e.g. Celle et al.,
1989; Xu et al., 1995):

Lemma 1. The map from L*[0,T] equipped with the weak* topology to L(H) (resp.
to ([0, T); L(H)):

uw— W(u,0,T) (resp. u—» ¢y(-,0))
is locally Lipschitz for any T > 0.

Remark 3. The strong universality of positive inputs is an open property for the

weak” topology.

Proof of Theorem 1. Let e(-) = £(-) — (-) be the estimation error. Then we have
£(t) = Ae(t) + u(t)Be(t) — C*Ce(t), &(0) = & (4)

As above, the unique solution to (4) is given by the following integral equation:
t

e(t) = etey + / e(L_s)A(u(s)B - c*o)a(s) ds (5)
0

The basic idea of the proof is to show that there exists a ball B(0,5) centred at the
origin and of radius ¢, which attracts any solution of eqn. (5) and then that B(0,0)
is reduced to the origin (o = 0).

Let Tg > 0 and define
FO) [0, To] — H : ¢t —» (u(t)B - C*C’)E(t)

Since u € L*[0,Tp], we can pick a sequence of continuous functions up € C1[0,Ty)
such that

n—-4-00

To
lun —ullz1p0,7) = -/0 [un(s) - u(s)]ds — 0
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Now, let us take (gon)nen C D(A) such that €on ;5555 €0 (since D(A) = H) and
consider

i
en(t) = eegn + / =94 ¢, (s)ds (6)
0

where
Ful) [0, To) — H : t — (un(t)B - C*C)en(t)
According to the regularity theorem (Pazy, 1983, Theorem (1.5), pp.187), ex(t) €

D(A) for any t > 0 and &,(t) € C'[0,To]. Moreover, e,(-) satisfies the differential
equation

én(t) = AEn(t) + fn(t), 517,(0) = €on (7)

Differentiating the Lyapunov function V'(¢) = (1/2)|le||* along the trajectories of (7)
gives

p—V(en(®)) = (Aen(t) + fn(t),en(?))
It follows that

i
V(ent) — V(en(0)) < /0 (Aen(s) + Fals),en(s)) ds (8)

Setting en(-) = en(-) —&(-) on [0,7o] and combining (5), (6), we obtain
i

en(t) = e*eqn + / =4 fa(s) ~ £(5)) ds

0

with egn = €on — €0- Consequently,

Jeal® < leonl + [ | (sn(5) = u(6)) 131 G ente

t
< lleonll + llun — ullz1om) + 1C*C /O len(s)]] ds

for all ¢ € [0,Ty). Since (|leonl], ||un — ullLrj0,10)) 753sst (0,0), Gronwall’s inequality
gives
en(t) —=—= 0, Vte [0,Tp], To >0 9)

n—r—+0o0

Passing to the limit in (8) and taking into account eqn. (9) and that A is dissi-
pative on D(A), we obtain that for every Tp > 0 and every ¢ € [0, To}

V(e(t) - V(eo) 5/0 (f(s),e(s))ds§~/0 |C<(s)]? ds
Thus

+oo 5
/O 1Ce(s)]* ds < +oo (10)
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and e(t) is attracted by the ball B(0,¢) with ¢ = Z(V f0+°° [|Ce( s)H ds)

It remains only to show that o = 0. To do this, it suffices to show that e(t,) s3== 0
for some sequence (t,)(nen) With t, ==z 0.

From the definition of the SP input of wu, there exists a sequence (0,)nen

(0n 555> + 00) such that

1. u(p,) converges to u* in the weak® topology on [0, T,
2. u* € L>°(R") is SU for (1), i.e

3n>0; Vz € H; (W(u*,0,T)z,z) > |z

To end the proof, it suffices to show that W (u*,0,T)e(6,) == 0. From (10),
we deduce '

0n+T 5
/9 [Ce(®)||” dt s==s> 0 (11)

n

Using a counterpart of (5), we obtain

e(t) = dult,0n) / du(s,t)C*Ce(s) ds
Thus
[Ce®* = [|Coult,bme(n)]” + | /9 Cu(r,6,)C*Ce(r) dT“z
-2 <C¢u(t,9n)e(0n), /9 Cou(T,0,)C*Ce(7) dT>
and

0.+T
/en Ice)||dt = (W (ug,),0,T)e(6r), €(62))
+ [T [ coutrtnoncetry i a

—2 /0 "+T<c¢u(t, 6,)e(6), /6 t Cou(r,62)CCe(r) dr) db

n

> (W (u,,0,T)e(0r),e(6n))

) /0 T<C¢u(t,9n)6(9n), /9 o, 02)C"Ce(r) ar)dt (12)
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Using the Cauchy-Holder inequality yields

/ (Cu(s,0n)e(6n / Cu(r,0,)C" Ce(r) dr ) ds
0

< [ et tmeonl | [ Couro0m0etr)ar]as

</ |Cbuls, 06 [lcourecr|ar) P ([loeo” ar)as
< [Mosusencolas( [ losoierar)”
x(/aT Joe(r)ar)” ga(T)(/ejn+THCa(t)“th)l/z (13)

with a(T) = T3/2||C||*>. Combining (12) and (13), we obtain

Ou+T ) 0u+T L \Y?
/6 |Ce@)||” dt + 2a(T) (/9 [|Ce(t)n‘dt> > (W (ug,.1,0, T)e(0n), €(6))

Finally, using (12), we deduce that
(W (ugg,1,0,T)e(6n),€(0n)) =ss® 0 (14)
In addition, we have
(W(u*,0,T)e(bn),e(Bn)) = (W(uip,),0,T)e(0n),6(6n))
+ <[W(u*,o,T) - W(u[on],o,T)]e(en),s(en)> (15)
Using Lemma 1 with (14), (15) and the fact that (£(6,))nen is bounded, we conclude
(W (u*,0,T)e(0n),e(0n)) 757 0 (16)

From (16), the fact that (1/2)||(t)||?> converges and u* is SU for (1), it follows that
nlle@)]|” < (W@, 0,T)e(n),e(6n)
which yields
|
Remark 4. Recall that in the finite-dimensional case the study of universal inputs

was initiated by Sontag (1979) for the discrete case. Moreover, for nonlinear analytic
systems, it is shown in (Sussmann, 1979) that CY-universal inputs do exist and
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are generic in C* equipped with C*-topology on [0,T], T' > 0. But for infinite-
dimensional dissipative bilinear control systems where the pair (C, A) is L2-exactly
observable on some [0, T] (Curtain and Pritchard, 1978) L*-strongly universal inputs
do exist. In fact,

T
3> 0 VaeH, / 1CeAg]? ds > |
0

which exactly implies that w = 0 is an SU input for (1) on [0,7]. Furthermore,
one can see that the set of L°-SU inputs equipped with the weak * topology on
[0,T], T > 0 is open (see Remark 3).

4. An Exponential Observer for Skew-Adjoint Bilinear Systems

In Section 3, we have synthesized a simple asymptotic observer with constant gain
for dissipative bilinear systems with positive inputs. However, in many engineering
problems, the use of exponential observers is preferred to that of asymptotic ones.
In this section, we are mainly concerned with this problem. In other words, we shall
omit the positivity condition on the inputs and wish to design an exponential observer
for a skew-adjoint bilinear system.

In what follows, we assume that

(A1) Both A and B are skew-adjoint on operators H.

Our aim here is to prove that the system

#(t) = A&(t) + u(t)Ba(t) — Ru(t)C* (Cﬁ:(t) - y(t)) (17)

R(t) = 0R.(t) + (A +u(t)B) Ru(t)
+ Ru(t) (4 +u(t)B) " Ru()C*CRu(t) (18)

where 6 > 0 is a parameter and R(0) is a coercive self-adjoint operator on H(R(0) €
Y#(H)), is an exponential observer for (1) which converges strongly as soon as u is
a strongly regularly persistent input.

Before proceeding with the proof of this last fact, we need some preliminary
results. In particular, we will show the existence and uniqueness of the solution of the
Riccati equation (18) and that R, (t) = R*(t) < al for all t > 0, for some constant
a > 0, whenever R(0) € X% (H).

For that purpose, consider the following time-varying Riccati operator equation:

{ R(t) =0Ry(t) + Au(t)Ru(t) + Ru(t)AZ (t) = Ry(t)C*CRu(?) (19)

R(O) - RO
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A solution to (19), if it exists, is taken in the following inner-product Riccati equation:

(Rult)ry) = 6(Ru(0)2,9) + (Ru(0)s, AL(O)
+ (A%(t)z, Ry(t)y) — (R*(t)C*CRy(t)z,y)  (20)
R(0) = Ry
for all z,y € D(A*) and for almost every ¢ > 0, where 6 > 0 is a parameter.

Under some hypotheses (see Lemma 2 below), we shall prove that any solution
to (20) starting at ¢+ = 0 from X#(H) is invertible and its inverse satisfies the
following Lyapunov operator equation:

Su(t) = —0S,(t) — AL(H)Su(t) — Su(t)Au(t) +C*C, S(0) =S, (21)

As for (19), solutions to (21) are taken in the following weak sense:

C(Su),y) = ~6(Su(6)2,9) ~ (Sult)z, Au(D)y)
— (Au(®)z, Su(t)y) + (C*Cz,y) (22)
5(0) = So '
for all z,y € D(A) and for almost every t > 0.

Remark 5. From Hypothesis (A}), it is easy to check that the operator ¢,(¢,s) is
isometric for any s,t € [0,7] and ¢;1(t,s) = ¢%(t,s) = du(s,t). In particular, we
have

Pupy (8,0) = du(t + s, 0)p;1(t,0) = ¢y (t +s,t) forevery t,s

where the input u is not necessarily positive.

Lemma 2. Under Hypothesis (Ay), for any u € L®(RY), Sy € #(H), the Lya-
punov equation (22) admits a unique solution S,(t) in L#(H) with S(0) = Sy.
Moreover, its inverse R,(t) is the unigue solution to (19) resulting from R(0) = S;*.

Proof. Ezistence. Let Sy € #(H) and

Sult) = e {¢;:(o,t>so¢u<o,t> +f e84t (5,0)0* Culs, B ds}
0

Since ¢, (s,t) is invertible and the integral term is a bounded self-adjoint positive
operator, it follows that S, (t) € £#(H) for every t > 0.
Now, let us show that S(t) satisfies (22). For =,y € D(A), we have
t

(Su(t)z,y)=e"(So6u(0,t)z, $u (0, t)y) +/(; e?(Cu(s,t)z, Chu(s, t)y) ds (23)

The assumption u € L®(R") yields that G(-) = u(-)B is an admissible operator on
[0,7]. From Theorem 2.34 of (Curtain and Pritchard, 1978) this means that the mild
evolution operator ¢,(s,t) is differentiable with respect to ¢ and we have

. Odu(s, 1)

Vz € D(A); — &7 —u(s, ) A, (D) ae. (24)
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Differentiating (23), term by term, and using (24), we obtain (22).

Uniqueness. Write A%(t) = Au(t) + 26I;. Let Si(t) and Sa(t) be two solutions
0 (22) and S, (t) = S1(t) — Sa(t). It is easy to see that S, () satisfies the equation

%(S}(t)w,w = —(Su(t)z, AL (t)y) — (A5 (t)z, Su(t)y), S(0)=0

a.e.in t and for every z,y € D(A).

Now, consider K (t,s) = Ig(t — §) S, (¢)II;(t — 5), where IIy(t) = eH4+39) is the
Co-group generated by Ay = A + $6I;. Then, for every z,y € D(A), (K(t,s)z,y)
is a.e. differentiable w.r.t. ¢ and satisfies the following differential equation:

%{K(t, 8)z,y) = (Su(t)p(t — s)Agz, Tp(t — 5)y)

+ <§u(t)ng (t — S).ﬂ?, It - s)A9y>
— (Su(O)Tg(t — s)z, AL (1)TTs(t — s)y)
~ (Su®)Tg(t — s)y, AL (t)Ty(t — s))

In particular, for = = y, it is easy to see that

%(K(t, §)z,z) = —2 (u(t)Su(t)Is(t — s)z, BIy(t — s)z)
Since K(0,s) =0,5 >0 and D(A) = H, it follows that
(K(t,s)z,3) = ~2 / <u(7)§u(7)ﬂg (1 — s)z, Bllg(T — s)z) dT (25)

0

for all z € H. Passing to the limit (s — t) in (25), we obtain
¢
(K(t,t)z,z) = (Su(t)z,2) = -—2/ (w(7)Su(T)y (1 — t)z, By (7 — t)z) dr
0

Since S, (t) € T (H), we have

[Su®)| = sup (Su(t)m,:c>'

flzll=1

INA

1Bl oo stp [ |50 [Tatr = o) ol o

< 1Bl ko | €280 ¢ (47 = -4)

Hence, by Gronwall’s inequality, it follows that [|S,(t)]] = 0 or S;(t) = Sa(t).
Consequently, (22) has a unique solution. Using the above expression for S, (t)
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and the fact that ¢,(s,t) is invertible yield that S,(t) is also invertible and
R, (t) = S~1(t) € S#(H) is the unique solution to (20) with R(0) = S-10). m

Lemma 3. Given an SRP input u for (1), there exist times iy, T >0 and a
constant n >0 such that

Vit > tu; Vz € H, <W(UM,0,T)$,$> > 77”93“2

Proof. From the definition of the SRP input wu, there exists an increasing sequence
(0n)nen with 6, 5===> 00 and sup,en(fnt1—0n) < co. Further, there exists T' > 0
such that the restriction wjg,,) = upg,) converges weakly™ to u* € L*[0,T] which
is SU on [0,T].

Now, set A = sup,en(@nt1 — On) < 00, T = 2max(A,T) and 6,4 =
inf{f,;0, > t}. Then a straightforward calculation shows that

/10,T]

Vt > 0; [Bntys Ongy + T C [t + T
Using the positivity of the observability Grammian, we get
gnm],O,T) (26)

Since ufg,] 7= u* weakly” and u* is SU on [0, T, it follows that

W (ug,0,T) > W (u

up, (1) m==ee® ¥ weakly” and 3Jno >0, W (u*,0,T) > nol (27)
Combining Lemma 1 and formulae (26), (27), we get
Ip > 0; I, > 0; Yz € H; Vi 2> ty; (W(u[t],O,T)z,m> > n|z||?

This completes the proof. ]

Remark 6. As in the finite-dimensional case, it is easy to verify that the converse of
Lemma 3 also remains true.

Lemma 4. Under Hypothesis (A1) for an SRP input u € L®(R"), So € Y#(H)
and 0 > 0, there exists Ap > 0 such that

Su(t) > Agly forall t>0

where S, (t) is the unique solution to (22) resulting from So at t = 0.

Proof. From Lemma 2, we know that for any So € $# (H), the unique solution to (22)
resulting from So at ¢t =0 is given by the expression

t
Su(t) = e747(0,1)Sobu (0, 1) + / =D (5,4)C* Cu(s, t) ds
0

Since u is SRP, there exist 7 > 0, t, >0 and 1 > 0 (see Lemma 3) such that

Vt > ty; W(upm,0,T) > nla (28)
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As the operator ftz 5=t o (5,1)C*Cpy(s,t) ds is positive, for all t € [0, 2, +T] we
have

Su(t) > e %% (0,8)So¢u(0,8) > e+ T) gz (0,8) S04 (0, )

Now, using the fact that ¢%(s,t)pu(s,t) = Iz and Sy > noly for some ny > 0, we
obtain

Su(t) > noe ! @FD L, Wt € [0, ¢, + T

For t > t, + T, we have

5u0) 2 [[063(5,00" g5,
0

t—T t
= / P px (5,8)C* Cy (s, 1) ds + / P57 % (5,6)C* Cy (s, 1) ds
0

t=T
_ t
> e Tae- T { [ ot - TIC Caulost - Tds) oute- 10
t—-T

Hence
N _ T .
Sult) ze—%:(t—m){/ B 1y(5:00C" Cuy_y (5,0) ds} dult—T.2) (29)
0

as du(s,t) = du(s,t — Ty (t —T,1).
Combining (28) and (29), we get

Su(t) > e Ty, V>t +T

oT —0ty

Finally, setting Ag = e~%* min(noe~"*,n), we obtain

Su(t) > Xelg, Vt>0
N

Claim 1. Let u, € L*[0,T] such that u, converges weakly* to w. Then we have

sup “S;ﬂl(s) -S
s€[0,T]

;1 (S) ||L‘,(H) n—-00 0

Proof. This claim can be obtained by a direct application of Lemma 1. In fact, from
Lemma 2 we know that the unique solution S, (t) to the Lyapunov equation (22) is
of the form

Su(t) =e {qs;(o, t)So¢y(0,1) + /t 59t (5,1)C* Cy (s, 1) ds}
0
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It follows that

Sua(t) = Sult) = e {45, (0,6)S06u, (0,1) = 61,(0,)S06.(0,)}

¢
+ [ 004, ()07 Couf5,8) = 64,107 Coule, ) s
0
Then a straightforward computation gives

[| Su (8) — S“(t)”[;(ﬂ) = sup |[(Su,(t)z — Su(t)z, )|

llzll=1
2(1Soll || bu.. (0,2) = 6 (0, 1)
+ “W(u7170:t) - W(“’:O;t

IA

)“L'(H)

Notice that we have used above the fact that &,(s,t) is unitary. This implies that

the map from L*°[0, 7] equipped with the weak* topology to #(H) equipped with

the usual topology of the operator v — S, is continuous. Now, using the fact that

the map from $#(H) into itself F — F~! is continuous yields the desired result.
|

Before stating our main theorem, let us show that for every Zo € H the sys-
tem (17) admits a unique solution. Indeed, from Lemmas 2 and 4, we know that for
each Ry € S#(H) the system (18) admits a unique solution R, (t) € ¥#(H) which is
uniformly bounded from above. By definition, for all u € L>®(R") the map associated
with an element zo € H defined from R into H by t — R, (t)z¢ is continuous
and therefore it becomes strongly measurable. Define G(t) = u(t)B — R.(t)C*C as
a perturbed operator. It is obvious that the operator G is admissible on [0,T] for
all T > 0. Moreover, we have for each o € H, R,(-)C*Cz(-) € L*([0,T); H) for all
T > 0, where z(t) is a unique weak solution to (1). It follows from Sections 2.4 and
2.5 of (Curtain and Pritchard, 1978) that, for all £, € H, the first equation of (3.28)
of (Curtain and Pritchard, 1978) has a unique weak solution £(t) resulting from Zo,
which is given by the following integral equation:

t
f@zwmmﬂm+é¢wﬁm@ww@m

where 1),,(t, s) is the mild evolution operator associated with A + G(t).
Now we state our main theorem:

Theorem 2. Under Hypothesis (A;), for an SRP input u € L®(R"), the system
(17), (18) is an exponential observer for (1). More precisely,

3u(6) >0 s.t. V&(0),z(0) € H; YR(0) € S#(H) :

[2(2) = 2(®)|]” < r(@)(R™1(0)2(0) — 2(0), £(0) — z(0))e™?
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Proof. In fact, by setting S, (t) = R~1(t), one can show that the observer (17), (18)
can be rewritten as

B(t) = A#(t) + u(t) Bi(t) — - (t)C* (Ca(t) — y(t))
Su(t) = =0Su(t) = AL()Su(t) = Su(t)Au(t) + C*C (30)
2(0) € H,5(0) = R1(0) € S#(H)
Indeed, we shall show that the system (30) is an exponential observer for ().
Setting £(t) = &(t) — x(¢) as the error estimation, we get
£(t) = Ae(t) +u(t)Be(t) — ST1(t)C*Ce(t), €(0)=¢ep € H (31)

In much the same way as above, for all gy € H the system (31) has a unique weak
solution which is given by

t
£(t) = etz + / IAG (s)e(s) ds
0

Now assume that £(0) € D(A) and u € C[0,Tp] for all Tp > 0. Again, according
to the regularity theorem (Pazy, 1983, Theorem 1.5, pp.187), en(t) € D(A) for any
t>0 and e,(-) € C0,Ty)].

Now, consider the Lyapunov function V(t,e) = (Su(t)e,e). Differentiating
V(-,e(-)) along the trajectories to (31) gives

V({t) = 2(Su()e(t), (1)) + (Su(e(®),e(t))
= 2(Su(t)e(2), (A+G(t)e(t))+(C*C’s(t),5(t))+<Au(t)s(t),.S'u(t)e(t))
— 0(Su(t)e(t),e(t)) — (Su(t)e(t), Au(t)e(?))

S0

V(t,e(t) < —8(Su(t)e(t),e(t)) — (C*Ce(t),e(t)) (32)
Note that (C*Ce(t),e(t)) > 0 which implies

V(t,e(t)) < ~8V (t,e(t)) ae for ¢>0
It follows that

V(t,e(t)) <V(0,6(0))e™ forall t>0
As u is SRP, there exists A\p > 0 (see Lemma 4) such that

Su(t) > AgIy forall ¢t>0

Hence
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Now, let g0 € H,u € L®(R*) and (e(t), Su(t)) be a solution to (31) associated
with (eo,u). As the reader may remark, using exactly the same denseness argument

as in the proof of Theorem 1 gives the required result. Indeed,
1. Su(t) > Agl, ¥Vt 20,

2. Su.(t) sss Su(t) (by Claim 1),

3. St +00,
sup{aup ST} < +oo
4, En(t) m‘) €(t),

5. (Su(t)e(t),e(®))

nhl—l{loo <Sun (t)gn(t) ] En(t)>

IN

lim (S(0)eon,€on)e™ "

n—+4o00

<S(0)eo,eo>e“0t

i

This is the desired conclusion. [ |

5. Examples

Example 1. The example given here is similar to the one considered in (Taylor et al.,
1984; Slemrod, 1989). The authors have studied the stabilizing control problem for a
vibrating beam. We complete these studies with the observation problem. Consider
a dynamic boundary control system of a vibrating beam (M) which is described by

;

\

Bp(z,t) _ 0%(s,t)

Tz €)0,L, t>0

o2 Ozt '
_0p(0,t) _
D?p(L,t)  8%p(L,t) Op(L,t)
3 7 — 3 33
ot? ot20x u(t) o 2 0 (33)
B p(L,t) _ O*p(L,1)
8z  Ot?
_ 0p(L,t)

Here (z,t) denotes the displacement of the beam (M) and u(¢) is an applied scalar
control which acts on the free boundary of (M). The term y(t) is the output function
(the velocity of the beam (M) on the free boundary).
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The system (33) has the following first-order differential version in H (Slemrod,
1989):

{ Z(t) = AZ(t) + u(t)BZ(t) (34)

y(t) = CZ(t) = (¢, Z(t)) ,

where H is the Hilbert space given by
H= {(zl,zg,za,z4) € H2(0,L) x L*(0,L) x Rx R; 2, = dz1/dz =0 at ¢ = o}
with the inner product

L d2z1 (il?) d221 (113)
dz2 dz2

<(21,22,23,Z4),(51,52,23,24)>=/
0

and

+ ZQ(.’E)ZQ (iL‘) dx + 2323 + 2424

14

dp(z,t)
ot
Z=1 8p(L,t) |» B=
ot
8?p(L,t)
Otox

o o oo
oo oo
o - o o
o o oo
o
I
o - o o

A being an unbounded linear operator in H such that

22
21 _ d4z1
dz?
z9 _
A 23 - d3 21 (L)
dz3
24
d2 z1 (L)
dz2

and
D(A) = {(zlyZQaZB;Zzl) € H*0,L) x H*(0,L) xRx R;

d d
zlzgzxi: , z2=£:()atz:0, 22:Z3,£:Z4 atm:L} (35)
It can be shown (Slemrod, 1989) that A is a skew-adjoint, infinitesimal generator of
a linear Cy-group of contractions et with a compact resolvent.

Claim 2. There exist T > 0, A\ > 0 such that for all negative tnputs u with
lulloo <A, >0, u is SU for the system (34) on [t,t + T).
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Proof. Tt suffices to show that u = 0 is strongly universal, i.e. (C,A) is L?-exactly
observable on some [0,7], 7' > 0 (Curtain and Pritchard, 1978) and this is equivalent
to showing that the linear control system

W) = AW (1) + C*o(t) (36)
is L?-exactly controllable on [0,7] in H.

To prove this result, we use the Hilbert Uniqueness Method (HUM) (Lions, 1986).
Let us consider the systems

$(t) = Ag(t), 0<t<T, &(T)=do
and

P(t) = Ap(t) + (e, d(t)), 0<t<T, %(0)=0
Consider the operator A defined by A¢g = (7). Then we have

T
(Adoy o) = [ (eyele D g0)" ds (37)
0
Now, we recall the following result (Bensoussan, 1989):

Theorem 3. If the application defined by
do — (Ado, ¢o)

is a norm on H, then the system (35) is L?-ezactly controllable on [0,T].

Now, let us verify that (36) defines a norm on H. It is well-known (Slemrod, 1989)
that the complete orthonormal system of eigenfunctions of A, ie. ¢n, n = 1,2,
associated with the eigenvalues ), such that A¢n, = An¢n (the multiplicity of A,
is 1) are given by

Wn
112
Z:U/nwn

¢n=

. . . 2 —
i2wn(L) , associated with Ap, =p,, n=1,2,...

. o dwy(x)
e
and
Wn,
~ip5Wn

bn = Cizwn(D) | associated with A_, = —p2, n=1,2,...
T

. 5 dwp(z)
Hin, dr

O<pyy <pe < <py— 0 for n=1,2,...
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where
wp(z) = ozn(sin(unx)—sh(,unm)) +ﬂn(cos(unz)—cos(,unm)), Ve [0,L] (38)

Furthermore, these functions verify

( dfwn(z) .
W+/\nwn(m)=0 if 0<e< L
wn(z):wzo at =20
dz
< d3wy, (z) (39)
n 2 — _
—T+)‘nw’l(w) =0 at z=1
d*wn (z) o dwy () _ _
e + A, e =0 at z=1

Relation (36) defines a norm on H iff (Curtain and Pritchard, 1978)
rn={¢¢n) #0, Vn=12,...

In fact, suppose that there exists an ng > 1 such that r,, = 0. This implies that
Wno (L) = 0. Now, using the boundary equations (38) yields

—Bno Sin(ting) — Sh(/-’fno) + g, ( €08 (ftng) + COS(/J‘TLQ)) =0

3 (40)

(ang — o) SIN(fing ) + 8h(png) + (B + an, l‘%o) coS(Lng)
+(/Bno — Qng /-‘ELD) Ch(l‘no) =0
A direct computation shows that the system (39) has a unique solution an, = f,, = 0.
Using (37), we deduce that wp,(z) vanishes on [0, L] which is in contradiction
to the fact that ¢, is an eigenfunction of A. This proves the L2-exact controllability
of (34) on [0,T).
Using Remark 3 and the fact that e*4 is a group of isometrics yield
dr > 0; Vi > 0; Vu <0, |lulloo <7, uwis SU on [t,t + T for (34)

From Remark 6 and Theorem (1), the Luenberger-like observer of (33) for these inputs
is of the form

4 ~
alla(f’—t) = ¢a(a, B), z €]0, L], t>0
O (z, t) &' (x, 1)

at = - 61‘4 ’ t 2 O
dgs(t) | 0Pgi(L,t) _ . . dp(L,t)

T T T T ugs(t) — (ést) - =), 20
déa(t) _ 0%¢1(L,1)

dt Ox?
sél(O,t):Q(plT(,:()’ﬁ:O, t>0
[ 9() = &5(2)
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Example 2. Consider the following bilinear system in H = L*(0,L) x L*(0, L):

p(z,t) _ p(x,t) . . 0p(z,t)

52 = o T vel0, Il 120
©(0,t) = p(L,t) =0, t>0 (41)
y(z,t) = ?W_g‘;ﬂ, z €]0, L], t>0

The system (40) can be represented as a first-order differential equation in H =
H(0,L) x L*(0, L):

Z(t) = AZ(t) + u(t)BZ(t)
(42)
y(t) = CZ(¢)
where
(@) 01N . & (0 0 -
Z = a(p(:E’) s A= A 0 s AZB?LE, B=i 0 I s C——(O,I)

ot
Here D(A) = H}(0,L) N H%(0, L).
The operator A is skew-adjoint (4* = —A) with D(A4) = D(A4) x D(A/?)
and it generates a Cp-group (etA)tzo of isometrics on H with the following inner
product:

5 L 87" (z) 92 (z) b2 7
<Z,Z>H-—/O a—x—bm—dij/O Z*(z)Z*°(z)dx VZ,Z€ H

From (Curtain and Pritchard, 1978), the pair (C,A) is L?-exactly observable on
[0,T] for all T > 0. So, as above, it is easy to see that

Jr > 0; Vt > 0; Vu; ||ulleo <7, uis SU on [t,t+ T] for (41)

Again, from Remark 6 and Theorem 2, the Kalman-like observer of (40) for these
inputs is as follows:

(2800 _ ooty - B0 (620~ alat)), w0, I 820

| 28D TAED o t) - R (8200~ ea(e) g
()51(01t):¢1(L7t):07 tZO

[ Sult) = —05u(t) — A%(1)Su(t) — Su(t)Au(t) + C*C

where

Sj@=<&m mm)
R3(t) RA()
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6. Conclusion

In this paper, the observer synthesis of bilinear systems has been discussed:

e The first observer is simple and its gain is constant. This observer is simply a
Luenberger-like one.

o The gain of the second observer depends on the systems inputs. This observer
converges for a class of strongly regularly persistent inputs. Note that if the input
is not a regularly persistent one, the convergence of the observer is not guaranteed,
even in a finite-dimensional case. One of the fundamental problems consists in the
following question:

Given an observable dissipative bilinear system (1) (this means that for
every initial state « # Z there exists an input u € L*°([0, T}, R) such that
y(z,u,t) is not identically equal to y(Z,u,t) on [0,T], where y(z,u,t) is
the output associated with the input « and the initial state z), does the
system (1) admit a persistent (resp. regularly persistent) input?

To answer this question, we must show the existence of a universal (strongly
universal) input. Using the stratification of subanalytic sets, the author showed in
{Sussmann, 1979) that every observable analytic system, on a finite-dimensional man-
ifold, admits a universal input and that the set of analytic and universal inputs is a
countable intersection of an open dense subset of C*(]0,T]) equipped with the Whit-
ney topology. The idea for the construction of universal inputs is based on the fact
that the stratification process is finite. In the infinite-dimensional case, this is not the
case. Hence the method used in (Sussmann, 1979) cannot be applied for (1).
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