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WELL-POSED LINEAR SYSTEMS—A SURVEY WITH

EMPHASIS ON CONSERVATIVE SYSTEMS

George WEISS∗, Olof J. STAFFANS∗∗

Marius TUCSNAK***

We survey the literature on well-posed linear systems, which has been an area of
rapid development in recent years. We examine the particular subclass of con-
servative systems and its connections to scattering theory. We study some trans-
formations of well-posed systems, namely duality and time-flow inversion, and
their effect on the transfer function and the generating operators. We describe
a simple way to generate conservative systems via a second-order differential
equation in a Hilbert space. We give results about the stability, controllability
and observability of such conservative systems and illustrate these with a system
modeling a controlled beam.
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1. Introduction

By a well-posed linear system we mean a linear time-invariant system Σ such that
on any finite time interval [0, τ ], the operator Στ from the initial state x(0) and the
input function u to the final state x(τ) and the output function y is bounded. The
input space U , the state space X and the output space Y are Hilbert spaces, and
the input and output functions are of class L2loc. For any u ∈ L2loc and any τ ≥ 0,
we denote by Pτu its truncation to the interval [0, τ ]. Then the well-posed system
Σ consists of the family of bounded operators Σ = (Στ )τ≥0 such that



x(τ)

Pτy


 = Στ



x(0)

Pτu


 . (1)
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The detailed definition and references will be given in Section 2. The well-posed linear
system Σ is called conservative if for every τ ≥ 0, Στ is a unitary operator from
X × L2([0, τ ];U) to X × L2([0, τ ];Y ). The fact that Σ is conservative means that
the following two statements hold:

(i) Στ is an isometry, i.e., the following balance equation is satisfied:

‖x(τ)‖2 +
∫ τ

0

‖y(t)‖2 dt = ‖x(0)‖2 +
∫ τ

0

‖u(t)‖2 dt,

(ii) Στ is onto, which means that for every x(τ) ∈ X and every Pτy ∈ L2([0, τ ];Y ),
we can find x(0) ∈ X and Pτu ∈ L2([0, τ ];U) such that (1) holds.

The modern control theory inspired version of the concept of a well-posed linear
system was introduced in the paper (Salamon, 1987) (significant parts of this theory
are found already in the paper (Helton, 1976)). Conservative systems have a much
older history. These systems appear in a scattering theory context in the book (Lax
and Philips, 1967) and the paper (Adamajan and Arov, 1970) (and in papers by the
same authors from the 60’s). They also play a central role in model theory for non-
selfadjoint operators, which originated with the work of Livšic and his associates in
the Soviet Union starting in the 50’s (see Brodskĭı, 1978), with the work of Sz.-Nagy
and Foias in the Eastern Europe in the 60’s (Sz.-Nagy and Foiaş, 1970), and with
the work of de Branges and Rovnyak in the United States in the 60’s (de Branges
and Rovnyak, 1966). For historical reasons, several competing sets of terminology and
notation appear in the literature, which makes it difficult to translate results from
one group of authors to another. In addition, the main part of the available literature
about conservative systems is written in discrete time (though it can be converted to
continuous time through the use of the Cayley transform).

This paper is a survey of available results about well-posed systems, with a special
emphasis on results that are relevant to conservative systems (even if the result itself
does not refer specifically to conservative systems). The authors are from the group
studying well-posed systems with a control theoretic motivation, and of course their
point of view is subjective. For many results we do not give proofs but, even so, we
can only mention a small subset of what is known in this area and some readers may
feel that our omissions are unfair. Important areas that we will (almost) not mention
include: the differential representation of non-regular systems (which is prominent
both in (Salamon, 1987) and in most of the present Russian literature), functional
models for contraction semigroups, admissibility of unbounded control and observa-
tion operators, exact and approximate controllability and observability, coprime and
spectral factorizations, quadratic optimal control, H∞ control. Our survey is some-
what unconventional in that it also contains results that have not been published yet.
Only a few short proofs are included.

Section 2 is an overview of well-posed systems. We recall the concepts of control
operator, observation operator and transfer function, and we consider the behavior of
the system on the whole real time axis.
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In Section 3 we recall the concepts of regular and weakly regular linear systems,
the Λ-extension of an observation operator, and we restate the main representation
theorems for the transfer function and for the output function.

In Section 4 we investigate the connection between well-posed systems and scat-
tering theory, particularly the semigroup of Lax and Phillips.

In Section 5 we discuss two transformations which lead from one well-posed
system to another: duality and time-flow-inversion (these two transformations coincide
in the case of a conservative system).

Section 6 is about conservative systems, particularly, about a surprizing simple
way to generate conservative systems from certain differential equations.

Section 7 is a beam equation example which illustrates several theoretical points
of the paper. After adding a damping term, it becomes a conservative system of the
type discussed in Section 6.

2. Well-Posed Linear Systems

In this section we review the concept of a well-posed linear system, its control operator
and observation operator, and some facts about transfer functions.

Notation 1. Let W be a Hilbert space. We regard L2loc((−∞,∞);W ) as a Fréchet
space, with the metric generated by the seminorms

‖un‖ =
(∫ n

−n

‖u(t)‖2 dt
)1/2

, n ∈ �
.

For any interval J , we regard L2loc(J ;W ) as a subspace of L
2
loc((−∞,∞);W ) (identi-

fying L2loc(J ;W ) with the set of functions in L
2
loc((−∞,∞);W ) which vanish outside

of J), and similarly we regard L2(J ;W ) as a subspace of L2((−∞,∞);W ). Let PJ
be the projection of L2loc((−∞,∞);W ) onto L2loc(J ;W ) (by truncation). We abbre-
viate Pτ = P[0,τ ] (where τ ≥ 0), P− = P(−∞,0] and P+ = P[0,∞). The operator Sτ
is the (unilateral) right shift by τ on L2loc([0,∞);W ), and S∗τ is the left shift by τ
on the same space. (If we restrict Sτ and S

∗
τ from L2loc to L

2, then they are adjoint
to each other.) For any u, v ∈ L2loc([0,∞);W ) and any τ ≥ 0, the τ -concatenation of
u and v, denoted by u �

τ
v, is the function defined by

u �
τ
v = Pτu+ Sτv.

Thus, (u �
τ
v)(t) = u(t) for t ∈ [0, τ), while (u �

τ
v)(t) = v(t− τ) for t ≥ τ .

Definition 1. Let U , X and Y be Hilbert spaces and write Ω = L2([0,∞);U),
Γ = L2([0,∞);Y ). A well-posed linear system on Ω, X and Γ is a quadruple Σ =
( � ,Φ,Ψ, � ), where

(i) � = ( � t)t≥0 is a strongly continuous semigroup of linear operators on X ,
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(ii) Φ = (Φt)t≥0 is a family of bounded linear operators from Ω to X such that

Φτ+t(u �
τ
v) = � tΦτu+Φtv, (2)

for every u, v ∈ Ω and all τ, t ≥ 0,

(iii) Ψ = (Ψt)t≥0 is a family of bounded linear operators from X to Γ such that

Ψτ+tx0 = Ψτx0 �
τ
Ψt � τx0, (3)

for every x0 ∈ X and all τ, t ≥ 0, and Ψ0 = 0,

(iv) � = ( � t )t≥0 is a family of bounded linear operators from Ω to Γ such that

� τ+t (u �
τ
v) = � τ u �

τ
(ΨtΦτu+ � tv), (4)

for every u, v ∈ Ω and all τ, t ≥ 0, and � 0 = 0.
We call U the input space, X the state space, and Y the output space of Σ. The
operators Φτ are called input maps, the operators Ψτ are called output maps, and
the operators � τ are called input-output maps.
The above definition follows (Weiss, 1989c; 1994b), but the first equivalent def-

initions were formulated by Salamon (1987; 1989). Other equivalent definitions ap-
peared in (Staffans, 1997; 1998a), and related definitions can be found in (Arov and
Nudelman, 1996; Helton, 1976; Ober and Montgomery-Smith, 1990; Ober and Wu,
1996; Yamamato, 1981).

The intuitive interpretation of the operator families introduced in this definition
is in terms of a state trajectory x and the output function y corresponding to an
initial state x(0) and an input function u: these are related by (1), where

Στ =

[
� τ Φτ
Ψτ � τ

]
∀ τ ≥ 0. (5)

It follows from (2) with t = 0 and v = 0 that Φ is causal, i.e. the state does not
depend on the future input: ΦτPτ = Φτ for all τ ≥ 0, in particular Φ0 = 0. It follows
from this and the definitions that for all τ, t ≥ 0,

Φτ+tPτ = � tΦτ , PτΨτ+t = Ψτ , Pτ � τ+tPτ = Pτ � τ+t = � τ ,
and hence Pτ � τ+tP[τ,τ+t] = 0. The last identity says � is causal (the past output
does not depend on the future input).

We now recall some less immediate consequences of Definition 1, following (Weiss,
1989a; 1994b). For the remainder of this section, we use the assumptions of Defini-
tion 1. We denote the generator of � by A. The space X1 is defined as D(A) with
the norm ‖z‖1 = ‖(βI−A)z‖, where β ∈ ρ(A), and X−1 is the completion of X with
respect to the norm ‖z‖−1 = ‖(βI −A)−1z‖. The choice of β is not important, since
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different choices lead to the equivalent norms on X1 and on X−1. The semigroup �
can be extended to X−1, and then its generator is an extension of A, defined on X .
We use the same notation for all these extensions as for the original operators.

It follows from assumptions (i) and (ii) in the definition that there exists a unique
B ∈ L(U ;X−1), called the control operator of Σ, such that for all t ≥ 0,

Φtu =

∫ t

0

� t−σBu(σ) dσ. (6)

The function Φtu depends continuously on t. The fact that Φtu ∈ X means that B
is an admissible control operator for � . Admissible control operators are a subspace
of L(U ;X−1); we refer to Weiss (1989b; 1999) for investigations of these operators.
Using the identity PτΨτ+t = Ψτ , we define the operator Ψ∞ : X →

L2loc([0,∞);Y ) by Ψ∞x0 = limt→∞Ψtx0. Then Ψ∞ satisfies PτΨ∞ = Ψτ for all
τ ≥ 0. Ψ∞ is called the extended output map of Σ. By letting t→∞ in (3), we get

Ψ∞x0 = Ψ∞x0 �
τ
Ψ∞ � τx0, (7)

for every x0 ∈ X and all τ ≥ 0. More generally, any continuous linear operator
Ψ∞ : X → L2loc([0,∞);Y ) which satisfies (7) for every x0 ∈ X and all τ ≥ 0
is called an extended output map for � . For every such Ψ∞ there exists a unique
C ∈ L(X1;Y ), called the observation operator of Ψ∞ (or of Σ), such that

(Ψ∞x0)(t) = C � tx0, (8)

for every x0 ∈ X1 and all t ≥ 0. This determines Ψ∞, since X1 is dense in X .
An operator C ∈ L(X1;Y ) is called an admissible observation operator for � if

the estimate
∫ τ

0

‖C � tx0‖2 dt ≤ k‖x0‖2

holds for some τ > 0 and for every x0 ∈ D(A). For further details about such
operators we refer to (Weiss, 1989a; 1999). It is clear that if C is the observation
operator of a well-posed linear system, then C is admissible.

Using the identity Pτ � τ+t = � τ , we define the operator � ∞ : L2loc([0,∞);U) →
L2loc([0,∞);Y ) by � ∞u = limt→∞ � tu. Then Pτ � ∞ = � τ for all τ ≥ 0. � ∞ is called
the extended input-output map of Σ. By letting t→∞ in (4), we can get

� ∞ (u �
τ
v) = � ∞u �

τ
(Ψ∞Φτu+ � ∞v), (9)

for every u, v ∈ Ω and all τ ≥ 0. Taking u = 0 in (9) we obtain

� ∞Sτ = Sτ � ∞ , (10)

for every τ ≥ 0. Any continuous operator � ∞ : L2loc([0,∞);U) → L2loc([0,∞);Y )
which satisfies (10) is called shift-invariant or time-invariant.
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Definition 2. For any x0 ∈ X and any u ∈ L2loc([0,∞);U), the state trajectory
x : [0,∞) → X and the output function y ∈ L2loc([0,∞);Y ) of Σ corresponding to
the initial state x0 and the input function u are defined by

x(t) = � tx0 +Φtu, t ≥ 0,

y = Ψ∞x0 + � ∞u.
(11)

From here we can recover (1) with Στ as in (5), by taking t = τ and applying
Pτ to the second equation.

Notation 2. For any Hilbert space W , any interval J and any ω ∈ � we put

L2ω(J ;W ) = eωL
2(J ;W ),

where (eωv)(t) = eωtv(t), with the norm ‖eωv‖L2
ω
= ‖v‖L2 . We denote by � ω the

half-plane of all s ∈ � with Re s > ω. The growth bound of the operator semigroup
� with generator A is denoted by ω � . Thus,

ω � = lim
t→∞

1

t
log ‖ � t‖ = inf

t>0

1

t
log ‖ � t‖

and (sI −A)−1 is uniformly bounded on � ω if and only if ω > ω � .
As shown in (Weiss, 1989a, Proposition 2.3) and (Weiss, 1994b, Proposition 4.1),

for every ω > ω � , Ψ∞ is bounded from X to L2ω([0,∞);Y ) and � ∞ is bounded
from L2ω([0,∞);U) to L2ω([0,∞);Y ). For each x0 ∈ X , the Laplace integral of Ψ∞x0
converges absolutely for Re s > ω � , and the Laplace transform is given by

�
(Ψ∞x0)(s) = C(sI −A)−1x0, Re s > ω � , (12)

see (Weiss, 1989, formula (3.6)). We can represent � ∞ via the transfer function G
of Σ, which is a bounded analytic L(U ;Y )-valued function on � ω for every ω > ω �
(possibly also for some ω ≤ ω � ). If x0 ∈ X and u ∈ L2ω([0,∞);U) with ω > ω � , then
the corresponding output function y = Ψ∞x0 + � ∞u of Σ is in L2ω([0,∞);Y ) and
its Laplace transform is given, according to (12) and Theorem 3.6 in (Weiss, 1994b),
by

ŷ(s) = C(sI −A)−1x0 +G(s)û(s), Re s > ω. (13)

Moreover, G satisfies

G(s)−G(β) = (β − s)C(βI −A)−1(sI −A)−1B

= C
[
(sI −A)−1 − (βI −A)−1

]
B,

(14)

for all s, β ∈ � ω � (equivalently, G′(s) = −C(sI − A)−2B). This shows that G is
determined by A, B and C up to an additive constant operator.

We denote by γ � the infimum of those ω ∈ � for which � ∞ is bounded from
L2ω([0,∞);U) to L2ω([0,∞);Y ). Equivalently, γ � is the infimum of all those ω ∈ �
for which G has a bounded analytic extension to � ω . This number γ � ∈ [−∞,∞)
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is called the growth bound of � ∞ . It follows from what we have already said that
γ � ≤ ω � . Moreover, if ω > γ � , u ∈ L2ω([0,∞);U) and y = � ∞u, then

ŷ(s) = G(s)û(s), Re s > ω. (15)

It follows that for such ω, the norm of � ∞ from L2ω to L2ω is the supremum of
‖G(s)‖ over all s ∈ � ω . By the maximum modulus theorem, denoting ‖ � ∞‖ω =
‖ � ∞‖L(L2

ω
),

‖ � ∞‖ω = sup
Re s=ω

‖G(s)‖. (16)

Until now we have considered the time to be positive. It is sometimes important
to think of a well-posed linear system Σ functioning on the time intervals (−∞, 0]
or (−∞,∞). To treat these cases, we introduce some further notation and we extend
Φt and � ∞ so that they depend also on the values of the input for negative times.

Notation 3. Let W be a Hilbert space. The operator Sτ (with τ ∈ � ) is the
(bilateral) right shift by τ on L2loc((−∞,∞);W ), so that S−τ denotes the (bilateral)
left shift by τ on the same space. Recall the projections P−, P+ and the spaces
L2ω(J ;W ) introduced at the beginning of this section. The space L

2
ω,loc((−∞,∞);W )

consists of all the functions u ∈ L2loc((−∞,∞);W ) for which P−u ∈ L2ω((−∞, 0];W ).
We regard L2ω,loc((−∞,∞);W ) as a Fréchet space, with the metric generated by the
seminorms

‖u‖n =
(∫ n

−∞

e−2ωt‖u(t)‖2 dt
)1/2

, n ∈ �
.

The unilateral right shift Sτ (with τ ≥ 0) was originally defined on L2loc([0,∞);W ),
but we extend it to L2loc((−∞,∞);W ) by Sτ = SτP+. Note that Sτ = P[τ,∞)Sτ .

Proposition 1.Assume that Σ = ( � ,Φ,Ψ, � ) is a well-posed linear system with input
space U , state space X, output space Y , transfer function G, and growth bounds ω �
and γ � . Note that Φt was originally defined on L2([0,∞);U), but Φt has an obvious
extension to L2loc((−∞,∞);U), still given by (6).
For all u ∈ L2ω,loc((−∞,∞);U) with ω > ω � and for all t ∈ � , the following

limit exists in X:

Φ̃tu = lim
τ→∞
Φτ+tSτu. (17)

We have

Φ̃tu =

∫ t

−∞

� t−σBu(σ) dσ (18)

and there exists a kω ≥ 0 (independent of t and u) such that

‖Φ̃tu‖ ≤ kωeωt‖P(−∞,t]u‖L2
ω
. (19)
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For all u ∈ L2ω,loc((−∞,∞);U) with ω > γ � , the following limit exists in the
Fréchet space L2ω,loc((−∞,∞);Y ):

Fu = lim
τ→∞
S−τ � ∞Sτu. (20)

The operator F defined in this way is a bilaterally shift-invarant and causal extension
of � ∞ , which means that

FP+ = � ∞ , FSt = StF , P(−∞,t]FP[t,∞) = 0 (21)

for all t ∈ � . For each ω > γ � , F maps L2ω((−∞,∞);U) into L2ω((−∞,∞);Y )
and we denote by ‖F‖ω the corresponding operator norm. Using also notation from
(16), we have

‖F‖ω = ‖ � ∞‖ω = sup
s∈ � ω
‖G(s)‖. (22)

For the proof of this proposition we refer to (Staffans and Weiss, 2001a).

We call the operators Φ̃t from (17) the extended input maps of Σ. Using (2) to
express Φτ+t in (17), we obtain that for all t ≥ 0,

Φ̃t = � tΦ̃0 +Φt. (23)

By replacing τ by T , t by τ + t and u by Sτu in (17), we find that for all
t, τ ∈ � , Φ̃τ+tSτ = Φ̃t. Multiplying this by S−τ to the right and using (23), we get
the following extension of (2): for all τ ∈ � and all t ≥ 0,

Φ̃τ+t = � tΦ̃τ +ΦtS−τ . (24)

By replacing τ in (9) by τ + T , multiplying by STu to the right, by S−T to
the left, and letting T →∞, we get the following extension of (9): for all τ ∈ � ,

F = P(−∞,τ ]F + SτΨ∞Φ̃τ + Sτ � ∞S−τ . (25)

Remark 1. In the formulation of Staffans (Staffans, 1997; 1998a), a well-posed linear
system is defined in terms of the semigroup � t (denoted by A(t)) and the extended
operators Φ̃0 (denoted by B), Ψ∞ (denoted by C), and F (denoted by D). The
original operator families of input maps Φτ , output maps Ψτ , and and input-output
maps � τ can be recovered from Φ̃0, Ψ∞, and F by means of

Φτ = Φ̃0S−τP+, Ψτ = PτΨ∞, � τ = PτFPτ .
Moreover, Staffans writes the algebraic conditions (2)–(4) as (in our notation)

� tΦ̃0 = Φ̃0S−tP−, t ≥ 0,

Ψ∞ � t = S∗tΨ∞, t ≥ 0,

P−FP+ = 0, P+FP− = Ψ∞Φ̃0, StF = FSt, t ∈ � .
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3. Regular Linear Systems

In this section we review the main facts about regular and weakly regular systems
without, however, the feedback theory of (Weiss, 1994a). The notation is as in Sec-
tion 2.

Definition 3. Let X and Y be Hilbert spaces, let � be a strongly continuous
semigroup on X and let C ∈ L(X1, Y ). The Λ-extension of C is the operator

CΛx0 = lim
λ→+∞

Cλ(λI −A)−1x0,

with its domain D(CΛ) consisting of those x0 ∈ X for which the limits exist.
It is easy to see that CΛ is indeed an extension of C. This extension has various

interesting properties, for which we refer to (Weiss, 1989a; 1994a). In the sequel, we
assume that Σ = ( � ,Φ,Ψ, � ) is a well-posed linear system, with input space U , state
space X , output space Y , semigroup generator A, control operator B, observation
operator C, transfer function G, and semigroup growth bound ω � . We denote by χ
the characteristic function of [0,∞) (so that χ(t) = 1 for all t ≥ 0).

Definition 4. For any v ∈ U , the function yv = � ∞ (χ · v) is the step response of Σ
corresponding to v. The system Σ is called regular if the following limit exists in Y ,
for every v ∈ U :

lim
τ→0

1

τ

∫ τ

0

yv(σ) dσ = Dv. (26)

The operator D ∈ L(U ;Y ) defined by (26) is called the feedthrough operator of Σ.
Equivalent characterizations of regularity will be given in Theorem 3. The fol-

lowing theorem gives the “local” representation of regular linear systems. The first
part of the theorem holds for any well-posed linear system.

Theorem 1.

(i) For any initial state x0 ∈ X and any input u ∈ L2loc([0,∞);U), the state
trajectory x defined in (11) is the unique strong solution of

ẋ(t) = Ax(t) +Bu(t), t ≥ 0,

x(0) = x0.
(27)

More precisely, x is continuous, and x is unique with the property

x(t) = x0 +

∫ t

0

[
Ax(σ) +Bu(σ)

]
dσ

for all t ≥ 0, the integral being computed in X−1.
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(ii) If Σ is regular, and if we denote the feedthrough operator of Σ by D, then the
output y of Σ defined in (11) is given by

y(t) = CΛx(t) +Du(t), (28)

for almost every t ≥ 0 (in particular, x(t) ∈ D(CΛ) for almost every t ≥ 0). If
t ≥ 0 is such that both u and y are continuous from the right at t, then (using
those right limits) (28) holds at t (in particular, x(t) ∈ D(CΛ)).

The proof is in (Weiss, 1989c; 1994b) (these papers use another extension of C,
denoted by CL, but CΛ is an extension of CL, so that Theorem 1 follows). Part (ii)
of Theorem 1 implies the following formula for � ∞ for regular systems:

( � ∞u)(t) = CΛ
∫ t

0

� t−σBu(σ) dσ +Du(t), (29)

valid for every u ∈ L2loc([0,∞);U) and almost every t ≥ 0 (in particular, the integral
above is in D(CΛ) for almost every t ≥ 0).
The operators A, B, C and D are called the generating operators of Σ, because

Σ is completely determined by them via (27) and (28).

Theorem 2. Assume that Σ is regular. Then G is given by

G(s) = CΛ(sI −A)−1B +D, Re s > ω �

(in particular, (sI −A)−1BU ⊂ D(CΛ)).
The proof of this theorem, as well as of the following one, is given in (Weiss,

1994b). We introduce a notation for angular domains in � : for any ψ ∈ (0, π),

W(ψ) =
{
reiφ
∣∣ r ∈ (0,∞), φ ∈ (−ψ, ψ)

}
.

Theorem 3. The following statements are equivalent:

(1) Σ is regular, i.e., for every v ∈ U the limit in (26) exists.

(2) For every s ∈ ρ(A) we have that (sI−A)−1BU ⊂ D(CΛ) and CΛ(sI−A)
−1

B
is an analytic L(U ;Y )-valued function of s on ρ(A), uniformly bounded on any
half-plane � ω with ω > ω � .

(3) There exists s ∈ ρ(A) such that (sI − A)−1BU ⊂ D(CΛ).

(4) Any state trajectory of Σ is almost always in D(CΛ).

(5) For every v ∈ U and every ψ ∈ (0, π/2), G(s)v has a limit as |s| → ∞ and
s ∈ W(ψ).

(6) For every v ∈ U , G(λ)v has a limit as λ→ +∞ in � .
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Moreover, if the limits mentioned in statements (1), (5) and (6) above exist, then they
are equal to Dv, where D is the feedthrough operator of Σ.

The weak Λ-extension of C, denoted by CΛw, is defined similarly as CΛ, but
with a weak limit, so that its domain is larger. Weak regularity is defined similarly
as regularity, but with a weak limit, see (Weiss and Weiss, 1997; Staffans and Weiss,
2001a). Everything we said about regularity and CΛ remains valid for the more
general concept of weak regularity and for CΛw. The main reason why we need the
concept of regularity (instead of using just weak regularity) is the feedback theory from
(Weiss, 1994a) and its applications. This theory has substantial parts that we cannot
extend in full generality to weakly regular systems (such as explicit formulas for the
generating operators of a closed-loop system, in terms of the generating operators of
the original system).

4. The Connection with Scattering Theory

Starting from an arbitrary well-posed linear system Σ, it is possible to define a strong-
ly continuous semigroup which resembles those encountered in the scattering theory
of Lax and Phillips (Lax and Philips, 1967; 1973), and which contains all the infor-
mation about Σ. We explore this connection in this section. We give proofs, because
they do not seem to be readily available in the published literature, in the context
that we need.

Like in the previous section, we assume that Σ = ( � ,Φ,Ψ, � ) is a well-posed
linear system with input space U , state space X , output space Y , transfer function
G, and the two growth bounds ω � and γ � . We continue to use the notation P−,
P+, St, S

∗
t , � ω , L2ω, St, Φ̃t and F introduced in Section 2.

Proposition 2. Let ω ∈ � , Y = L2ω((−∞, 0];Y ) and U = L2ω([0,∞);U). For all
t ≥ 0 we define on Y ×X × U the operator �

t by

�
t =




S−t 0 0

0 I 0

0 0 S∗t







I Ψt � t
0 � t Φt
0 0 I


 .

Then
�
= (

�
t)t≥0 is a strongly continuous semigroup. Take y0 ∈ Y , x0 ∈ X and

u0 ∈ U . We denote by x the state trajectory x(t) = � tx0 + Φtu0 and by y the
“bilateral” output function, equal to y0 for t ≤ 0, and equal to Ψ∞x0 + � ∞u0 for
t ≥ 0. Then for all t ≥ 0,




P(−∞,t]y

x(t)

P[t,∞)u0


 =




St 0 0

0 I 0

0 0 St




�
t




y0

x0

u0


 . (30)

Formula (30) shows that at any time t ≥ 0, the first component of �
t

[
y0
x0
u0

]

represents the past output, the second component represents the present state, and
the third component represents the future input.
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Proof. The semigroup property
�
τ+t =

�
t

�
τ follows (via elementary algebra) from

the formulas in Definition 1 and the fact that the left shifts S−t and S∗t are semi-
groups on Y and U , respectively. The initial condition �

0 = I is clearly satisfied.
The formula (30) is a direct consequence of Definition 2.

To prove the strong continuity, we split
[
y0
x0
u0

]
∈ Y×X×U into

[ y0
0
0

]
+
[
0
x0
u0

]
. The

continuity of
�
t applied to the first vector follows from the strong continuity of S−t.

The continuity of
�
t applied to the second vector follows from the strong continuity

of S∗t and S−t, and from (30) (using the continuity of state trajectories).
In the case where ω = 0 and

�
is contractive (or unitary),

�
is isomorphic

to a semigroup of the type studied by Lax and Phillips (the unitary case is treated
in (Lax and Philips, 1967) and the contractive case in (Lax and Philips, 1973); an
extension to the general case is given by Helton (1976)). For this reason, we call

�

the Lax-Phillips semigroup corresponding to the system Σ, see also (Staffans and
Weiss, 2001a). Assuming that U = Y and ω = 0, we identify the unperturbed
unitary group in (Lax and Philips, 1967; Lax and Philips, 1973) with the left shift
group S−t on L2((−∞,∞);U). The spaces U and Y are orthogonal incoming and
outgoing subspaces of S−t, respectively, and F is the scattering operator. Much
useful information on how to translate scattering theory into the language of systems
theory is found in (Helton, 1976). We mention that in (Lax and Philips, 1967; 1973),
in addition to the contractivity assumption on

�
, some further controllability and

observability type assumptions are made.

In (Helton, 1976; Lax and Philips, 1967; 1973), the operator

W− =




P−F
Φ̃0

P+




(denoted by very different symbols) is called the backward wave operator, and its
action on exponential inputs (restricted to (−∞, 0]) is investigated. Translated into
our language and our somewhat different framework, the result is as follows:

Proposition 3. Denote the generator of � by A and the control operator of Σ by
B. Then for every v ∈ U , for all λ ∈ � ω � and for all t ∈ � ,

Φ̃t(eλv) = eλt(λI −A)−1Bv, (31)

F(eλv) = eλG(λ)v, (32)

where eλ is the function eλ(t) = e
λt, for all t ∈ � .

Proof. To prove (31), we substitute u = eλv in (18) to get

Φ̃t(eλv) =

∫ 0

−∞

eλ(σ+t) � −σBv dσ = eλt
∫ ∞

0

e−λσ � σBv dσ

= eλt(λI −A)−1Bv.
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To prove (32), set y = F(eλv). Since F is shift-invariant, we have for all τ ∈ �

Sτy = F(Sτeλv) = e−λτF(eλv) = e−λτy.

Thus, y is an eigenvector of Sτ for every τ ∈ � , which implies that it is in the
domain of the generator of the operator group Sτ , and hence y is continuous. Writing
y0 = y(0), this implies that y = eλy0. To complete the proof we have to show that
y0 =G(λ)v. By (25) with τ = 0 and by (31),

P+(eλy0) = P+F(eλv) = Ψ∞Φ̃0(eλv) + � ∞ (eλv)

= Ψ∞(λI −A)−1Bv + � ∞ (eλv).

We take the Laplace transform of both sides above and we use (13) and (14) to get
that for all s ∈ � with Re s > Reλ,

(s− λ)−1y0 = C(sI −A)−1(λI −A)−1Bv +G(s)(s− λ)−1v

= (s− λ)−1G(λ)v.

From here we see that y0 = G(λ)v, as claimed.

The last proposition is not stated in the most general form. Indeed, if γ � < ω � ,
where γ � is the growth bound of � ∞ , then formula (32) remains valid on the larger
half-plane λ ∈ � γ � . The most concise argument for this is to regard both sides as an-
alytic functions defined on � ω � with values in the Fréchet space L2ω,loc((−∞,∞);Y ),
where ω ∈ (γ � , ω � ]. Both sides have analytic extensions to � ω , and hence these ex-
tensions must be equal on � ω . Since ω ∈ (γ � , ω � ] was arbitrary, we get equal analytic
extensions on � γ � , meaning that (32) holds on � γ � .

In the scattering theory of Lax and Phillips (1967; 1973) (and also in (Staffans,
2001)) the identity (32) is taken as the definition of G(λ), which is called the scattering
matrix in that context. We refer to the survey paper of Arov (1999), to (Staffans,
1999; 2000) and to our paper (Staffans and Weiss, 2001a) for further discussions of
the connection between scattering theory and the theory of well-posed linear systems.

5. Duality and Time-Flow Inversion

There are various transformations which lead from one well-posed system to another:
static output feedback, duality, time-inversion, flow-inversion and time-flow inversion.
We shall discuss here only duality and time-flow inversion, which in the conservative
case are equivalent to each other.

As in Sections 2 and 3, we assume that Σ = ( � ,Φ,Ψ, � ) is a well-posed linear
system with input space U , state space X , output space Y , transfer function G,
and the two growth bounds ω � and γ � . For all the proofs we refer to (Staffans and
Weiss, 2001b).
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Notation 4. Let W be a Hilbert space. For every u ∈ L2loc((−∞,∞);W ) and all
τ ≥ 0, we define

( Ru)(t) = u(−t), t ∈ � ,

( Rτu)(t) =

{
u(τ − t) for t ∈ [0, τ ],
0 for t /∈ [0, τ ].

Using the time-reflection operators Rτ , we introduce the dual system:

Theorem 4. Let Σ = ( � ,Φ,Ψ, � ) be a well-posed linear system with input space U ,
state space X and output space Y . Define Σdτ (for all τ ≥ 0) by

Σdτ =

[
� dτ Φdτ
Ψdτ � dτ

]
=

[
I 0

0 Rτ

][
� ∗τ Ψ∗τ
Φ∗τ � ∗τ

][
I 0

0 Rτ

]
. (33)

Then Σd = ( � d,Φd,Ψd, � d) is a well-posed linear system with input space Y , state
space X and output space U . Let x0 ∈ X, xd0 ∈ X, u ∈ L2loc([0,∞);U) and yd ∈
L2loc([0,∞);Y ). Let x and y be the state trajectory and the output function of Σ
corresponding to the initial state x0 and the input function u, and let xd and ud

be the state trajectory and the output function of Σd corresponding to the intial state
xd0 and the input function y

d. Then, for every τ ≥ 0,

〈x0, xd(τ)〉 +
∫ τ

0

〈u(σ), ud(τ − σ)〉 dσ = 〈x(τ), xd0〉+
∫ τ

0

〈y(σ), yd(τ − σ)〉 dσ. (34)

The system Σd introduced above is called the dual system corresponding to Σ.
It is easy to verify (from (33)) that applying the duality transformation twice, we get
back the original system: (Σd)d = Σ. Cleary ω � = ω � d (since � dτ = � ∗τ ).

Proposition 4. If A, B and C are respectively the semigroup generator, control
operator and observation operator of the well-posed linear system Σ with semigroup
growth bound ω � , then the corresponding operators for Σd are A∗, C∗ and B∗. The
transfer functions are related by

Gd(s) = G∗(s), Re s > ω � .

In particular, the input-output growth bounds are equal: γ � = γ � d .
Some clarifications may be needed. Let us denote, as usual, by U , X and Y

the input, state and output space of Σ, respectively. The spaces X1 and X−1 are
as in Section 2. We denote the corresponding spaces that we get by replacing A
by A∗ by Xd1 and Xd−1, i.e., X

d
1 is D(A∗) with the norm ‖z‖d1 = ‖(βI − A∗)z‖,

where β ∈ ρ(A∗), and Xd−1 is the completion of X with respect to the norm ‖z‖d−1 =
‖(βI−A∗)−1z‖. Thus, we have the continuous and dense embeddings Xd1 ⊂ X ⊂ Xd−1,
similarly as for the spaces X1 and X−1 introduced in Section 2. The scalar product of
X has continuous extensions to X1×Xd−1 and to Xd1 ×X−1, and Xd−1 (respectively
X−1) may be regarded as the dual of X1 (respectively of X

d
1 ).
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Proposition 5. If the system Σ is weakly regular, then its dual system Σd is weakly
regular as well, and their feedthrough operators, denoted by D and Dd, are related
by

Dd = D∗.

We mention that if Σ is weakly regular and its input space U is finite-
dimensional, then Σd is regular. There are regular systems whose dual is not regular.

Now we introduce the time-flow-inverted system corresponding to a well-posed
linear system and state some of its properties. In the time-flow-inverted system we
still let the relationship between x(0), Pτu, x(τ), and Pτy be the same as in (5),

but this time we interpret
[
x(τ)
Pτy

]
as the initial data and

[
x(0)
Pτu

]
as the final data.

Clearly, a necessary and sufficient condition for
[
x(0)
Pτu

]
to depend (uniquely and)

continuously on
[
x(τ)
Pτy

]
is that for all τ > 0, the operator Στ is invertible.

Theorem 5. Suppose that Στ is invertible as an operator from X ×L2([0, τ ];U) to
X ×L2([0, τ ];Y ) for some τ > 0. Then Στ is invertible between these spaces for all
τ ≥ 0 (note that Σ0 is the identity on X × {0}). Define Σ←τ (for all τ ≥ 0) by

Σ←τ =

[
� ←τ Φ←τ

Ψ←τ � ←τ

]
=

[
I 0

0 Rτ

][
� τ Φτ
Ψτ � τ

]−1 [
I 0

0 Rτ

]
. (35)

Then Σ← = ( � ←,Φ←,Ψ←, � ← ) is a well-posed linear system. If x and y are the
state trajectory and the output function of Σ corresponding to the initial state x0 ∈ X
and the input function u ∈ L2loc([0,∞);U) (so that x(0) = x0), then for all τ ≥ 0,

[
x(0)

Rτu

]
=

[
� ←τ Φ←τ

Ψ←τ � ←τ

][
x(τ)

Rτy

]
.

The system Σ← defined above is called the time-flow-inverted system correspond-
ing to Σ. It is easy to verify that applying time-flow inversion twice, we get back the
original system: (Σ←)← = Σ. Intuitively, time-flow inversion can be imagined as
a combination of time-inversion (reversing the direction of time) and flow-inversion
(changing the roles of inputs and outputs). Rigorously speaking, such an interpre-
tation is not always correct, because the two individual inversions may not be well
defined for a system, even if its time-flow-inversion is well defined.

Regularity or weak regularity are not preserved under time-flow-inversion in gen-
eral (of course, weak regularity is preserved in the conservative case, since time-flow-
inversion is equivalent to the duality transformation in this case). Even if both systems
are regular, we do not know how to express the generating operators of Σ← in terms
of the generating operators of Σ without additional assumptions.
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6. Conservative Linear Systems

The definition of a conservative well-posed linear system has been given in the Intro-
duction. The differential form of the balance equation is

d

dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2,

and the “global” balance equation (see Section 1) is equivalent to the fact that this
holds for almost every t ≥ 0 (all terms are in L1loc). The system Σ is conservative
if and only if the balance equation (in either global or differential form) holds for
all state trajectories of Σ as well as for all state trajectories of the dual system Σd.
This concept is equivalent to what Arov and Nudelman (1996) call a conservative
scattering system and it goes back to the work of Lax and Phillips (1967). Related
material can be found in Livšic (1973) (see also the survey by Arov (1999)).

We mention that if the generating operators A, B, C and D of Σ are bounded
(for example, if Σ is finite-dimensional), so that Σ is described by

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

then Σ is conservative if and only if

A+A∗ = −C∗C, B = −C∗D, D∗D = I, DD∗ = I ; (36)

see (Arov and Nudelman, 1996, p.16) (this implies A+A∗ = −BB∗ and C = −DB∗).
Moreover, the corresponding transfer function G(s) = C(sI − A)−1B + D is both
inner and co-inner: it is bounded and analytic on � 0 and, for almost all ω ∈ � ,

G∗(iω)G(iω) =G(iω)G(iω)∗ = I. (37)

The general well-posed version of these results is more involved. According to
(Arov and Nudelman, 1996, Proposition 4.5) (and a little extra reasoning), a well-
posed system is conservative if and only if for some (hence, for every) pair of numbers
s, z ∈ � 0 ,

A+A∗ = −C∗C,
B∗(zI −A∗)−1(zI +A) = −Gd(z)C,

(z + s)B∗(zI −A∗)−1(sI −A)−1B = I −Gd(z)G(s),
(38)

and the same conditions are true when we replace Σ by the dual system Σd. Here,
A,B and C have their usual meaning, as in Section 2, while G and Gd are the
transfer functions of Σ and Σd, as in Section 5. The dual version of (38) implies that
for any x ∈ D(A∗) and for all s ∈ � 0 ,

G(s)B∗x = C
[
(sI −A)−1BB∗x− x

]
.

It is proved in (Arov and Nudelman, 1996, pp.32–33) that the transfer function
G could be any analytic function on the right half-plane � 0 whose values are contrac-
tions in L(U, Y ) (an operator-valued Schur function). Thus, the nice property (37) is
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lost in general (but (37) still holds if � and � ∗ are strongly stable). An “extreme”
example for the loss of (37) is as follows: take the state space to be X = L2[0,∞),
let � t = S∗t (left shift by t), let U = {0} (the system has no input), take Y = �
and Cx = x(0). It is easy to verify that this is a conservative system with transfer
function G = 0. We can construct a new system by taking this system together with
its dual (which has no output). This leads to a conservative system with U = Y = � ,
with non-trivial input and output signals, but with transfer function zero.

Proposition 6. Suppose that Σ is a conservative linear system with finite-dimen-
sional and equal input and output spaces, i.e., U = Y = � n . We denote by � the
semigroup of Σ. Then the following four assertions are equivalent:

(a) � is strongly stable.

(b) Σ is exactly observable in infinite time.

(c) � ∗ is strongly stable.

(d) Σ is exactly controllable in infinite time.

If one (hence, all) of the above assertions holds, then also (37) is true.

Condition (a) above means that Ψ∞ from (8) is bounded from below, when
considered with the range space L2([0,∞);Y ). Condition (d) above means that the
operator Φ̃0 from (18) (with t = 0) is onto X , when considered with the domain
L2(−∞, 0];U). The proof is a combination of well-known and simple facts about
conservative systems, and its outline is (a) ⇐⇒ (b), (a) =⇒ (37), (b)&(37) =⇒
(c), (c) ⇐⇒ (d), (c) =⇒ (37), (d)&(37) =⇒ (a). The details will be in a paper on
conservative linear systems that we plan to write. The fact that U = Y is needed
in Proposition 6 in order to obtain the equivalence of G being inner and G being
co-inner. Note that the “extreme” example described before the proposition satisfies
(a), but it does not satisfy U = Y , and so the proposition does not apply. Indeed,
assertions (c) and (d) are false for this example. The modified “extreme” example (also
described before the proposition) has U = Y = � , so that now the four assertions
must be equivalent, and they are false.

If we restrict our attention to weakly regular conservative systems, so that the
generating operators A, B, C and D are all defined, then D∗D must be a contrac-
tion in L(U), but (unlike the bounded case shown in (36)) it need not be the identity.
This is clear from the “extreme” example described above, but even if the transfer
function is assumed to be inner and co-inner, nothing special about D∗D can be
concluded. This can be seen from the following fundamental example of a conserva-
tive system: a delay line of length τ . Such a delay line has a simple realization as a
regular linear system with state space X = L2[−τ, 0], with � t being the left shift
by t on X , see (Weiss, 1994b). This is a conservative system with U = Y = � and
G(s) = e−τs, so that D = 0. Note that G is inner and co-inner.
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On the positive side, for a weakly regular conservative system, by letting first
z → +∞ and then s → +∞ (along the real axis) in (38), we get a generalized
version of the first three equations in (36), namely

A+A∗ = −C∗C, B∗Λ = −D∗C, lim
s→+∞

B∗Λ(sI −A)−1B = I −D∗D (39)

(the first two equations above hold on D(A)). Note that the limit is taken along the
real axis. The dual versions of these equations are

A+A∗ = −BB∗, CΛ = −DB∗, lim
z→+∞

CΛ(zI −A∗)−1C∗ = I −DD∗ (40)

(the first two equations above hold on D(A∗)). At this time, it is not clear to us if
(39) and (40) are sufficient for Σ to be conservative.

The following result shows how to construct a conservative linear system from
very simple ingredients. It turns out that our construction appears naturally in math-
ematical models of vibrating systems with damping. We outline the construction and
state the main results. The proofs and further details can be found in (Tucsnak and
Weiss, 2001).

Let H be a Hilbert space, and let A0 : D(A0)→H be a self-adjoint, positive and
boundedly invertible operator. We introduce the scale of Hilbert spaces Hα, α ∈ � ,
as follows: for every α ≥ 0, Hα = D(Aα0 ), with the norm ‖z‖α = ‖Aα0 z‖H . The space
H−α is defined by duality with respect to the pivot space H as follows: H−α = H

∗
α

for α > 0. Equivalently, H−α is the completion of H with respect to the norm
‖z‖−α =

∥∥A−α0 z
∥∥
H
. The operator A0 can be extended (or restricted) to each Hα,

such that it becomes a bounded operator

A0 : Hα→Hα−1 ∀ α ∈ � .

The second ingredient needed for our construction is a bounded linear operator
C0 : H 1

2

→U , where U is another Hilbert space. We identify U with its dual, so that
U = U∗. We set B0 = C

∗
0 , so that B0 : U→H− 1

2

. We consider the system described
by

z̈(t) +A0z(t) +
1

2
B0
d

dt
C0z(t) = B0u(t), (41)

y(t) =
d

dt
C0z(t)− u(t), (42)

where t ∈ [0,∞) is the time. A dot over a variable denotes its derivative with respect
to time, possibly in the sense of distributions. Equation (41) is understood as an
equation in H− 1

2

, i.e., all the terms are in H− 1
2

. Most of the linear equations modeling

damped vibrations of elastic structures can be written in the form (41), where z
stands for the displacement field and the term B0

d
dtC0z(t), informally written as

B0C0ż(t), represents a viscous feedback damping. The signal u(t) is an external
input with values in U (often a displacement, a force or a moment acting on the
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boundary), and the signal y(t) is the output (measurement) with values in U as
well. The state x(t) of this system and its state space X are defined by

x(t) =

[
z(t)

ż(t)

]
, X = H 1

2

×H.

This means that in order to solve (41), initial values for z(t) and ż(t) at t = 0
have to be specified, and we take z(0) ∈ H 1

2

and ż(0) ∈ H . As we shall see, if

u ∈ L2([0,∞);U), then also y ∈ L2([0,∞);U). Moreover, if x(0) = 0, then ‖u‖ = ‖y‖
(in the norm of L2([0,∞);U)). We need some notation: for any Hilbert space W ,
the Sobolev spaces Hp(0,∞;W ) of W -valued functions (with p > 0) are defined
in the usual way. The notation Cn(0,∞;W ) (with n ∈ {0, 1, 2, . . .}) for n times
continuously differentiable W -valued functions on [0,∞) is also quite standard. We
denote by BCn(0,∞;W ) the space of those f ∈ Cn(0,∞;W ) for which f, f ′, . . . f (n)
are all bounded. Our main result is the following:

Theorem 6. With the above assumptions, eqns. (41) and (42) determine a conserva-
tive linear system Σ in the following sense:

There exists a conservative linear system Σ whose input and output spaces are
both U and whose state space is X. If u ∈ L2([0,∞);U) is the input function,
x = [ zw ] is the state trajectory, and y is the output function corresponding to u and
some initial state in X, then

(a) z ∈ BC(0,∞;H 1

2

) ∩ BC1(0,∞;H) ∩ H2(0,∞;H− 1
2

).

(b) The two components of x are related by w = ż.

(c) C0z ∈ H1(0,∞;U) and eqns. (41) (in H− 1
2

) and (42) (in U) hold for almost
every t ≥ 0.

If ż is a continuous function of the time t, with values in H 1

2

(we shall derive

conditions for this to be true), then (41) and (42) can be rewritten in the form

z̈(t) +A0z(t) +
1

2
B0C0ż(t) = B0u(t), (43)

y(t) = C0ż(t)− u(t). (44)

We can rewrite eqns. (43), (44) as a first-order system as follows:

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cex(t)− u(t),
(45)

where

A =



0 I

−A0 −
1

2
B0C0


, B =

[
0

B0

]
,
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D(A) =
{[

z

w

]
∈ H 1

2

×H 1

2

∣∣∣∣ A0z +
1

2
B0C0w ∈ H

}
,

Ce : H 1

2

×H 1

2

→U, Ce = [0 C0] .

We denote by C the restriction of Ce to D(A).

Proposition 7. With the above notation, the semigroup generator of Σ is A, its
control operator is B, and its observation operator is C. The transfer function of Σ
is given for all s ∈ � 0 by

G(s) = Ce(sI −A)−1B − I = C0s
(
s2I +A0 +

s

2
B0C0

)−1
B0 − I.

The system Σ is isomorphic to its dual, and this (together with the fact that Σ
is conservative) implies the following:

Proposition 8. With the above notation, the following assertions are equivalent:

(a) The pair (A,B) is exactly controllable.

(b) The pair (A,C) is exactly observable.

(c) The semigroup generated by A is exponentially stable.

A similar result holds for strong stability, with an additional assumption:

Proposition 9. With the above notation, assume that (βI − A)−1 is compact for
some β ∈ ρ(A) or that the intersection σ(A) ∩ i � is countable. Then the following
assertions are equivalent:

(a) The pair (A,B) is approximately controllable in infinite time.

(b) The pair (A,C) is approximately observable in infinite time.

(c) The semigroup generated by A is strongly stable.

It is often interesting to examine the well-posedness of the undamped system
corresponding to (41):

z̈(t) +A0z(t) = B0u(t), (46)

with the same assumptions on A0 and B0, and with the output signal given again
by (42). It is interesting that in this special context only the well-posedness of the
transfer function has to be checked while the admissibilities of the control and obser-
vation operators follow.
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Proposition 10. The following statements are equivalent:

(a) The function Go : � 0→L(U) defined by

Go(s) = C0s
(
s2I +A0

)−1
B0 − I

is bounded on a vertical line contained in � 0 .

(b) The function Go defined above is bounded on every right half-plane � ω with
ω > 0.

(c) Equations (46) and (42) determine a well-posed linear system with the state
space X = H 1

2

×H.

If the above statements are true, then the transfer function of the system from point (c)
is Go from point (a).

7. A Rayleigh Beam with Piezoelectric Actuator

In this section we provide an example of well-posed linear system, described by a
second-order differential equation in a Hilbert space, without damping and with un-
bounded control and observation operators. After adding a damping term, we obtain
a conservative system that fits into the framework discussed in Section 5. This will
enable us to prove that the damped system is exactly controllable and exponentially
stable. Since the results in this section are new, we include the proofs.

The physical system that we have in mind consists of an elastic beam with a
piezoelectric actuator. We suppose that both ends of the beam are hinged and that
the actuator is excited in a manner so as to produce pure bending moments. The input
is the voltage acting on the actuator and the measurement is the rate of the mean
curvature of the piezoelectric actuator (or, equivalently, the difference of the angular
velocities of the extremities of the actuator). We model this system by an initial
and boundary value problem representing a homogenous Rayleigh beam, situated
along the interval [0, π], with the actuator occupying the interval (ξ, η) ⊂ (0, π). The
equations are (see, for instance, Crawley and Anderson (1989) or Destuynder et al.
(1992)):

ẅ(x, t)− α∂
2ẅ

∂x2
+
∂4w

∂x4
(x, t) = u(t)

d

dx
[δη(x)− δξ(x)], (47)

w(0, t) = w(π, t) = 0,
∂2w

∂x2
(0, t) =

∂2w

∂x2
(π, t) = 0, t ≥ 0, (48)

w(x, 0) = w0(x), ẇ(x, 0) = w1(x), 0 < x < π, (49)

y(t) =
∂ẇ

∂x
(η, t) − ∂ẇ

∂x
(ξ, t). (50)

In these equations w(x, t) represents the transverse displacement of the beam at
position x ∈ [0, π], ξ, η ∈ (0, π) denote the endpoints of the actuator, δa is the Dirac
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mass at the point a and α > 0 is a constant, proportional to the moment of inertia
of the cross section of the beam (α is proportional to the square of the thickness of
the beam and is often neglected). The input is u : [0, T ]→ � representing the voltage
applied to the actuator.

Let us now write H = H10(0, π) and consider the dual [H2(0, π) ∩ H10(0, π)]∗ of
H2(0, π) ∩ H10(0, π) with respect to the pivot space L2(0, π). We also consider the
bounded linear isomorhism R :

[
H2(0, π) ∩ H10(0, π)

]∗→L2(0, π) defined by

R =
(
I − α d

2

dx2

)−1
.

We also define the linear operator A0 : D(A0)→H by

D(A0) =
{
φ ∈ H3(0, π)

∣∣∣∣φ(0) = φ(π) = 0,
d2φ

dx2
(0) =

d2φ

dx2
(π) = 0

}
,

A0φ = R
d4φ

dx4
, ∀ φ ∈ D(A0). (51)

We can easily show that A0 is self-adjoint and strictly positive. Setting H1 = D(A0)
and then defining Hµ for µ ∈ � by fractional powers of A0 and duality, as in
Section 5, we have

H 1

2

= H2(0, π) ∩H10(0, π), H− 1
2

= L2(0, π).

Let us consider the operator

B0 : � → H− 1
2

,

defined by

B0v = v
d

dx
[δη − δξ].

With this notation, the system (47)–(50) can be written as

ẅ(t) +A0w(t) = B0u(t),

w(0) = w0, ẇ(0) = w1,

y(t) = B∗0 ẇ(t).

Theorem 7. Equations (47)–(50) define a well-posed linear system with input space
U = � , state space X =

[
H2(0, π) ∩ H10(0, π)

]
and output space � .

Since the problem (47)–(50) is linear, in order to establish the above well-posed-
ness result, it suffices to consider controls supported at only one point a ∈ (0, π).
More precisely, we consider the following initial and boundary value problem:

ψ̈(x, t)− α∂
2ψ̈

∂x2
(x, t) +

∂4ψ

∂x4
(x, t) = v(t)

dδa
dx

, 0<x<π, t>0, (52)
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ψ(0, t) = ψ(π, t) = 0,
∂2ψ

∂x2
(0, t) =

∂2ψ

∂x2
(π, t) = 0, t > 0, (53)

ψ(x, 0) = ψ0(x),
∂ψ

∂t
(x, 0) = ψ1(x), 0 < x < π. (54)

Theorem 7 clearly follows from the following proposition:

Proposition 11. For any v ∈ L2(0, T ) and for any a ∈ (0, π), the problem (52)–(54)
has a unique solution

ψ ∈ C
(
0, T ;H2(0, π)

)
∩ C1
(
0, T ;H10(0, π)

)
. (55)

Moreover, for any b ∈ (0, π), we have ∂ψ

∂x
(b, ·) ∈ H1(0, T ) and there exists

C > 0 such that

‖ψ(·, T )‖2H2(0,π) + ‖ψ̇(·, T )‖2H1(0,π) +
∥∥∥∥
∂ψ

∂x
(b, ·)
∥∥∥∥
2

H1(0,T )

≤ C
(
‖ψ0‖2H 1

2

+ ‖ψ1‖2H + ‖v‖2L2(0,T )
)
. (56)

Before proving Proposition 11, we consider the following homogeneous problem:

φ̈(x, t)− α∂
2φ̈

∂x2
(x, t) +

∂4φ

∂x4
(x, t) = 0, 0 < x < π, t > 0, (57)

φ(0, t) = φ(π, t) =
∂2φ

∂x2
(0, t) =

∂2φ

∂x2
(π, t) = 0, t > 0, (58)

φ(x, 0) = φ0(x),
∂φ

∂t
(x, 0) = φ1(x), 0 < x < π. (59)

Lemma 1. For any initial data (φ0, φ1) ∈ H2(0, 1) × H10(0, π), there exists a
unique weak solution of (57)–(59) in the class φ ∈ C(0, T ;H2(0, π) ∩ H10(0, π)) ∩
C1(0, T ;H10(0, π)). Moreover, for all b ∈ (0, π) we have

∂φ

∂x
(b, ·) ∈ H1(0, T ) and

there exists C > 0 such that
∥∥∥∥
∂φ

∂x
(b, ·)
∥∥∥∥
2

H1(0,T )

≤ C
(
‖φ0‖2H2(0,π) + ‖φ1‖2H1(0,π)

)
. (60)

Proof. It is easy to see, by the semigroup method, that the problem (57)–(59) is
well-posed in the state space X =

[
H2(0, π) ∩ H10(0, π)

]
×H10(0, π).

In order to prove (60), we put

φ0(x) =
∑

k≥1

ak sin(kx), φ1(x) =
∑

k≥1

bk sin(kx),
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with (k2ak), (kbk) ∈ l2( � ). Obviously, we have

φ(x, t) =
∑

k≥1

{
ak cos

[
k2√
1 + k2

t

]
+
bk
√
1 + k2

k2
sin

[
k2√
1 + k2

t

]}
sin (kx), (61)

which implies that, for all T > 0, we have
∂φ

∂x
(b, ·) ∈ H1(0, T ) and

∫ T

0

∣∣∣∣∣
∂φ̇

∂x
(b, t)

∣∣∣∣∣

2

dt ≤ C
∑

k≥1

k2
[
a2k

k4

1 + k2
+ b2k

]
≤ C
∑

k≥1

k2[a2k k
2 + b2k],

which clearly yields (60).

The extension of A0 from (51) to an operator from H 1

2

= H2(0, π) ∩ H10(0, π)
to H− 1

2

= L2(0, π) is still denoted by A0. Moreover, let us put D(A1) = H 1

2

and
define

A1 : H 1

2

→L2(0, π), A1φ = −
1

α

d2φ

dx2
∀ φ ∈ H 1

2

.

The operators A0 and A1 are related as follows:

Lemma 2. The linear operator L = A0 −A1 is bounded from H 1

2

to H 1

2

.

Proof. If φ ∈ H 1

2

, then φ can be written as

φ(x) =
∑

n≥1

an sin (nx),

with
∑
n≥1 n

4a2n <∞. Then

Lφ = −
∑

n≥1

n2

1 + αn2
an sin (nx),

which clearly implies the conclusion of the lemma.

Proof of Proposition 11. The existence and uniqueness of a solution ψ satisfying (55)
follow from Lemma 1 by duality (see Jaffard and Tucsnak (1997) for details). In order
to prove the regularity of the trace of ψ at x = b, we notice that the equation

ψ̈ +A0ψ = v(t)R
(
dδa
dx

)
(62)

holds in L2(0, T ;L2(0, π)). We consider the initial value problem

ψ̈1 +A1ψ1 = v(t)R
(
dδa
dx

)
, (63)

ψ1(0) = 0, ψ̇1(0) = 0. (64)
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The relations above imply that ψ2 = ψ − ψ1 satisfies

ψ̈2 +A1ψ2 = Lψ,

ψ2(0) = ψ
0, ψ̇2(0) = ψ

1,

which, by (55) and Lemma 2, implies
∂ψ2
∂∂x
(b, ·) ∈ H1(0, T ). The fact that ∂ψ1

∂x
(b, ·) ∈

H1(0, T ) follows by applying the Laplace transform to (63) and then by direct calcu-
lations (see (Ammari et al., 1999) for details).

Remark 2. In (Jaffard and Tucsnak, 1997) the authors considered the two-
dimensional version of (47)–(49). More precisely, for T > 0, u ∈ L2(0, T ), Ω ⊂ � 2 an
open bounded set, Γ = ∂Ω, Q = Ω× (0, T ), Σ = Γ× (0, T ) and γ a curve included
in Ω, they considered the problem

ẅ(x, y, t)− α∆ẅ(x, y, t) + ∆2w(x, y, t) = u(t)∂δγ
∂ν
in Q, (65)

w(x, y, t) = ∆w(x, y, t) = 0 on Σ, (66)

w(x, y, 0) = 0, w′(x, y, 0) = 0 in Ω, (67)

where ∂δγ/∂ν stands for the derivative of the Dirac mass concentrated on γ with
respect to the normal to γ, and α > 0 is a constant. The main result in (Jaffard and
Tucsnak, 1997) asserts that, for any u ∈ L2(0, T ), the problem (65)–(67) admits a
unique solution w ∈ C(0, T ;H2(Ω) ∩ H10(Ω)) ∩ C1(0, T ;H10(Ω). In other words, if we
consider the input space U = � and the state space X =

[
H2(Ω) ∩ H10(Ω)

]
×H10(Ω),

then the application from the input to the state is bounded. We conjecture that if we
define the output

y(t) =

∫

γ

∂ẇ

∂ν
, (68)

then (65)–(68) defines a well-posed linear system, with input space U = � , state
space X =

[
H2(Ω) ∩ H10(Ω)

]
×H10(Ω), and output space U .
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