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CONVERGENCE ANALYSIS FOR PRINCIPAL

COMPONENT FLOWS†

Shintaro YOSHIZAWA∗, Uwe HELMKE∗∗

Konstantin STARKOV***

A common framework for analyzing the global convergence of several flows for
principal component analysis is developed. It is shown that flows proposed by
Brockett, Oja, Xu and others are all gradient flows and the global convergence
of these flows to single equilibrium points is established. The signature of the
Hessian at each critical point is determined.
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1. Introduction

In the theory of neural networks, dynamic systems methods are crucial for the analysis
of learning algorithms and conversely, neural network learning algorithms provide
interesting examples of dynamical systems that represent challenges for a rigorous
mathematical analysis. Although some of these learning algorithms seem to work quite
well in practice, their theoretical analysis still lacks a rigorous convergence theory.
So far, most results in the literature have focused on local stability issues without
addressing the problem of global convergence. In this paper we discuss a special class
of learning algorithms for principal component analysis for which a complete phase
portrait analysis can be developed.

In principal component analysis (PCA), the main goal is to extract dominant
eigenvalues of a covariance matrix A for a sequence of random vectors. A number
of neural learning algorithms for principal component or principal subspace analysis
(PSA) have been proposed, starting from the early work of Oja (1982), Williams
(1985) and Sanger (1989). For a more recent survey, see Baldi and Hornik (1995). In
an influental paper, based on ideas from stochastic approximations, Oja and Karhunen

† Research partly supported by the German-Israeli Foundation for Scientific Research and Devel-
opment under grant GIF–I–526–034.06/97, and by the DFG project 436 RUS 113/275/0(R).

∗ Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo,
Noda, Chiba 278, Japan, e-mail: yosizawa@ism.ac.jp

∗∗ Department of Mathematics, University of Würzburg, D–97074 Würzburg, Germany, e-mail:
helmke@mathematik.uni-wuerzburg.de

*** CITEDI–IPN, Av. del Parque 1310, Tijuana 22510, B.C., Mexico,
e-mail: konstarkov@hotmail.com



224 S. Yoshizawa et al.

(1985) demonstrated how to analyze one such algorithm in terms of the phase portrait
analysis of an associated differential equation evolving on Euclidean space.

This dynamic system, termed the one-unit Oja flow, is a cubic differential equa-
tion

ẋ =
(

I − xx>
)

Ax (1)

on
� n . It has the remarkable property that—for any nonzero initial condition x(0)—

its solutions converge, as t→∞, to the eigenvectors of the positive definite covariance
matrix A.

Oja and Karhunen’s work was the precursor for subsequent work on flows for
principal component or principal subspace analysis. Oja (1989) considered the matrix
generalization of (1)

Ẋ =
(

I −XX>
)

AX, X ∈ � n×k (2)

for principal subspace analysis and conjectured that solutions X(t) of (2) converge,
as t→∞, to an orthonormal basis matrix X∞ of an invariant subspace of A. This
conjecture was proven by Yan et al. (1994), where a phase portrait analysis of (2)
was developed. In particular, an explicit description of the domain of attraction for
the locally attracting equilibria was given. A characterization of stable manifolds for
the other, unstable equilibrium points constitutes, however, an open problem.

The Oja flow is only capable of extracting the principal subspace of A but
not the principal eigenvectors. Flows that achieve the principal component analysis
were first proposed by Sanger (1989), Oja et al. (1992a; 1992b), and Xu (1993). The
latter two actually deal with generalizations of the double bracket flow on orthogonal
matrices introduced by Brockett (1991), see also (Helmke and Moore, 1994). Although
a local stability analysis was developed around the equilibrium points, none of the
above three papers really proved global convergence to the equilibrium points (Sanger
actually has claimed to achieve this for his equation, but his argument is incomplete
at an essential point). In this paper, we focus on Xu’s principal component flow

Ẋ =
(

I −XDX>
)

AXD (3)

and prove the global convergence of (3) to the principal components of A. Moreover,
the eigenvalues of the linearization of (3) around the quilibria are determined and thus
a local stability analysis is given. The corresponding results for the flows proposed by
Oja et al. (1992a; 1992b) are obtained as well.

A natural idea to establish the global convergence of (3) to its equilibrium points
is to show that the system is the gradient flow of a suitable cost function. This is
exactly what we are doing and our main result concerning global convergence is then
deduced using an unfamiliar result by Łojasiewicz (1983) on real analytic gradient
flows. Of course, this implies that the Oja flows (1), (2) are gradient flows, too. At
first sight this seems to be in contradiction to the claim made by Baldi and Hornik
(1991) that (1) is not a gradient flow. However, this contradiction is not a real one as
Baldi and Hornik use a very restricted notion of the gradient flow. In mathematics,
the gradient of a function is defined for an arbitrary Riemannian metric, while Baldi
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and Hornik consider the gradient only in the special case of the standard Euclidean
inner product on

� n . Both Xu’s flow (3) and Oja’s flow (1), (2) are—as we will
show—bona fide gradient flows for some Riemannian metric on Euclidean space, and
it is from this fact alone that a complete phase portrait analysis can be developed. A
cost function for the Oja flow that serves as a Lyapunov function was also given by
Wyatt and Elfadel (1995). However, these authors did not fully realize the connection
to gradient flows, nor did they establish any general global convergence results.

This paper is based on the minicourse Computation and Control—A Dynamical
Systems Perspective which was presented by the second author at the MTNS 2000
in Perpignan. Space limitations do not allow us to present here the material of the
minicourse in any detail. We therefore decided to present the basic idea of compu-
tation via gradient flows through one example of the current research, i.e., that of
a convergence analysis for neural networks. For further background and details on
optimization via dynamic systems, we refer the reader to (Helmke and Moore, 1994).

2. Phase Portrait of the Oja-Brockett Flow

For 1 ≤ k ≤ n let A ∈ � n×n and D ∈ � k×k be positive definite matrices with
A = A> > 0, D = D> > 0. Let X ∈ � n×k . We consider the matrix differential
equation on

� n×k

Ẋ = AXD −XDX>AX. (4)

We refer to (4) as theOja-Brockett system as it is a natural generalization of both Oja’s
flow (2) for principal subspace analysis (for D = Ik) and Brockett’s flow (Brockett,
1991)

Ẋ = AXDX>X −XDX>AX
on orthogonal matrices for symmetric matrix diagonalization (for k = n and X ∈

� n×n a real orthogonal matrix). The unconstrained flow (4) was first analyzed by Xu
(1993), but the full analysis given here appears to be new.

Our first main result on the Oja-Brockett flow (4) on
� n×k is that it is actually

a gradient flow. Consider the real analytic function f :
� n×k → �

defined by

f(X) :=
1

4
tr(AXDX>)2 − 1

2
tr(A2XD2X>)

=
1

4
‖(A 12XDX>)A 12 ‖2 − 1

2
‖AXD‖2, (5)

where ‖X‖2 = tr(XX>) denotes the Frobenius norm.

Lemma 1. f :
� n×k → �

is a lower bounded function with compact sublevel sets.

Proof. Let L := A1/2XD1/2. Then

f(X) =
1

4
‖LL>‖2 − 1

2
‖A 12LD 12 ‖2

≥ 1
4
‖LL>‖2 − 1

2
‖A 12 ‖2 ‖D 12 ‖2 ‖L‖2 =: F (L).



226 S. Yoshizawa et al.

It therefore suffices to prove the result for the smooth function L 7→ F (L) on � n×k .
Using the singular value decomposition

L = UΣU>, Σ = diag(σ1, . . . , σl),

σ1 ≥ · · · ≥ σl > 0, l ≤ k, we obtain

F (L) =
1

4
‖ΣΣ>‖2 − 1

2
‖A 12 ‖2‖D 12 ‖2‖Σ‖2

=
1

4

l
∑

i=1

σ4i −
γ

2

l
∑

i=1

σ2i ,

γ := ‖A1/2‖2‖D1/2‖2 > 0. Obviously, the right hand side defines a smooth function
in (σ1, . . . , σl) with compact sublevel sets. The minimum value is attained for σ1 =
· · · = σl =

√
γ and thus for all L ∈ � n×k

F (L) ≥ l
4
γ2 − l

2
γ2 = − l

4
γ2 ≥ −k

4
(tr A)2(tr D)2

is lower bounded with compact sublevel sets.

In the sequel, we endow
� n×k with the Riemannian metric

〈Ω1,Ω2〉A,D := tr(AΩ1DΩ>2 ), Ωi ∈
� n×k (6)

and the corresponding norm square

‖Ω‖2A,D := tr(AΩDΩ>).

Note that (6) defines a positive definite inner product on
� n×k , as A,D are assumed

to be positive definite. If A,D were only positive semidefinite, then (6) would define
a sub Riemannian metric. In order to avoid technical difficulties, we therefore assume
the positive definiteness of A and D.

Recall that for any Riemannian metric 〈·, ·〉 on � n×k an asociated gradient
vector field grad f(X) is defined by the characterizing property

df(X)Ω = 〈grad f(X),Ω〉 ∀ X,Ω ∈ � n×k .

We now compute the gradient of our cost function f with respect to the above
Riemannian metric.

Proposition 1. The gradient of the cost function (5) with respect to the Riemannian
metric (6) is the real analytic vector field grad f :

� n×k → � n×k given by

gradf(X) = XDX>AX −AXD.

In particular, the Oja-Brockett flow (4) is just the negative gradient flow

Ẋ = −gradf(X)

of the cost function (5).
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Proof. The Fréchet derivative of f :
� n×k → �

at X ∈ � n×k is the linear functional
df(X) :

� n×k → �
given by

df(X)Ω = tr
[(

AXDX>AXD −A2XD2Ω>
)]

= 〈XDX>AX −AXD,Ω〉A,D.
Thus the gradient associated with the Riemannian metric 〈·, ·〉A,D is seen as
gradf(X) = XDX>AX −AXD.
Choosing other Riemannian metrics on

� n×k , different gradients of the same
function f :

� n×k → �
are obtained. Using the above proposition, we can now

prove our main convergence result for the Oja-Brockett flow.

Theorem 1. (i) The solutions X(t) ∈ � n×k of the Oja-Brockett flow (4) exist for
all t ≥ 0 and, as t → +∞, every solution of (4) converges to a single equilibrium
point X∞ = limt→∞X(t).
(ii) The equilibrium points of (4) are characterized by

AX∞D = X∞DX
>

∞
AX∞. (7)

Moreover, every equilibrium point X∞ satisfies the additional matrix equation

X>
∞
AX∞(X

>

∞
X∞ − Ik) = 0. (8)

Proof. By Proposition 1, the Oja-Brockett flow is a real analytic gradient system for
the real analytic cost function f :

� n×k → �
. Since f has compact sublevel sets,

{

X ∈ � n×k ; f(X) ≤ f(X0)
}

is compact for all X0 ∈
� n×k and thus the solutions X(t) of Ẋ = −gradf(X) stay

in the compact set

X(t) ∈
{

X ∈ � n×k ; f(X) ≤ f(X0)
}

for all t ≥ 0. Therefore the solutions X(t) exist for all t ≥ 0. Since −grad f(X) is
real analytic in X , a result by Łojasiewicz (1983) implies that every solution X(t) of
(4) converges to a single equilibrium point X∞ with 0 = −gradf(X∞) = AX∞D −
X∞DX

>
∞
AX∞. This proves (i).

In order to derive (8), we give an argument based on LaSalle’s invariance prin-
ciple. For this purpose, we consider the Lyapunov-type function V :

� n×k → �
,

V (X) = (1/2)‖X>X − Ik‖2. A straightforward computation of the Lie derivative
LFV of V with respect to the gradient vector field F := −gradf yields

V̇ (X) := LFV (X) := tr∇V (X)F (X)

= −tr
[

(X>X − I)(X>AXD +DX>AX)(X>X − I)
]

≤ 0
since X>AXD +DX>AX ≥ 0. Moreover,

LFV (X) = 0 ⇐⇒ (X>AXD +DX>AX)
1

2 (X>X − I) = 0
⇐⇒ (X>AXD +DX>AX)(X>X − I) = 0.
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From (i) we already know that every solution X(t) of (4) is bounded on [0,∞) and
converges to a single equilibrium point X∞ as t→ +∞. Thus {X∞} is the ω-limit
set of X(t). LaSalle’s invariance principle then implies that X∞ ∈ (LFV )−1(0), i.e.,
X∞ satisfies

(a) AX∞D = X∞DX
>
∞
AX∞,

(b) (X>∞AX∞D +DX
>
∞AX∞)(X

>
∞X∞ − Ik) = 0.

Substituting (a) into (b) yields

(

X>∞X∞DX
>

∞AX∞ +DX
>

∞AX∞
) (

X>∞X∞ − Ik
)

= 0,

i.e.,

(

Ik +X
>

∞
X∞)DX

>

∞
AX∞(X

>

∞
X∞ − Ik

)

= 0.

Since D and Ik +X
>
∞X∞ are invertible, this implies (8).

We now derive an explicit description of the equilibrium points of (4) in terms
of the eigenspace decomposition of A, D. For simplicity, we assume that D is in
diagonal form, i.e.,

D = diag (µ1, . . . , µ1, . . . , µs, . . . , µs) (9)

with µ1 > · · · > µs > 0 and µi occuring with multiplicity ki, k1 + · · ·+ ks = k.

Theorem 2. Let Φ0 ∈ SO(n) be a basis matrix of eigenvectors of A = A> > 0
and let D be a diagonal form (9). Then X∞ ∈

� n×k is an equilibrium point of the
Oja-Brockett flow (4) if and only if

X∞ = Φ0π

[

Ir 0

0 0

]

PS, (10)

where 0 ≤ r ≤ k ≤ n, P and π are k × k and n × n permutation matrices,
respectively, and S ∈ O(k) with S = diag (S1, . . . , Ss), Si ∈ O(ki). Equivalently,

X∞ = Φ0π

[

Γ

0

]

S, (11)

where π is an n × n permutation matrix, Γ = diag (ε1, . . . , εk), εi ∈ {0, 1} and
S = diag (S1, . . . , Ss), Si ∈ O(ki), i = 1, . . . , s.

Proof. Let X ∈ � n×k be an equilibrium point of (4) with rankX = r, 0 ≤ r ≤ k ≤ n.
Let

X = Ψ

[

Σ 0

0 0

]

Φ
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be the singular value decomposition, with Ψ ∈ SO(n), Φ ∈ O(k) and Σ =
diag (σ1, . . . , σr), σ1 ≥ · · · ≥ σr > 0. Let ∆ := [ Σ 00 0 ]. Substituting this into (8),
we obtain

Φ>∆>Ψ>AΨ∆Φ(Φ>∆>∆Φ− Ik) = 0, ∆>Ψ>AΨ∆(∆>∆− Ik) = 0.

Decomposing Ψ>AΨ as

Ψ>AΨ =

[

A11 A12

A21 A22

]

,

we obtain
[

ΣA11Σ 0

0 0

][

Σ2 − I 0
0 −I

]

=

[

ΣA11Σ(Σ
2 − I) 0
0 0

]

=

[

0 0

0 0

]

,

i.e., ΣA11Σ(Σ
2 − I) = 0. Since Σ > 0 and A11 > 0 (by the positivity of A), we

conclude that Σ2 = I , i.e., Σ = Ir. Thus the singular values of X are all 1 and

X = Ψ

[

Ir 0

0 0

]

= Φ. (12)

So far we have only used the necessary condition (8) for an equilibrium point. Us-
ing (7), we show that Ψ and Φ are of the form as stated in the theorem. Inserting (12)
into (7) yields for Ã := Ψ>AΨ and D̃ := ΦAΦ> that

Ã

[

I 0

0 0

]

D̃ =

[

I 0

0 0

]

D̃

[

I 0

0 0

]

Ã

[

I 0

0 0

]

,

i.e., for

Ã =

[

A11 A12

A21 A22

]

, D̃ =

[

D11 D12

D21 D22

]

the equivalent relations

(a) A21 = A
>
12 = 0, D21 = D

>
12 = 0,

(b) D11A11 = A11D11.

Note that the orthogonal matrices Φ and Ψ can be changed by arbitrary block
diagonal factors of the form (U , V , W orthogonal)

Φ→
[

U 0

0 V

]

Φ, Ψ→ Ψ
[

U> 0

0 W

]

without changing X = Ψ[ I 00 0 ]Φ. Thus we can assume without loss of generality that

D̃ is diagonal, i.e., D̃ = ΦDΦ> = PDP> for a k × k permutation matrix P . Thus
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S := P>Φ is orthogonal with SDS> = D. Therefore S = diag (S1, . . . , Ss), Si ∈
O(ki), i = 1, . . . , s and Φ = PS. Moreover, from (b) and the diagonal form of D11 we
conclude that A11 is block diagonal. Using the degree of freedom in specifying Φ by
orthogonal transformations U and W (where UD11U

> = D11), we conclude that—
without loss of generality—Ψ is such that Ψ>AΨ = diag (λ1, . . . , λr , λr+1, . . . , λn),
where λ1 ≥ · · · ≥ λr, λr+1 ≥ · · · ≥ λn. Thus there exists a permutation matrix π
such that Ψ = Ψ0π. The result (10) follows. Formula (11) follows from (10) via the
following claim:

Claim: For any n× n permutation matrix π and Γ = diag (ε1, . . . , εk), εi ∈ {0, 1}
there exists an n × n permutation matrix π′ and a k × k permutation matrix P ,
0 ≤ r ≤ k, such that

π

[

Γ

0

]

= π′

[

Ir 0

0 0

]

P. (13)

The converse holds, too.

For the necessity in the claim, choose r = rankΓ and a permutation matrix P
such that

PΓP> =

[

Ir 0

0 0

]

k ∈ � k×k .

Then

π′ := π

[

P> 0

0 I

]

as required.

For the converse, let π′, r, P be given. Choose

Γ := P>

[

Ir 0

0 0

]

P and π = π′

[

P> 0

0 I

]

.

Then (13) holds and the proof of Theorem 2 is complete.

Remark 1. Formula (11) in the above theorem generalizes a result of Xu (1993), who
derived the equivalent representation

X∞ = Ψ0π

[

S

0

]

,

where S = diag (δ1, . . . , δk), δi ∈ {0, 1,−1}, i = 1, . . . , k for the generic case, where
D = diag (µ1, . . . , µk), µ1 > · · · > µk > 0. Our representation also applies to the
nongeneric case, and thus in particular to Oja’s flow where D = Ik.
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Corollary 1. Let Ψ0 ∈ SO(n) be a basis matrix of the eigenvectors of A = A> > 0
and let D be in the diagonal form (9). For any equilibrium point X∞ of (4) we have

X∞X
>

∞
= Ψ0diag (ε1, . . . , εn)Ψ

>

0 ,

εi ∈ {0, 1}, ε1 + · · ·+ εn = rankX∞ and

X>∞X∞ = S
>diag (δ1, . . . , δk)S,

δi ∈ {0, 1}, δ1+ · · ·+δk = rankX∞, S = diag (S1, . . . , Ss), Si ∈ O(ki). In particular,
if rankX∞ = k, then X

>
∞X∞ = Ik.

3. The Weighted Subspace Flow

Another flow that achieves PCA is the weighted subspace flow introduced by Oja et
al. (1992a; 1992b). This is given as the matrix differential equation on

� n×k

Ẋ = AX −XX>AXD, (14)

where A = A> > 0 and D = D> > 0. (Actually, Oja et al. only consider the case
where D = diag (µ1, . . . , µk), µ1 > · · · > µk > 0.) We show that (14) admits a similar
convergence analysis as (4). We just state the relevant results; the proofs are similar
to those for (4) and therefore they are omitted.

Proposition 2. The gradient of the function g :
� n×k → �

g(X) :=
1

4
tr(X>AX)2 − 1

2
tr(A2XD−1X>) (15)

with respect to the Riemannian metric (6) is the real analytic vector field grad g :
� n×k → � n×k given by

grad g(X) = XX>AXD −AX.

In particular, the weighted subspace flow (14) is the negative gradient flow Ẋ =
−grad g(X) of (5).

Theorem 3. (i) The cost function (15) on
� n×k has compact sublevel sets and is

lower bounded. The solutions X(t) ∈ � n×k of the weighted subspace flow (14) exist
for all t ≥ 0 and, as t→ +∞, every solution X(t) converges to a single equilibrium
point X∞ = limt→∞X(t).
(ii) Equilibrium points of (14) are characterized by

AX∞ = X∞X
>

∞
AX∞D.

There is a close connection between the solutions of the Oja-Brockett flow and
the weighted subspace flow. This becomes particularly transparent if D is assumed
to be diagonal:

D = diag (µ1, . . . , µk), µ1 > · · · > µk > 0. (16)
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Lemma 2. Let A = A> > 0 and D satisfy (16). Then X(t) = (x1(t), . . . , xk(t)) ∈
� n×k is a solution of (14) if and only if

Y (t) := (
√
µ1x1(

t

µ1
), . . . ,

√
µkxk(

t

µk
))

is a solution of

Ẏ = AY D−1 − Y D−1Y >AY. (17)

Proof. It is straightforward.

Corollary 1. Let D satisfy (16).

(i) X∞ is an equilibrium point of (14) if and only if Y∞ = X∞D
1

2 is an equilibrium
point of (17). In particular, the equilibria points of (14) are given by

X∞ = Ψ0π

[

Ir 0

0 0

]

PD
1

2S,

where 0 ≤ r ≤ k ≤ n, P and π are k × k and n × n permutation matrices,
respectively, and S ∈ O(k) satisfies SDS> = D.
(ii) If µ1 > · · · > µk > 0, then the equilibria of (14) are given by

X∞ = Ψ0π

[

Ir 0

0 0

]

PD
1

2S

with S = diag (ε1, . . . , εn), εi ∈ {−1, 1}.

Proof. It is an immediate consequence of Lemma 2 and Theorem 2.

One additional interesting feature of the subspace flow in contrast to (4) is that
it defines a rank preserving flow.

Proposition 3. Let A = A> > 0 and D = D> > 0. Then the weighted subspace
flow (14) is rank preserving, i.e. for every solution X(t) of (14) we have

rankX(t) = rankX(0) ∀t ≥ 0.

Proof. By Proposition 2, X(t) exists for all t ≥ 0. Let F (t) := A and G(t) :=
−X(t)>AX(t)D, t ≥ 0. Then (14) is equivalent to the time-varying system

Ẋ(t) = F (t)X(t) +X(t)G(t), t ≥ 0.

By Lemma 1.12, p. 146, in (Helmke and Moore, 1994), the result follows.
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4. Hessians and Asymptotic Stability

Finally, we establish local stability properties of the Oja-Brockett flow. This immedi-
ately implies the corresponding results for the weighted subspace flow (4), which are
not, however, explicitly stated here. Let

X∞ = Ψ0π

[

Ir 0

0 0

]

PS ∈ � n×k

be an equilibrium point of (4). We calculate the signature of the Hessian of the cost
function f :

� n×k → �
, cf. (5), at X∞ and characterize the asymptotically stable

equilibria of (4).

Theorem 4. Let D = diag (µ1, . . . , µk) with µ1 > · · · > µk > 0 and let A = A> > 0
have distinct eigenvalues λ1 > · · · > λn > 0.
(i) Every critical point of f :

� n×k → �
is nondegenerate.

(ii) The signature of the Hessian at the equilibrium points

X∞ = Ψ0π





Ir 0

0 0



PS

is given by

ν+ := dimEig+(Hess f)(X∞) = nk − (n− r)(k − r) − s,

ν− := dimEig+(Hess f)(X∞) = (n− r)(k − r) + s,

where ν+ and ν− are the numbers of positive and negative eigenvalues of the Hessian,
respectively, and

s := card
{

(i, j); 1 ≤ i < j ≤ r and
(

π>(i)−π>(j)
)(

p(i)−p(j)
)

<0
}

.

(iii) In particular, the asymptotically stable equilibria are precisely those of the form

X∞ = Ψ0





Ik

0



S

with S = diag(ε1, . . . , εk), εi ∈ {−1, 1}.

Proof. The Hessian of f at a critical point X ∈ � n×k is computed as the quadratic
form in Ω ∈ � n×k given as

(D2f)(X)(Ω,Ω) =
1

2
tr
[

AΩDX>AXDΩ> +AXDΩ>AXDΩ>

+AXDX>AΩDΩ> −A2ΩD2Ω>
]

. (18)
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Substituting X∞ into (18) and setting Ω̃ = π
>ÑΨ>0 ΩHSP

> and Ñ = Ψ>0 NΨ0, we
obtain

(D2f)(X∞)(Ω,Ω) =
1

2
tr
[

Ω̃J>π>ÑπJΩ̃>π>Ñ−1π + JΩ̃>JΩ̃>

+ JPDP>J>Ω̃PD−1P>Ω̃> − Ω̃Ω̃>
]

where J = [ Ir 00 0 ] ∈
� n×k . Note that the corresponding quadratic form in Ω̃ is isomet-

ric to the Hessian (D2f)(X∞)(Ω,Ω) in Ω. Thus both the quadratic forms have the
same rank and signature. Choosing Ψ0 such that Ñ = diag(λ1, . . . , λn), λ1 > · · · >
λn, we have PDP

> = diag(λp(1), . . . , λp(k)) and π
>Ñπ = diag(λπ>(1), . . . , λπ>(n)).

By setting Ω̃ = (ωij) ∈
� n×k , the Hessian, expressed in Ω̃, decomposes as

Q1 +Q2 +Q3 +Q4,

where

Q1 =
1

2

r
∑

s,t=1

(

λπ>(s)

λπ>(t)
+
µp(t)

µp(s)
− 1
)

ω2ts +
1

2

r
∑

s,t=1

ωtsωst,

Q2 =
1

2

n
∑

t=r+1

r
∑

s=1

(

λπ>(s)

λπ>(t)
− 1
)

ω2ts,

Q3 =
1

2

r
∑

t=1

k
∑

s=r+1

(

µp(t)

µp(s)
− 1
)

ω2ts,

Q4 = −
1

2

n
∑

t=r+1

k
∑

s=r+1

ω2ts.

The signatures and ranks of Q2, Q3 and Q4 are obvious from their definitions.
Thus it remains to determine the signature of the quadratic form Q1. The form Q1
can be represented as

Q1 =
1

2

r
∑

s=1

ω2ss +
1

2

r
∑

s,t=1

s<t

ω>(st)Q(st)ω(st),

where

Q(st) =











λπ>(s)

λπ>(t)
+
µp(t)

µp(s)
− 1 1

1
λπ>(t)

λπ>(s)
+
µp(s)

µp(t)
− 1











and ω>(st) = (ωts, ωst). Q(st) has distinct eigenvalues and this proves (i). Since

detQ(st) =
λπ>(t)

λπ>(s)

µp(s)

µp(t)

(

λπ>(s)

λπ>(t)
+
µπ(t)

µπ(s)

)(

λπ>(s)

λπ>(t)
− 1
)(

1− µp(t)
µp(s)

)

,
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it is easily seen that Q(st) is positive definite if and only if

(

λπ>(s)

λπ>(t)
− 1
)(

1− µp(t)
µp(s)

)

> 0,

i.e., if and only if

λπ>(s) > λπ>(t) ⇐⇒ µp(s) > µp(t).

Therefore the positivity of Q(st) for all s, t = 1, . . . , r is in turn equivalent to π
>(s) =

p(s) for all s = 1, . . . , r. From inspection of Q2, Q3 and Q4 it follows that the
Hessian is positive definite if and only if r = k and π>(s) = p(s) for all s =
1, . . . , k. Thus the only asymptotically stable equilibrium point is X∞ = Ψ0[

Ik
0 ]S,

S = diag(ε1, . . . , εk), ∀εi ∈ {−1, 1}.
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