
Int. J. Appl. Math. Comput. Sci., 2001, Vol.11, No.1, 237–269 237

ON NETWORK MODELS AND THE SYMBOLIC

SOLUTION OF NETWORK EQUATIONS

Kurt J. REINSCHKE∗

This paper gives an overview of the formulation and solution of network equa-
tions, with emphasis on the historical development of this area. Networks are
mathematical models. The three ingredients of network descriptions are dis-
cussed. It is shown how the network equations of one-dimensional multi-port
networks can be formulated and solved symbolically. If necessary, the network
graph is modified so as to obtain an admittance representation for all kinds of
multi-ports. N -dimensional networks are defined as graphs with the algebraic
structure of N -dimensional vectors. In civil engineering, framed structures in two
and three spatial dimensions can be modeled as 3-dimensional or 6-dimensional
networks. The separation of geometry from topology is a characteristic feature
of such networks.

Keywords: history of network theory, network graphs, network equations, mod-

ified nodal analysis, admittance representation of multi-ports, multidimensional

networks

1. Introduction

Network modeling is applicable to any real-world system that fulfills the following
conditions. The signals occurring in the real-world system involve two types of vari-
ables:

(a) flow variables (FVs for short, also called through variables) obeying a cut law,
i.e., the flow quantities going through any closed cutting surface sum up to zero,

(b) difference variables (DVs for short, also called across variables) obeying a circuit
law, i.e., the difference quantities across adjacent points along any closed path
add up to zero.

Networks are interconnections of a finite number of network elements (modeled as
spatially lumped) which require interrelations between FVs and DVs defining the set
of network element relations (NERs).

For the special case of networks consisting of electrical wires, in 1845 Kirchhoff,
a 21-year-old student at that time, published what is now called the ‘node and mesh’
rules for electrical circuits (Kirchhoff, 1845). In the second half of the 19th century,
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electrical phenomena were often explained by referring to mechanical systems. The
term electromotive force was coined to stress the similarity between a voltage source
and a mechanical force: Both being driving forces in electrical and mechanical systems.
Hence, the first set of analogies (mechanical force corresponding to voltage, velocity
corresponding to current) was introduced and applied during the subsequent decades.
In the early 1930s, Hähnle (1932) and Firestone (1933) recognized the deficiencies of
this “classical” analogy and introduced a more complete type of analogy associating
forces with currents, and velocities with voltages. The approach of this paper is not
to discuss analogies. Rather, we focus on applying the concepts of network analysis
directly to various fields of physics and engineering.

As an introductory example let us consider an electromechanical oscillating sys-
tem (taken form (Reinschke and Schwarz, 1976)) whose cross-section is shown in
Fig. 1(a). A permanent magnet (with mass M1) oscillates within an electromagnet in
the vertical direction. The mechanical oscillations arise due to the effect of the springs
(F1). This system is encased (mass M2) and suspended by springs (F3). The casing
rests on rubber feet whose influence can be modeled by the springs F2 connected
to the ground. The system oscillates by applying a current through the excitor coil
(Transducer 1). The relative motion between the electromagnet and the permanent
magnet induces a voltage in the measurement coil (Transducer 2). The task could
be to find the velocities and acceleration of the electromagnet as well as the current
through the load resistor RL. The described system can be modeled as a network
as follows: Transducer 1 converts the driving current Iw1 into the force Fw1 , where-
as Transducer 2 converts a relative velocity vw2 into the voltage uw2 . Letting the
transducer constants be ü1 and ü2, we have Fw1 = ü1Iw1 , Vw1 = Uw1/ü1 and
Uw2 = ü2Vw2 , Iw2 = Fw2/ü2. We denote by L1 and L2 the inductances of the
transducer coils. These inductances are magnetically coupled with the iron parts of
the permanent magnet and electromagnet (mutual inductance L12). The two coils
are each glued to metallic holders which can be modeled as a one-winding coil with
inductance L3 (resp. L4). The holders are coupled to the transducer coils through
mutual inductances L13 and L24. The substantially weaker coupling between L3
and L2 /L4, as well as between L4 and L1 /L3, is ignored. RL2 denotes the loss
resistance of the measurement coil, Ri denotes the copper losses in the excitor coil
together with the internal resistance of the voltage source, and RL is the load re-
sistance (i.e., the input resistance of the connected device). Within the mechanical
part of the system each of the springs is modeled by a stiffness constant N and a
friction constant H ; the masses are denoted by M1, M2 and M3. A pictorial repre-
sentation of the network model is shown in Fig. 1(b). The one-port network elements
are consumers, FV storages and DV storages. Each transducer appears as a two-
port element. The inductively coupled coils appear as a 4-port network element. The
network graph reflects the network topology. The lines along which the DVs do not
change are modeled as nodes. The branch orientations can be chosen arbitrarily and
are pictorially represented by arrows. The network graph shown in Fig. 1(c) is discon-
nected and consists of five separate subgraphs. Disconnected network graphs can be
transformed into connected network graphs by identifying pairs of nodes belonging to
separate subgraphs. For the example system, one possibility is depicted in Fig. 1(d).
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Fig. 1. Electromechanical oscillating system: (a) cross-section of physical device,
(b) network model, (c) network graph consisting of five node-disjoint di-
graphs, (d) network graph modified to one connected digraph.
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This network graph has 10 nodes denoted by 0, 1, . . . , 9 and 21 branches denoted by
1, 2, . . . , 21.

2. The Network Problem

2.1. Topological Properties of the Network Graph

We assume the network graph G to be a connected digraph with z oriented branches
(each of them connecting two different nodes) and k + 1 nodes (where the node 0
serves as a reference node). The connectivity properties of network graphs can be
specified by means of cut surfaces or by means of circuits.

A subset of branches crossed by a cutting line forms a cut-set of branches if
the deletion of all the crossed branches would disconnect the network graph. After
associating an orientation with the cutting surface, the cut-set branch relations can
be specified by means of a cut-set branch incidence vector whose entry ζ is defined
as 1, −1, or 0 if the branch ζ belongs to the cut-set and is equally oriented, opposite
oriented or does not belong to the cut-set. If we consider several cut-sets, say r
altogether, all the information may gathered in an (r, z) incidence matrix K̃. For
the introductory example, an oriented cutting line S1 and the corresponding row
vector of the incidence matrix K̃ are depicted in Fig. 2.
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Fig. 2. Oriented cut-set and cut-set branch incidence matrix.

In this paper, the term circuit denotes an oriented closed path on the network
graph. Given any circuit, each branch is associated with an integer indicating how
many times the circuit passes through the branch. One additional passing in accor-
dance with the branch orientation increases the index by 1, one additional passing in
the opposite direction decreases the index by 1. Consequently, the given circuit can
be uniquely characterized by a circuit branch indicator vector. If we consider several
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circuits, say t altogether, all the information can be gathered in a (t, z) indicator
matrix M̃ used by Weyl (1923). For the example system, one circuit C1 and the
corresponding row vector of M̃ are depicted in Fig. 3.
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Fig. 3. Circuit and circuit branch indicator matrix.

The componentwise products of the row vectors of K̃ and of M̃ sum up to zero.
This may be interpreted as orthogonality of the row vectors and written concisely in
the form

K̃ M̃T = 0. (1)

Cut sets corresponding to linearly independent row vectors of K̃ are called inde-
pendent cut sets. The maximum number of independent cut sets is equal to k. One
maximal collection of independent cut sets which is particularly suited to our purpose
of network analysis is given by the k branch sets incident with the individual nodes
1, 2, . . . , k. For the example system, Fig. 4 shows this collection of independent cut
sets. Then the matrix K̃ becomes the node branch incidence matrix K introduced
by Poincaré (1895). K is of size (k, z) and is row regular. The entry (κ, ζ) of K is
defined as 1, -1, or 0, if the branch ζ starts at node κ, terminates at node κ, or is not
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Fig. 4. Independent node cut sets and one possible set of tree branches.

incident with node κ. Any non-vanishing minor of order k of K, i.e., the determinant
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of any (k, k) submatrix formed by the common entries of the row vectors 1, 2, . . . , k
and any pairwise different set of k column vectors ζ1, ζ2, . . . , ζk of K, corresponds
to a (spanning) tree of G. More specifically,

Kζ1 ζ2···ζk1 2 ···k =







1 or −1 if the branches ζ1, ζ2, . . . , ζk form a tree,

0 otherwise.
(2)

A (spanning) tree of G is a connected subgraph involving k branches and all the
k + 1 nodes. In Fig. 4 the branches of one particular tree of the example system are
marked by thick lines.

In 1923 Weyl observed: “The integral solutions of Kx = 0 give the circuits of
the network graph.” (The term “integral solution” may be expressed differently: the
components of x are integers.)

Consequently, there are at most z−k independent circuits. After specification of
a spanning tree, a set of z−k independent circuits can be defined that is particularly
suited to network analysis: the so-called basic meshes determined by the z−k co-tree
branches, i.e., by the branches belonging to the subset complementary to the tree.

The basic meshes are generated as follows: Pick a co-tree branch and add only
tree branches so as to obtain a circuit of shortest length. The orientation of the co-
tree branch is carried over to the orientation of the mesh. In Fig. 5, the procedure is
illustrated by two basic meshes for the example system. The circuit branch indicator
matrix M̃ appears now as the mesh branch incidence matrix M of size (z − k, z).
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Fig. 5. A spanning tree in the network graph and the two basic meshes
that are defined by the links 7 and 14.

Rank M = z − k since each mesh contains one branch not contained in all the
other meshes. The orthogonality relations read

KMT = 0. (3)

Equation (3) is a special case of (1). Fortunately, the incidence matrices K and M are
sufficient to describe completely the cut and circuit laws. This is true since every cut-
set and every circuit-set, respectively, can be described as a linear combination of the
k independent branch sets incident with the nodes as well as the z − k independent
basic meshes associated with any chosen tree.

We remark that although the term “tree” was coined by Cayley (1857), Kirchhoff
had made use of the concept ten years earlier (Kirchhoff, 1847). Weyl was the first to
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completely expound network graph topology in (Weyl, 1923), explicitly acknowledging
the related works of Poincaré (1895) and Veblen (1916).

2.2. Formulation of the Network Equations

Figure 6 shows, in pictorial form, the branch representation in its most general form,
including the sign conventions used in this paper. The branch is associated with an
independent FV source and an independent DV source. The three dots across which
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Fig. 6. General form of a branch: (a) pictorial representation of branch ζ leading
from node κ1 to node κ2, (b) branch ζ as part of the network graph.

the DV uζ appears in Fig. 6 symbolize the NERs of branch ζ. The three dots may
stand for the symbol of a resistor (i.e., an ohmic resistor in electrical networks), a
FV storage (e.g., a capacitor) or a DV storage (e.g., an inductor). In all these cas-
es, the NERs represent a unique mapping between the FV iζ and the DV uζ . This
is typical of the so-called one-port branches. Figure 6, however, remains valid also
for multi-port networks, i.e., networks with interdependencies between FVs and DVs
of different branches caused by inductive couplings, controlled sources, or genuine
multiport elements such as transistors, transducers, etc. A general n-port network
element is depicted in Fig. 7. Examples of 2-ports are ideal transformers, gyrators,
ideal amplifiers, controlled DV sources, controlled FV sources, nullors (i.e., a nullator
branch combined with a norator branch). Figure 8(a) gives the general pictorial rep-
resentation of a two-port network element together with its NERs in implicit form.
Figure 8(b) explains the special case of a nullor.

The branch DVs, the branch FVs, the DVs across the independent DV sources,
the FVs through the independent FV sources, and the node DVs are considered to
be components of the vectors u, i, ue, ie, i0 and uφ, respectively.

The cut law for the FVs may be formulated as K (i+ ie) = 0, or, taking into
account (3) and expressed differently, i + ie ∈ image {MT }, i.e., MT i0 = i + ie,
where the z − k componenets of i0 may be interpreted as mesh DVs. In the sequel,
we can make use of both the mathematically equivalent formulations of the cut law,

K(i+ ie) = 0 or MT i0 = i+ i
e. (4)

Analogously, there are two equivalent formulations of the circuit law:

M(u+ ue) = 0 or KTuφ = u+ u
e, (5)
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Fig. 8. Two-port network elements: (a) general two-port and its NERs,
(b) nullor and its NERs.

where the k components of uφ may be interpreted as node DVs (with respect to
the reference node 0). It should be noted that the FV-vectors in (4) are entirely
independent of the DV-vectors in (5). Moreover, the FVs and the DVs subject to (4)
and (5) may be elements of a very loose algebraic structure (abelian group with respect
to addition) since multiplication with an incidence matrix means merely addition
and/or subtraction of the network variables.

If the FV-vectors and DV-vectors are interpreted as elements in a z-dimensional
space equipped with an inner product, then (3) has an immediate consequence:

(u+ ue)T (i+ ie) = uφKM
T i0 = 0.

Stated geometrically, the (z − k)-dimensional subspace of FV-vectors is orthogonal
to the k-dimensional subspace of DV-vectors. It took the network theorists decades
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to understand thoroughly this fundamental fact. Related discussions are contained in
(Kron, 1939; LeCorbeiller, 1950; Synge, 1951; Tellegen, 1953; Weyl, 1923).

Any complete network description contains the third principal ingredient: net-
work element relations (NERs) between FVs and DVs. The NERs require a stronger
algebraic structure of the network variables such as multiplicability with real num-
bers, differentiability with respect to time, etc. The NERs in their most general form
may be implicitly written as

f(u, i) = 0. (6)

All the three ingredients of a network description can be arranged in a transformation
diagram (Branin, 1966), see Fig. 9.

i0 i+ ie 0

−ie iφ
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uφu+ ue0

cut law

network

element relations

circuit law

f(u, i) = 0
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KMT
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Fig. 9. The three ingredients of network models.

The network problem can be defined as follows: Given
(i) a network graph with incidence matrices K and/or M ,

(ii) NERs f(u, i) = 0,

(iii) independent source vectors ie and ue,
find an FV-vector i and a DV-vector u such that eqs. (4)–(6) are fulfilled.

From Fig. 9 we observe that various systems of equations admit network analysis:

(i) the branch-DV branch-FV equations

(

M 0

0 K

)(

u

i

)

=

(

−M ue

−Kie

)

, f(u, i) = 0 (7)

with 2z unknowns, often referred to as sparse tableau analysis (STA),

(ii) equations for node-DV branch-FV analysis (NBA)

f(KTuφ − u
e, i) = 0, Ki = −K ie = iφ (8)

with k + z unknowns,
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(iii) equations for mesh-FV branch-DV analysis (MBA)

f(u, MT i0 − i
e) = 0, Mu = −M ue = u0 (9)

with 2z − k unknowns,

(iv) equations for node-DV mesh-FV analysis (NMA)

f(KTuφ − u
e, MT i0 − i

e) = 0 (10)

with z unknowns.

The duality between (8) and (9) deserves to be noted. It appears that Maxwell was
the first to use the idea of duality in his study of frameworks (Maxwell, 1870). In this
paper, we mainly restrict our attention to NBA. In general, little can be said about
the unique solvability of the nonlinear equations (8). However, if the NERs are of the
form

f(u, i) = Y u− i = 0,

where uTY u 6= 0 for all u 6= 0, the linear operator Y is termed “ohmic.” Then the
network problem has a unique solution (Roth, 1959).

Network models may be classified according to the algebraic structure of the
branch FVs and the branch DVs. If they are real or complex numbers, i.e., they
are elements of a one-dimensional vector space, then one refers to one-dimensional
networks. If the branch FVs and branch DVs are elements of an N -dimensional vector
space, then the networks are called N -dimensional networks.

3. One-Dimensional Networks

3.1. One-Port Networks

For one-port networks, the NERs are given by z FV-DV relations (for the z individual
branches)

fζ(uζ , iζ) = 0 (ζ = 1, . . . , z). (11)

For linear time-invariant network elements, the NERs have the well-known time and
frequency domain equations:

resistor: iζ(t) = Guζ(t), Iζ(s) = GUζ(s),

FV storage: iζ(t) = C u̇ζ(t), Iζ(s) = sC Uζ(s),

DV storage: i̇ζ(t) =
1
L
uζ(t), Iζ(s) =

1
sL
Uζ(s).

(12)

In the frequency domain, the concept of branch admittances defined by yζζ(s) =
Uζ(s)/Iζ(s) has proved to be useful. Making use of the branch admittance matrix

Y (s) = 〈y11(s), y22(s), . . . , yzz(s)〉 ,
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eqn. (8) can be rewritten as Y (KTUφ − U
e) + I = 0 and KI = −KIe, which leads

to the node-DV equations

KYKT Uφ = K(Y U
e − Ie). (13)

If we had used (9), similar reasoning would have led us to the mesh-FV equations

MZMT I0 =M(ZI
e − Ue), (14)

where Z(s) = 〈z11(s), z22(s), . . . , zzz(s)〉 = (Y (s))
−1 denotes the branch impedance

matrix.

It was one of the earliest findings of network theory that node-DV equations and
mesh-FV equations

KYKTUφ = I
e, φ
aux and MZMT I0 = U

e
φ, aux

can be solved symbolically by inspecting the network graph (Kirchhoff, 1847; Maxwell,
1882). The Cauchy-Binet formula (Cauchy, 1815) gives a key to a thorough under-
standing of the facts announced in (Kirchhoff, 1847; Maxwell, 1882):

det(KYKT ) = det(K(Y KT )) =

(zk)∑

i=1

Ki1 i2···ik1 2··· k

(
Y KT

)1 2··· k

i1 i1···ik

=

(zk)∑

i=1

Ki1 i1···ik1 2··· k





z
k∑

j=1

Y j1 j2···jki1 i2···ik
(KT ) 1 2 ··· kj1 j2···jk





=

(zk)∑

i,j

Ki1 i2···ik1 2··· k Y j1 j2···jki1 i2···ik
Kj1 j1···jk1 2··· k , (15)

where Ki1 i2···ik1 2···k was explained above, see (2). Since the branch admittance ma-

trix Y is diagonal in the case of linear 1-port networks, we have Y j1 j2···jki1 i2···ik
6= 0 iff

{i1 i2 · · · ik} = {j1 j2 · · · jk}. Then (Maxwell, 1882) det(KYK
T ) =

∑

(i) Y
i1 i2···ik
i1 i2···ik

=
∑

(i) (product of the admittances of all branches of tree i).

Analogously, it can be derived that (Kirchhoff, 1847) det(MZMT ) =
∑

(i)(product of the impedances of all branches of co-tree i).

Furthermore,

det(MZMT )

det(KYKT )
= detZ = (det Y )−1.

Formally replacing every branch admittance by the real number 1, the total number
of trees can be calculated as

nT = det(KK
T ) = det(MMT ).

In the case of RLC-networks we can state the following: The network deter-
minants det(KYKT ) or det(MZMT ) can be calculated symbolically by means of
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enumeration of all the trees of the network graph. Every tree corresponds to one
term in a sum, cf. the right-hand side of (15). All these terms have the same sign,
and no cancellations of terms can thus occur. The tree enumeration method was
published in the thirties (Ting, 1935; Tsai, 1939; Wang, 1934), later on algebraically
substantiated (Bellert, 1962; Bott and Duffin, 1953; Duffin, 1959; Seshu and Reed,
1961; Trent, 1955), and has been implemented for CAD purposes since the sixties
(Chen, 1967; Chua and Lin, 1975; Dmitrischin, 1969; Mayeda and Seshu, 1965; Trochi-
menko, 1972). For related papers published in the seventies and eighties, see the mono-
graphs (Gieben and Sansen, 1991; Lin, 1991). The applicability of this approach has a
limitation: the number of trees may increase exponentially with the number of nodes.
Indeed, for a complete network graph (i.e., a graph in which every pair of nodes is
connected by exactly one branch) the number of trees equals k(k−2). Fortunately,
complete graph structures are not typical of practical network models. But even for
ladder networks we observe a growth in the number of trees depending exponentially
on the number of ladder sections (see Lin, 1991, p.47). As for the actual usefulness of
this method, much depends on the skills of the investigator. Frequently, it does not
make sense to explicitly print out thousands of symbolic expressions corresponding
to thousands of trees. The trees need not actually be determined. All information
is contained in the main diagonal elements of (KYKT )κκ, where the admittances
of all the branches connected to the node κ are summed-up symbolically. Then the
product

∏k
κ=1(KYK

T )κκ, if evaluated according to the rules of the Wang algebra,

(x+ x
W
= 0, x · x

W
= 0 ), yields the desired network determinant in symbolic form. Of

course, a complete resolution of all brackets will often appear as an inefficient way of
evaluating the determinant.

As an example, consider the small electrical network depicted in Fig. 10 and find
a symbolic expression for the network determinant det(KYKT ). Obviously, k = 3.

1

2

3

0

Fig. 10. Example of an RLC-network.

As for the number of branches, let us discuss two possibilities. If each passive element
corresponds to one branch, then z = 9 and the number of trees is

nT = det






4 −1 0

−1 3 −2

0 −2 5




 = 39.
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If we take z = 4 branches with the admittances y1 = G1 + sC1 + (sL1)
−1, y2 =

(sL2)
−1, y3 = G5 + sC3, y4 = G4 + sC4 + (sL4)

−1, then nT = det
(
2 −1 0
−1 2 −1
0 −1 2

)

= 4.

The above-mentioned rules of the Wang-algebra give

det(KYKT )
W
= (y1 + y2)(y2 + y3)(y3 + y4)

W
= (y1 + y2)(y2(y3 + y4) + y3y4)

W
= y1[y2(y3 + y4) + y3y4] + y2y3y4.

3.2. Multi-Port Networks with Admittance Representations

One-dimensional networks containing NERs with interdependencies between FVs and
DVs of different branches are called multi-port networks. First, let us assume that all
the multi-ports contained in the network have an admittance representation. Then
the NERs of the multi-ports can be written as IM − YMUM = 0, and the NERs of
the one-ports as before, I −Y U = 0. To get a complete set of network equations, the
cut and circuit laws are formulated as

(

KKM

)
(

I + Ie

IM + I
e
M

)

= 0,

(

U + Ue

UM + U
e
M

)

=

(

KT

KTM

)

Uφ.

The nomenclature has been slightly changed from the one previously used so as to
illustrate the role played by the multi-port network elements. To avoid confusion, an
example with 8 one-port branches and three two-ports is depicted in Fig. 11. The
node-DV equations appear now in the augmented form

(K KM )〈Y YM 〉(K KM )
T
Uφ = (K KM )

(

Y Ue − Ie

YMU
e
M − I

e
M

)

.

The network determinant can again be evaluated by applying the Cauchy-Binet for-
mula twice,

det[(K KM ) 〈Y YM 〉 (K KM )
T ] = det(K Y K

T
)

=
∑

(i,j)

K
i1 i2···ik
1 2 ···k Y

j1 j2···jk
i1 i2 ···ik

K
j1 j2···jk
1 2 ···k .

In contrast to (15), there now exist non-vanishing minors Y
j1 j2···jk
i1 i2···ik

taken from the row
sets i1, . . . , ik and the column sets j1, . . . , jk with {i1, . . . , ik} 6= {j1, . . . , jk}. The
associated ‘i’-tree and ‘j’-tree may differ from each other. Nevertheless, it is possible
to formulate topological rules for a symbolic evaluation of the network determinant,
see, e.g., (Reinschke and Schwarz, 1976). Due to a lack of space, the details are
omitted here. In Section 3.3, related questions will be discussed in a more general
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(a)

(b)
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=
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)
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
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y
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y
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y
(2)
11 y
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y
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y
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y
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
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


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

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







(d)

Fig. 11. Active RC circuit: (a) RC circuit with three transistors, (b) small
signal network model, (c) admittance representation of a transistor,
(d) network graph and branch admittance matrix.
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framework. As for the computer-aided network analysis, it is sometimes advantageous
to use systems of network equations whose coefficients depend affinely on the complex
frequency s. This is not the case if the network contains both DV and FV storages.
Gyrators introduced in the forties (Tellegen, 1948) are non-reciprocal passive two-port
elements which are able to transform a DV storage into an FV storage and vice versa.
The deliberate insertion of gyrators offers a general possibility to avoid one of the
two types of storages. Figure 12 also illustrates another possibility: The NERs of all
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� IL
�
κnew

Unew = IL
�

�

�� �

��

Fig. 12. Two possibilities to get modified nodal equations whose coefficients
are affine functions of the complex frequency s.

inductor branches can be summarized in the equation UL = s < L > IL. We augment
the network graph by as many additional branches and as many additional isolated
nodes as there exist inductor branches. Each additional branch connects one terminal
node of one inductor branch with one isolated new node and works as a current
controlled voltage source. Denoting the node inductor-branch incidence matrix by
KL, and the node branch incidence matrix of all the other branches by K̃, the node
equations of the modified network can be written as (a detailed proof relies on the
arguments explained in Section 3.3)

(

sL KTL
KL K̃Ỹ K̃T

)(

IL

Uφ

)

= · · · .

The price to be paid is obvious: By including one further inductor in the network, the
number of graph nodes increases by one. The total number of network trees, however,
remains unchanged.

A few remarks about the symbolic solution of linear network equations are in
order. If the inner structure of the network equations is neglected, any method of
symbolic evaluation of determinants can be applied. In particular, graph theory pro-
vides useful tools to tackle this problem. There are several possibilities of constructing
digraphs that have a one-to-one correspondence with a given square matrix A and
obtaining the determinant detA by inspection of the digraph. (For example, see the
Appendix in (Reinschke, 1988).) The first graph-theoretic interpretation of determi-
nants was published by Cauchy (1815), reformulated by Jacobi (1841), and re-invented
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by Coates (1959). Each term of detA corresponds to a spanning cycle family in the
digraph. This method is cancellation-free, i.e., if the matrix entries are mutually inde-
pendent, then no terms which cancel each other are generated. In König’s monograph
(1936) square matrices are represented by bipartite graphs. Each term of the determi-
nant corresponds to a matching, and this method is also cancellation-free. Seen from
the mathematical point of view, both the approaches are equivalent. As for computer
implementations, the matching algorithms have advantages. The symbolic solution of
linear algebraic equations can be traced back to the evaluation of determinants as

follows: Let Ax = a, y = cTx. Then y = cTA−1a = det
(
A a
−cT 0

)

/detA = D/N and

det
(
A a
−cT p

)

= pN + D. The augmented determinant is a linear polynomial in the

parameter p. The coefficients are the denominator D and the numerator N . The so-
called signal-flow graphs published by Mason became popular in the sixties (Mason,
1953). These graphs have the disadvantage that the algebraic equations must be of
the form x = Ax+ b.

Network equations, in particular those which arise in node-DV analysis, have
an inner structure which leads to mutual dependencies between the matrix entries.
Unfortunately, general determinant-based evaluation methods such as the Cauchy-
Coates method are not capable of taking advantage of the matrix structure. Roughly
speaking, the node-DV equations are of the form

K Y KT =

k∑

i,j=1

yij K•i (K•j)
T ,

where K•j denotes the j-th column of the node branch incidence matrix K. The
dyadic product K•i (K•j)

T gives a structural “stamp” defined by the node branch
incidence relations of the branches j and i. Stated in another way, the network co-
efficient matrix is a weighted sum of stamps of the same size. Each term of the sum
reflects the influence of one network parameter appearing as an entry of the branch
admittance matrix Y of the network. Graph-based methods for the symbolic solution
of the network equations are discussed in the next section.

3.3. Generation of Admittance Representations for All Kinds of Network

Elements and Topological Determination of Network Determinants

Many multi-port models such as ideal transformers, operational amplifiers, nullors,
DV controlled and FV controlled DV sources or FV controlled FV sources do not
have an admittance representation. Each linear n-port, however, can be specified by
a linear implicit representation

AIM +B UM = 0 (16)
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with (n, n) matrices A and B. For any linear time-invariant network, a complete
set of network equations can be written as











E −Y 0 0 0

0 E 0 0 −KT

0 0 E 0 −KTM
0 0 0 A BKTM
0 0 0 KM KYKT





















I

U

UM

IM

Uφ











=











0

−Ue

−UeM
BUeM
−Ieφ











,

where −Ieφ := K(Y U
e − Ie)−KM I

e
M and E denotes the identity matrix.

The essential part of those network equations consists of the last two hyper-rows.
We shall show that they may be interpreted as nodal equations of a modified net-
work model. For this purpose, the network graph is supplemented with n additional
branches between n isolated nodes and the reference node, acting as FV controlled
DV sources. It deserves to be noticed that the total number of (spanning) trees does
not change with this modification of the network graph.

An example is shown in Fig. 13: an RLC-network with an operational amplifier
modeled by a nullor (Fig. 13(a)) and the corresponding augmented network graph
(Fig. 13(b)). There are two additional branches between the newly introduced isolated
nodes 4, 5 and the reference node. The mathematical formulation of the circuit law
and the cut law for the augmented network are presented in Fig. 14. The NERs are
nothing else than the desired admittance representation of all network elements. The

matrix Y may be regarded as an augmented branch admittance matrix. The network
problem is solvable iff the network determinant does not vanish. Again, the Cauchy-
Binet formula is suited to symbolically determine the network determinant. Let zM
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Fig. 13. Network model and augmented network graph.
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� new nodes

��

Given
network graph

reference node

Augmented

network graph:

Uadd = IM

Iadd = 0

cut law:

(
E 0 0

0 KM K

)




Iadd

IM

I



 =

(
0

−KIe −KMI
e
M

)

circuit law:





Uadd

UM

U



 =





E 0

0 KTM

0 KT





(
Uadd

Uφ

)

+





0

−UeM

−Ue





NERs:





Iadd

IM

I



−





A B 0

E 0 0

0 0 Y





︸ ︷︷ ︸

=:Y





Uadd

UM

U



 =





0

0

0





Coefficient matrix of modified nodal analysis (MNA):

K Y K
T

:=

(
E 0 0

0 KM K

)




A B 0

E 0 0

0 0 Y









E 0

0 KTM

0 KT





=

(
E 0 0

0 KM K

)




A BKTM

E 0

0 YKT



 =

(
A BKTM

KM KYKT

)

Fig. 14. Augmentation of the network in order to allow of admittance
representations for all kinds of network elements.

and z be the total number of multi-port and one-port branches, respectively. Then

det

(

A BKTM
KM KYKT

)

= det

(

K Y K
T
)

=

(
z+zM
k+zM

)

∑

i,j=1

K
i1···izM+k

1···zM+k Y
j1···jzM ···jzM+k

i1···izM ···izM+k
K
j1···jzM+k

1···zM+k

=
∑

(i,j)

K
izM+1···izM+k

zM+1···zM+k Y
j1···jzM jzM+1···jzM+k

i1···izM izM+1···izM+k
K
jzM+1···jzM+k

zM+1···zM+k .

The last equality results from the particular structure of the augmented incidence

matrix K. The first zM columns of K must be used to get a regular (zM +k)-minor
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of K that corresponds to a tree in the augmented network graph. The (zM + b)-
minors of the square matrix ( A BE 0 ), where 0 < b < zM , are most important for the
symbolic evaluation of the network determinant. The minor

(

A B

E 0

)1···zM j1···jb

1···zM i1···ib

=: (YMT )
j1···jb
i1···ib

is associated with that part of the network graph which consists of the multi-port
branches i1, . . . , ib within the ‘i’-tree and the multi-port branches j1, . . . , jb within
the ‘j’-tree. The small example introduced in Fig. 13 may help us to explain the basic
ideas for the symbolic evaluation of the network determinant (see Fig. 15). The node
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Fig. 15. Network determinant for the example of Fig. 13.

branch incidence matrix of the augmented graph has 3+2 = 5 rows and 2+2+5 = 9
columns. The non-vanishing terms of the network determinant are 5-minors of the
augmented branch admittance matrix, i.e., determinants of (5, 5)-matrices whose rows
are defined by an i-tree whereas the columns are defined by a j-tree. It is evident that
each j-tree and each i-tree contain the two newly added branches. Consequently, the
(2, 2)-submatrix in the left upper corner must be contained in any (5, 5)-submatrix.
Continuing this discussion, we could conclude: There is exactly one non-vanishing
5-minor, and—apart from the sign—the network determinant is equal to the product
of admittances of branch 5 and of branch 8. On the basis of these preliminary remarks,
we are able to formulate a general evaluation rule:

NW-Det =

zM∑

b=0

( zMb )∑

i,j=1

(YMT )
j1···jb
i1···ib

· Remainder-NW-Det.

Comments on the individual terms in the double sum (see Fig. 16):

1. Let b = 0 : (YMT ) = detA. Removal of the zM multi-port branches creates the
remainder-NW-graph. Remainder-NW-Det = det(KYKT ).
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Fig. 16. Evaluation of the network determinant. Notation:
‘◦’ a multi-port branch to be removed,
‘+’ a multi-port branch to be contracted,
‘↓, →’ a pair of multi-port branches to be completed to branch-disjoint meshes.

2. Let b = zM : (YMT )
···

···
= det(−B). The remainder-NW results from coalescing

both terminal nodes of each individual multi-port branch to one node.

3. Let 0 < b < zM : (YMT )
j1···jb
i1···ib

= (−1)b · det((zM , zM )−matrix generated by
replacing the A-columns i1 · · · ib by the B-columns j1 · · · jb).

The remainder-NW graph is formed as follows:

(a) Both the terminal nodes of each multi-port branch within the branch set
{i1, . . . , ib} ∩ {j1, . . . , jb} coalesce to one node. The multi-port branches
not contained in the branch set {i1, . . . , ib} ∪ {j1, . . . , jb} are removed.

(b) If there remain d(< b) branches in {i1, . . . , ib} and d branches in
{j1, . . . , jb}—neither short-circuited in step (a) nor open-circuited in step
(a)—then the d branches of the j-tree correspond to d columns of B
whereas the d branches of the i-tree correspond to d differently indexed
rows of E. Within the network graph, the d j-tree branches and the d
i-tree branches may be pairwise completed (by means of topologically suit-
able existing branches) to d branch-disjoint meshes. Assume that there are
m different possibilities to construct d disjoint meshes. Then we denote by
yM,µ the µ-th mesh admittance defined as the product of the admittances
of all 1-port branches occurring within the d meshes of the µ-th mesh set
(µ = 1, . . . ,m). We set yM,µ = 1 if the d meshes of the µ-th mesh set
do not contain a 1-port branch. Afterwards, the µ-remainder-NW-graph
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is generated by coalescing each of the d meshes into one node. We have

remainder-NW-Det =

m∑

µ=1

yM,µ · (µ-remainder-NW-Det).

If the modified network graph is connected and contains only 1-port
branches, then the remainder-NW-Det may be determined according to the
rules for connected 1-port networks. In the case of a disconnected modified
graph, the remainder-NW-Det is equal to zero.

At first glance, the above-mentioned rules appear to be cumbersome. In applying
the outlined approach, several multi-port elements can be successively taken into
account, step by step. Consider a network model containing two multiports associated

with matrices A1, B1 and A2, B2. Then the admittance matrix Y can be rewritten
by means of permutation of rows and columns as follows:

(

A B

E 0

)

=








A1 B1

A2 B2

E1

E2







equivalent








A1 B1

E1 0

A2 B2

E2 0







.

Let us derive more explicit symbolic expressions for networks with one two-port
element in the form (16). The network determinant appears as a sum of terms which
can be enumerated according to the minors of the (4, 4) matrix








a11 a12 b11 b12

a21 a22 b21 b22

1 0 0 0

0 1 0 0







.

The terms to be summed up are:

(a) det

(

a11 a12

a21 a22

)

· Remainder-NW-Det,

provided the remainder network resulting from the given network graph by
removal of both two-port branches is connected;

(b) det

(

b11 b12

b21 b22

)

· Remainder-NW-Det,

provided the remainder network resulting from short-circuiting of both the two-
port branches is connected;

(c) det

(

a12 b11

a22 b21

)

· Remainder-NW-Det,

provided the remainder network resulting from short-circuiting of the first two-
port branch and removal of the second two-port branch is connected;
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(d) − det

(

a11 b12

a21 b22

)

· Remainder-NW-Det,

provided the remainder network resulting from short-circuiting of the second
two-port branch and removal of the first two-port branch is connected;

(e)

[

det

(

a12 b12

a22 b22

)

− det

(

a11 b11

a21 b21

)]

×
[
∑m
µ=1(µ-th mesh admittance) · (µ-remainder-NW-Det)

]

,

provided there exist m meshes containing both two-port branches such that the
µ-th remainder network resulting from coalescing the µ-th mesh to one node is
connected.

A two-port of special interest is the “nullor” defined in Fig. 2. In this case, the
terms mentioned above (a)–(d) vanish. In the term (e) we have

∣
∣
∣
∣
∣
det

(

a12 b12

a22 b22

)

− det

(

a11 b11

a21 b21

)∣
∣
∣
∣
∣
= 1.

This implies that the symbolic evaluation of network determinants for networks with
nullors should start with a search for nullor meshes, i.e., meshes containing one nul-
lator branch and one norator branch. Two conclusions can be drawn from this:

(i) A simple criterion for the solvability of the network problem: The determinant
of a network whose multi-port elements are modeled by means of n nullors may
be non-zero only if the n nullator branches and the n norator branches can be
completed to n branch-disjoint nullor meshes.

(ii) An efficient way to symbolically evaluate the numerators of transfer functions:
Augment a given network graph with an additional nullor (whose nullator branch
and norator branch, respectively, connect the nodes κ1 and κ2 with the reference
node), and then the network determinant of the augmented network is just the
(κ2, κ1)-cofactor of the determinant of the original network. The proof is sketched
in Fig. 17.

For illustrative purposes, an example system is depicted in Fig.18. The aim is to
symbolically determine the transfer function Uφ5(s)/U

e(s). The denominator is equal
to the network determinant. The network graph (see Fig. 18(b)) contains one nullor
mesh. The remainder network coalesces into the reference node, i.e., the remainder
network determinant equals 1. Hence, network determinant = nullor mesh admittance
= G1G2G3G4. The numerator is given by the (1,5)-cofactor. The associated network
graph results from augmenting the given network graph by a nullator branch and
a norator branch as depicted in Fig. 18(c). The augmented network contains two
branch-disjoint nullor meshes, each with a mesh admittance equal to 1. The remainder
network graph generated through coalescing both nullor meshes contains 21 trees.
Thus the numerator consists of 21 terms to be summed. The term with the highest
degree in s results from the branch set {8, 7, 6} and is equal to s3 C8 C7 C6.
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3.4. Nonlinear Multi-Port Networks

Assume that the NERs are given as follows:

ia = f1(u, u̇), 0 = f2(u, u̇, ib, i̇b),

i.e., some components of the FV-vector i are explicitly known as functions of the DV-
vector u and its time derivative u̇, whereas the other components symbolized by ib
are implicitly represented. On the basis of augmenting the network graph as depicted
in Fig. 14, we are able to represent the entire FV-vector i = (iTb , i

T
a )
T in the explicit

form





iadd

ib

ia




 =






f2(u, u̇, ib, i̇b)

uadd

f1(u, u̇)




 . (17)

If the aim is to carry out an MNA, the cut and circuit laws should be respectively
formulated as

(

E 0 0

0 Kb Ka

)





iadd

ib + i
e
b

ia + i
e
a




 =

(

0

0

)

(18)

and





uadd

ub + u
e
b

ua + u
e
a




 =






E 0

0 KTb
0 KTa






(

uadd

uφ

)

. (19)

Combining (17)–(19), the network equations for the MNA are obtained as

f2(K
Tuφ − u

e,KT u̇φ − u̇
e, ib, i̇b) = 0, (20)

Kbib +Kaf1(K
Tuφ − u

e,KT u̇φ − u̇
e) =−Kie.

Next, let us consider a class of nonlinear networks which are of particular impor-
tance for computer aided design of large-scale electronic networks (see, e.g., (Günther
and Feldmann, 1999) and many references cited therein). During simulation, the con-
servation of electric charges and magnetic fluxes should be ensured. Stated in general
terms, integrated FVs, in the sequel denoted by q, and integrated DVs, in the se-
quel denoted by ψ, must be taken into account. For this purpose, the linear NERs
uL = L i̇L and ic = C u̇c are replaced by the NERs of the form

uL =
d

dt
ψ and ic =

d

dt
q,

where ψ and q may be regarded as given nonlinear, possibly time-varying vector-
valued functions

q = g1(uc, t) and ψ = g2(iL, t).
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Then the entire set of NERs may be written as

uL = ψ̇, ic = q̇, ia = f1(u), f2(ib, u) = 0,

where iL is contained in ib. On the basis of augmenting the network graph as explained
above (see Fig. 14), the entire FV-vector i = (iTc , i

T
b , i
T
a )
T can be represented in

explicit form

iadd = f2 (ib, u), ic = q̇, ib = uadd, ia = f1 (u).

Taking into account both the cut and circuit laws,

(

E 0 0 0

0 Kc Kb Ka

)








iadd

ic + i
e
c

ib + i
e
b

ia + i
e
a







=

(

0

0

)

and
(

uadd

u+ ue

)

=

(

E 0

0 K

)(

uadd

uφ

)

,

the following equations of charge/flux-based MNA can be derived:

ψ̇ −KTLuφ + u
e
L = 0,

Kcq̇ +Kbib +Kaf1(K
Tuφ − u

e) = −Kie,

f2(ib,K
Tuφ − u

e) = 0,

q = g1(uc, t),

ψ = g2(iL, t).

4. Multi-Dimensional Networks

By an N -dimensional network we understand a network model for which the FVs
and DVs associated with the individual nodes and branches of the network graph are
N -dimensional vectors.

As a first example, consider the Newtonian n-body problem (Reibiger and Elst,
1983). The question to be answered is how n spatially lumped bodies with mass-
es M1, M2, . . . ,Mn, driven by their mutual gravitational forces, move in the three-
dimensional Euclidean space. The equations of motion are known from elementary
mechanics:

Mj üφj =

n∑

k=1

k 6=j

γ
Mj Mk

‖ uφk − uφj ‖3
(uφk − uφj) ,
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where γ represents the gravitational constant and uφj denotes the position of body j
in a global Cartesian coordinate system. The Newtonian n-body problem can be
formulated as a network problem as follows: The network graph consists of n + 1
nodes, where the position of body j is uφj and the origin of the coordinate system
serves as the reference position uφ0 = 0, and of n(n+1)/2 branches connecting each
node with all the others. The branch direction can be chosen such that the orientation
arrow points to the higher indexed node. The case of n = 4 is depicted in Fig. 19.
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�

(a)

0

21

3
4

(b)

Fig. 19. Newtonian n-body problem: (a) pictorial representation for n = 4,
(b) network graph for n = 4.

The branch DVs (denoted by uζ) are position differences in the three-dimensional
space, and the FVs (denoted by iζ) are three-dimensional forces. The NERs of the
n branches ζ leading from reference node 0 to node κ (κ = 1, 2, . . . , n) are given by

iζ =Mκüζ .

The NERs of the remaining n(n − 1)/2 branches ζ leading from κ1 to κ2, where
1 ≤ κ1 < κ2 ≤ n, are given by

iζ = γ
Mκ1Mκ2
‖ uζ ‖3

uζ .
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The cut and circuit laws can be respectively written as K i = 0 and KTuφ = u.
There are two main differences between this n-body network and nonlinear electrical
networks: the physical dimension of uζ · iζ is energy instead of power, and the entries
of the incidence matrix K are no longer (1, 1) but (3, 3) identity or zero matrices.

Next, let us enter the field of civil engineering and derive a network model for
structural systems which consist of long slender members that are connected together
to form a framework capable of carrying applied loads. As an example, see Fig. 20(a).
In the mathematical model, specific points on the framework are indicated as the joints
(which could equivalently be referred to as nodes). The segments between joints are
called members (which could equivalently be referred to as branches). It is known
from basic mechanics that the forces and moments may be regarded as FVs obeying a
cut law, saying in mechanical terms that the equations of equilibrium are valid for any
released part of the framework. On the other hand, the displacements may be regarded
as DVs obeying a circuit law, saying that the equations of kinematic compatibility are
valid. In contrast to one-dimensional networks, the topological connectivity properties
between the joints and members are not sufficient to mathematically formulate the
cut and circuit laws (see Fig. 20(b)). The geometry of the framework plays a crucial
role.
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joint 4joint 2 joint 3
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qe P e

∆T e

member 1 member 4

member 5member 2 member 3
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(b)

�

Fig. 20. Plane framework and its corresponding graph.

For the following discussion, we restrict our attention to general frameworks in
two dimensions. The members are assumed to be prismatic (i.e., they have constant
cross-section across their entire lengths) and linear elastic. First, let us derive the
NERs of a single plane frame member. Figure 21 represents pictorially a released
member ζ of length lζ . Its direction is charaterized by the angle αζ . The orthogonal
axes xζ and zζ form a local coordinate system, where xζ extends from the first
joint (with end loads N1 (axial force), Q1 (shear force), M1 (bending moment)) to
the second joint (with end loads N2, Q2, M2). The angle ϕ indicates the rotation
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Fig. 21. Released prismatic member.

about the y-axis perpendicular to the plane. The six end loads can be arranged as a

column vector iφζ =
(

N1 Q1 M1 N2 Q2 M2

)T

ζ
. Since the member ζ is thought of as

being released from the framework, its end loads must obey a cut law appearing as
three scalar equations of equilibrium. Therefore, only three of the six end loads are

independent. Choosing iζ =
(

N2 M1 M2

)T

ζ
as the three independent end loads, the

cut law for the released member reads

iφζ =













−1 0 0

0 −1/l −1/l

0 1 0

1 0 0

0 1/l 1/l

0 0 1













ζ

iζ =: cζ iζ . (21)

The DVs of the absolute movements of the member ends,

uφζ =
(

x1 z1 ϕ1 x2 z2 ϕ2

)T

ζ
,

correspond component-wise to the FVs iφζ . The member movement can be split into
two parts: the rigid body movement which is not comprised in the load-deformation
relations, and deformations which cause the member to alter its shape. Again, several
choices of the three independent scalar relative movements can be realized in the local

member coordinate representation. We choose uζ =
(

∆x τ1 τ2

)T

ζ
in accordance

with the chosen iζ . Then the kinematic compatibility conditions (circuit law for the
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member ζ) require

uζ =






−1 0 0 1 0 0

0 −1/l 1 0 1/l 0

0 −1/l 0 0 1/l 1






ζ

uφζ = c
T
ζ uφζ . (22)

The local member stiffness matrix yζ relates the member deformations uζ to the
member loads iζ ,

iζ = yζ uζ . (23)

Neglecting shear deformations, Hooke’s law yields for prismatic members the local
member stiffness matrix as

yζ =
1

lζ






E A 0 0

0 4E I 2E I

0 2E I 4E I






ζ

,

where E, A and I denote Young’s modulus of the material, the member cross-
sectional area and the member cross-sectional moment with respect to the y-axis,
respectively.

Together, eqns. (21)–(23) provide a complete representation of the NERs in local
coordinates:

iφζ = cζ yζ c
T
ζ uφζ =: yφζ uφζ . (24)

The symmetric (6, 6) admittance matrix yφζ is called the complete member stiffness
matrix in civil engineering. Note that yφζ is singular since rank yφζ = 3.

The enforced member displacements, distributed member loads, and the effects
of heating act as independent member DV and/or FV sources. They can be replaced
by an equivalent set of concentrated loads acting on the joints at the two ends of the
member (see modern texts on structural analysis, e.g., (Krätzig, 1998)). The resulting
FV source vector ieφζ acts “parallel” to iφζ (ζ = 1, 2, . . . , z).

Up to now, each member stiffness matrix has been expressed in terms of the local
member coordinates. Before combining the stiffness matrices to an overall stiffness
matrix of the entire framework, it is necessary to describe all the individual member
end loads and displacements, using one and the same coordinate system. As we are
considering only plane frames here, the local member coordinates simply arise from
the global member coordinates by rotation on the common y-axis (with angle α).
Using the abbreviations c := cosα and s := sinα, the member end loads defined by
iφζ in local coordinates have the global coordinates

giφζ =













c s 0

−s c 0 0

0 0 1

c s 0

0 −s c 0

0 0 1













ζ

iφζ =: gζ iφζ . (25)
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Note that gTζ = (gζ)
−1
.

Analogously, the complete end displacements can be written down in the global
coordinates as guφζ = gζ uφζ . On condition that the NERs plus independent member
sources have been derived in local member coordinates in the form iφζ = yφζ uφζ+i

e
φζ ,

the NERs can be expressed in the global coordinates as

giφζ = gζ yφζ g
T
ζ guφζ + gζ i

e
φζ =:g yζ guφζ + gi

e
φζ , (26)

where the (6, 6) matrix

gyζ = gζ cζ yζ c
T
ζ g
T
ζ (27)

is called the global member stiffness matrix. Now we are able to derive the overall
nodal DV equations for the entire framework by means of a suitably defined frame-
node member-node incidence matrix K. To illustrate this, the (6, 2 × 5) incidence
matrix K for the example framework (see Fig. 20(a)) is written out here,

frame
nodes

11 12 21 22 31 32 41 42 51 52
member
nodes

1

2

3

4

5

6













E

E E E

E E E

E

E

E













= K. (28)

The symbols E represent (3, 3) unit matrices. Let us compare the displacements Uφκ
of the frame nodes (measured in global coordinates) with the member end displace-
ments guφζ . The circuit law (kinematic compatibility conditions between the frame
and members) requires

guφ = K
T Uφ. (29)

The cut law (static equilibrium conditions for each node) becomes

K giφ = −I
e
φ, (30)

where Ieφ denotes the vector of independent joint loads (including support reactions)
measured in the global coordinates. The combination of (26), (29) and (30) yields the
desired node DV equations,

K 〈gy1, gy2, . . . ,g yz〉K
T Uφ = −K gi

e
φ − I

e
φ. (31)

Similarly to one-dimensional networks, the coefficient matrix KYKT should
not be so much regarded as a product of three matrices, but as a sum of “stamps”
representing the individual members within the global admittance matrix tableau.
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For the example system (Fig. 20), member 2 whose NERs are given by the (6, 6)
member stiffness matrix

gy2 =:

(

y112 y122

y212 y222

)

generates the “stamp”

K 〈0 gy2 0 0 0 0〉K
T =













0 0 0 0 0 0

0 y222 0 0 y212 0

0 0 0 0 0 0

0 0 0 0 0 0

0 y122 0 0 y112 0

0 0 0 0 0 0













.

The constituents of K gi
e
φ can also be generated member-wise and then summed up.

Returning to the example system, let us consider the effect of heating member 5.
Heating generates axial forces ieφ5 = EAγT∆T

e (1 0 0 − 1 0 0)
T
, whence

gi
e
φ5 = g5 i

e
φ5 =EAγT∆T

e (c,−s, 0,−c, s, 0)T5 =:

(

gi
e
φ5,1

gi
e
φ5,2

)

.

The part of K gi
e
φ that results from heating member 5 has the form

(0, 0, giφ5,1, 0, 0, giφ5,2)
T
.

In the foregoing discussion, we have modeled plane frameworks as three-dimensional
networks. In the case of spatial frameworks we would obtain six-dimensional networks,
and the entries of the incidence matrix K would be (6, 6) identity matrices or (6, 6)
zero matrices. Similarly, modeling plane and spatial trusses would result in two- and
three-dimensional networks, respectively.

5. Conclusion

This paper constitutes an attempt to overview the formulation and solution of network
equations. In this presentation, the historic development of the concept of network
modeling has been emphasized. Beyond the usual electrical network applications,
network models can describe a wide variety of other real-world systems. Topological
properties of the underlying network graphs provide the key to a thorough understand-
ing of one-dimensional networks. It was shown that the network element relations can
always be explicitly formulated by means of an augmented network graph. General
topological rules for symbolic solution of multi-port network equations were derived.
In the case of multidimensional networks, the analyst has to cope with the geome-
try of the systems. This has been exemplified for plane framed structures commonly
occurring in civil engineering.
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