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SOME ALGORITHMIC ASPECTS OF SUBSPACE

IDENTIFICATION WITH INPUTS

Alessandro CHIUSO∗, Giorgio PICCI∗

It has been experimentally verified that most commonly used subspace methods
for identification of linear state-space systems with exogenous inputs may, in
certain experimental conditions, run into ill-conditioning and lead to ambiguous
results. An analysis of the critical situations has lead us to propose a new al-
gorithmic structure which could be used either to test difficult cases and/or to
implement a suitable combination of new and old algorithms presented in the
literature to help fixing the problem.
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1. Introduction

It is well-known that the ‘classical’ approach to system identification is based on
parameter optimization, i.e., the system parameters are obtained by minimization
of a suitable cost function. These methods have been widely used and shown as
reasonably successful in modelling single-input single-output systems by ARMA or
ARMAX models, see the classical textbook (Ljung, 1987) for an up-to-date illustration
of this approach.

However, when one has to attack general multi-input multi-output models, these
methods suffer from various drawbacks. Since, unless attention is restricted to rather
trivial model classes, the dependence of the cost function on the parameters is in gen-
eral non-linear, iterative techniques are required for minimization. For multivariable
systems these may well turn out to be very time-consuming. Due to the existence
of local minima and non-convexity, the outcome is in general very sensitive to the
choice of the parameterization and of the starting point in the optimization proce-
dure. There is generally no guarantee of global optimality but only of an ending close
to a local minimum. Furthermore, to attack general multi-input multi-output models
by parameter optimization methods, choosing canonical parameterizations is unavoid-
able. In fact, the use of canonical parameterizations has been recognized as a critical
issue in MIMO identification since the early 1970’s (Guidorzi, 1981; Ober, 1996), and
represents a bottleneck in extending from SISO to MIMO identification.
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Geometric, or ‘subspace’, or realization-based methods rely on the ideas of
stochastic realization theory which have been developed (mainly for time series) by
many authors, for instance, Akaike (1974; 1975), Faurre (1976), Lindquist and Picci
(1979; 1991), Picci (1976), and Ruckebusch (1976; 1978).

Roughly speaking, subspace methods translate the constructions of stochastic
realization theory into procedures for model building which work on measured data
(Lindquist and Picci, 1996a). They owe the name ‘subspace’ to the fact that the basic
objects which are constructed in the algorithms are subspaces generated by the data,
and geometric operations such as orthogonal and oblique projections are all what is
needed to compute estimates of the parameters.

The appealing features of subspace methods are that there is no need for canonical
parameterizations; no iterative nonlinear optimization is required; only simple and
numerically robust tools of numerical linear algebra such as QR, SVD, QSVD are used;
finally, since the methods rely on the theoretical background of stochastic realization
theory, a deeper system-theoretic understanding of the involved procedures is possible.

The basics of subspace methods may probably be traced back to the old works
of Hotelling (1936), Ho and Kalman (1966), Akaike (1974; 1975), Faurre (1976), Aoki
(1990), and Moonen et al. (1989), but probably the first ‘true’ subspace algorithm is
the ‘stochastic’ algorithm of van Overschee and De Moor (1993) for the identification
of time series. Various subspace algorithms have been introduced for identification
of systems with exogenous inputs, some of the basic references being (Moonen and
Vandewalle, 1990; Moonen et al., 1989; Van Overschee and De Moor, 1994; 1996;
Verhaegen, 1994; Verhaegen and Dewilde, 1992; Viberg, 1995). Even though these
methods have been around for a while, it is fair to say that for subspace methods with
inputs there is still a number of questions which are not completely understood.

1. One of these questons is numerical ill-conditioning, which has been experimen-
tally verified in a number of situations (Chiuso and Picci, 1999; Kawauchi et al.,
1999). One should understand when ill-conditioning may occur and how to set-
tle the problem. Recently, in (Chiuso and Picci, 2000c) it has been argued that
using orthogonal decomposition and block-parameterized models, together with
the orthogonal decomposition algorithm of (Chiuso and Picci, 1999; Picci and
Katayama, 1996a), may be a possible solution to the problem of ill-conditioning.
Simulation results and comparison with the N4SID algorithm are discussed in
(Chiuso and Picci, 1999; 2000b; 2000c).

2. As is well-known, the dynamics of the input signal is crucial for the outcome of
an identification experiment. It is important to have bounds on the performance
of an algorithm as a ‘function’ of the input characteristic (bandwith, persistence
of excitation, etc.). In particular, for comparing results of simulations, a specifi-
cation of ‘probing inputs’ for the validation of identification algorithms (Chiuso
and Picci, 2000b) is needed. By the ‘probing inputs’ we mean the inputs which
are tailored to reveal the main limitations of the algorithms.

3. Subspace identification in the presence of feedback has been addressed by some
authors (Chou T. and Verhaegen, 1997; Verhaegen, 1993), but the problem
seems to be very far from being completely understood.
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4. The characterization of the accuracy of the estimates is still a partially open
problem. Steps toward solving this problem were made in (Bauer, 1998; Bauer
and Jansson, 2000; Peternell, 1995; Peternell et al., 1996; Picci, 1997c), where
results on the asymptotic normality of the estimates were obtained and proce-
dures to compute the asymptotic variance were suggested.

On the theoretical side, one should remark that stochastic realization theory with
exogenous inputs has not been fully developed until very recently (Chiuso, 2000).
While the algorithm of van Overschee and De Moor for time series (Van Overschee
and De Moor, 1993) follows exactly the ideal steps suggested by stochastic realization
theory, so far it has not been possible to implement the ideal realization procedure in
identification with exogenous inputs. In particular, it has been pointed out that there
are no known procedures for constructing a basis in the state space of a stochastic sys-
tem with inputs (to be precise, in a finite-time oblique Markovian splitting subspace),
directly from finite-time input-output data (Chiuso, 2000). By ‘directly’ we mean only
by means of operations on the data which do not involve preliminary estimation of
some system parameters.

In all the algorithms existing in the literature ad hoc tricks are used and an
approximate version of the state is involved. This can be shown to deteriorate the
‘ideal’ numerical conditioning of the problem (Chiuso and Picci, 2000c) and is believed
to be the reason why the state-of-the-art in subspace methods may be considered
satisfactory only for time-series identification.

Due to page limitations, we cannot give here more details on these aspects and
shall have to refer the reader to the literature. The main purpose of this paper is to give
a brief guided tour to the algorithms for subspace identification with inputs existing
in the literature and to suggest some variations which help with dealing with the
possible ill-conditioning of the identification problem. The algorithm may optionally
use alternative approaches to those in the literature. A MATLAB software package
has been developed as part of the doctoral thesis of Chiuso (2000). It is available upon
request from the first author.

2. Notation

There is a ‘true’ stochastic system (which we assume in innovation form)

{
x(t+ 1) = Ax(t) +Bu(t) +Ke(t),

y(t) = Cx(t) +Du(t) + e(t)
(1)

generating the observed data: {y(t)} (m-dimensional) and {u(t)} (p-dimensional).
Let {x(t)} and {e(t)} be the sample paths of the corresponding state (n-dimensional)
and innovation processes, respectively. Suppose (ideally) that we have observations on
some (hopefully very long) time interval [0, N ], of one sample path {y(t)}, {u(t)},
{x(t)} of the processes {y(t)}, {u(t)}, {x(t)}, respectively. Since these processes
generate the data, it is obvious that the finite ‘tail’ matrices, Yt, Ut, Xt, constructed
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at each time moment t from the observed samples by the recipe

Yt :=
[
y(t) y(t+ 1) . . . y(t+N − 1)

]
,

Ut :=
[
u(t) u(t+ 1) . . . u(t+N − 1)

]
,

Xt :=
[
x(t) x(t+ 1) . . . x(t+N − 1)

]
,

also satisfy (1), i.e.,



Xt+1 = AXt + BUt + KEt,

Yt = CXt + DUt + Et,
(2)

where Et :=
[
e(t) e(t+ 1) . . . e(t+N − 1)

]
is the innovation tail. This equation

can be interpreted as a regression model. It is straightforward to see that, if the
tail matrices Xt+1, Xt, Ut, Yt are given, then one can solve (2) for the unknown
parameters (A,B,C,D), say by least squares. Hence in the ideal situation, when we
have an input, an output, and the corresponding state sequence at two successive time
instants t and t + 1 available, the identification of the parameters (A,B,C,D) of
the system (1) is a rather trivial matter. In practice, Xt+1 and Xt are not available
and will have to be estimated from the input-output data. This is the crucial step in
most susbspace identification algorithms.

In the ideal case, when infinitely long sample trajectories are available (N →∞),
Et is orthogonal to the past data, namely Et ⊥ (Xs, Us) for all s ≤ t (this is
only approximately true for N large but finite). Owing to the orthogonality of the
innovation term, the estimates computed by solving the regression equation coincide
(for N →∞) with the true parameters (consistency).

We shall use the standard notation; in particular, we shall use the symbols

Yt1|t2 :=




Yt1

Yt1+1

...

Yt2



=




y(t1) y(t1 + 1) . . . y(t1 +N − 1)

y(t1 + 1) y(t1 + 2) . . . y(t1 +N)

... . . .
. . .

...

y(t2) y(t2 + 2) . . . y(t2 +N − 1)



,

Ut1|t2 :=




Ut1

Ut1+1

...

Ut2



=




u(t1) u(t1 + 1) . . . u(t1 +N − 1)

u(t1 + 1) u(t1 + 2) . . . u(t1 +N)

... . . .
. . .

...

u(t2) u(t2 + 2) . . . u(t2 +N − 1)



,

and denote by

Pt1|t2 =

[
Ut1|t2

Yt1|t2

]

the joint input-output history between instants t1 and t2.
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Given a k1 ×N matrix B and a k2 ×N matrix A, we will, with slight abuse
of notation, write the orthogonal projection as

E
[
B | A

]
= B | A := BAT (AAT )†A,

meaning the k1×N matrix whose rows are the orthogonal projections of the rows of
B onto the row span of A. Moreover, let

A =

[
A1

A2

]

and

row-span{A1} ∩ row-span{A2} = {0}.

For notational convenience, we will write

E
[
B | A1 ∨ A2

]
:= E

[
B |

(
A1

A2

)]

for the orthogonal projection of the rows of B onto the row space of
(
A1
A2

)
. This

orthogonal projection can be uniquely decomposed as

E
[
B | A1 ∨ A2

]
= E‖A2

[
B | A1

]
+E‖A1

[
B | A2

]

in which the two terms on the right-hand side are respectively the oblique projection
of the rows of B onto row-span{A1} along row-span{A2} and vice versa. It is
immediate to obtain expressions for these oblique projections:

E‖A1
[
B | A2

]
= B

(
A2 | A

⊥
1

) [(
A2 | A

⊥
1

)(
A2 | A

⊥
1

)T ]−1
A2,

where

A2 | A
⊥
1 := A2 −A2|A1 = A2 −A2A

T
1 (A1A

T
1 )
†A1

and so forth

Define the extended observability matrix

Γk :=




C

CA

...

CAk−1



,

the reversed controllability matrices

Cdk :=
[
Ak−1B . . . AB B

]
, Csk :=

[
Ak−1K . . . AK K

]
,
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and the Toeplitz matrices

Hsk :=




I 0 . . . 0

CK I . . . 0

...
...

. . .
...

CAk−2K CAk−3K . . . I



,

Hdk :=




D 0 . . . 0

CB D . . . 0

...
...

. . .
...

CAk−2B CAk−3B . . . D



.

It follows from straightforward manipulations that we can write



Xk = AkX0 + C

d
kU0|k−1 + C

s
kE0|k−1,

Yk|2k−1 = ΓkXk + H
d
kUk|2k−1 + H

s
kEk|2k−1.

(3)

These relations constitute the starting point for most subspace identification
methods.

3. The Orthogonal Decomposition Approach

Identification in the presence of exogenous inputs can be performed, in principle, by
following two different approaches which essentially correspond to different choices of
‘model structures’. On the one hand, one could use stochastic realizations of y driven
by u of the general form

{
x(t+ 1) = Ax(t) +Bu(t) +Ke(t),

y(t) = Cx(t) +Du(t) + e(t).
(4)

Identification procedures based on this model will be referred to as ‘joint identifica-
tion’. On the other hand, one could instead consider models in block diagonal form
such as





[
xd(t+ 1)

xs(t+ 1)

]
=

(
Ad 0

0 As

)[
xd(t)

xs(t)

]
+

(
Bd

0

)
u(t) +

(
0

Ks

)
es(t),

y(t) =
(
Cd Cs

)[ xd(t)
xs(t)

]
+Ddu(t) + es(t),

(5)

which is based on the preliminary decomposition of the state and output processes
into the component lying in the input space (the ‘deterministic component’) and its



Some algorithmic aspects of subspace identification with inputs 61

orthogonal complement (the ‘stochastic component’), see (Chiuso, 2000; Chiuso and
Picci, 1999; Picci and Katayama, 1996a). We shall refer to the identification based
on models of this structure as the ‘orthogonal decoposition’ approach. We warn the
reader that models of the form (5) may turn out to be non minimal, due to the lack of
observability, which may happen when the ‘deterministic’ and ‘stochastic’ components
share some common dynamics. The most general situation is the one in which the
deterministic and stochastic subsystems may share some (and possibly all) ‘dynamics’.
In such a situation a minimal realization would have a block diagonal structure formed
by three blocks corresponding to deterministic, shared, and stochastic dynamics of
the form







xd(t+ 1)

xds(t+ 1)

xs(t+ 1)


 =




Ad 0 0

0 Ads 0

0 0 As







xd(t)

xds(t)

xs(t)


+




Bd

Bds

0


u(t) +




0

Kds

Ks


es(t),

y(t) =
(
Cd Cds Cs

)



xd(t)

xds(t)

xs(t)


+Ddu(t) + es(t).

(6)

Naturally, the presence of common dynamics is to be regarded as a ‘non generic’
situation, unless there is some a priori information on the way the noise enters the
system.

In Section 7 we shall present simulations comparing the results of subspace algo-
rithms with the Cramér-Rao lower bounds. It will become apparent that an orthogo-
nal decomposition approach is to be preferred when the dynamics of the deterministic
and stochastic parts are disjoint as the Cramér-Rao bounds are lower for this kind of
approach.

This is essentially due to the fact that in this situation more ‘structure’ is used
and fewer parameters (as compared to a joint approach) are to be estimated. Using a
joint model in this case leads to worse results. In fact, the identified model will present
some near cancellations of poles and zeros in the deterministic and in the stochastic
transfer functions. That might be a further source of ill-conditioning.

On the other hand, when it is known that the two subsystems share the same
dynamics, we are in the opposite situation and the joint approach does better. If only
part of the dynamics is shared, then things become, of course, harder to evaluate.

Several ‘subspace’ algorithms have been presented in the literature which could
be adapted to both the approaches. However, the differences are not just due to the
choice between ‘joint’ or ‘orthogonal decomposition’ approaches.

Subspace algorithms can organized into four main steps:

Step 1. Estimation of the state (or of the extended observability matrix), which
includes order estimation;

Step 2. Estimation of the matrices (A,C) (or (Ad, Cd) for the orthogonal decom-
position case);
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Step 3. Estimation of the noise model, i.e., the ‘Kalman gain’ K and the variance of
the innovation Λ for the joint approach or the entire stochastic realization
(As, Cs,Ks,Λs) for the orthogonal decomposition approach;

Step 4. Estimation of the input matrices (B,D) (or (Bd, Dd)).

The four steps have been enumerated in the order in which they are usually
performed, as any of them requires (or may require) the estimates obtained in the
previous steps but does not require estimates to be obtained in the next steps.

We have defined two main functions, joint.m and ort dec.m, which implement
the joint and orthogonal decomposition aproaches, respectively. They are structured
in such a way that the user has the freedom to choose independently (to a certain
extent) how Steps 1–3 are performed from the most common choices considered in
the literature. Essentially, in the current implementation Step 4 is fixed. In the joint
case K and Λ are obtained by solving a certain Riccati equation which amounts
to computing the steady state Kalman gain (when such a solution exists (Lindquist
and Picci, 1996a)). In the orthogonal decomposition approach the algorithm imple-
mented for the estimation of the stochastic component is the ‘stochastic’ algorithm
of Van Overschee and De Moor (1993). As a matter of fact, this algorithm, which is
the only theoretically sound ‘stochastic’ subspace approach, has recently been shown
to be asymptotically efficient (Bauer, 2000). We warn the reader that the identifica-
tion of the stochastic component in the orthogonal decomposition approach requires
a somewhat delicate prefiltering algorithm. For further details on the orthogonal de-
composition approach one may consult (Chiuso, 2000; Chiuso and Picci, 1999; Picci
and Katayama, 1996a).

In the next sections we shall give a brief overview of the main procedures of
the algorithm. Due to the space limitations, we will not be able to enter into much
detail. The theoretical analysis underlying the procedures will be found in forthcoming
publications by (Chiuso and Picci, 2000c).

The syntax is the following:

function [Ad,Bd,Cd,Dd,As,Ks,Cs,Lambda] =

ort_dec(y,u,ns,nd,ks,kd,BD,T,delay,type,Aest),

function [A,B,C,D,K,Lambda]=joint(y,u,nn,k,BD,T,delay,type,Aest),

where y and u are respectively output and input data, ns,nd,ks,kd,k are the in-
dices related to orders, and BD,T,delay,type,Aest are related to the user choices in
Steps 1–3 as discussed above.

4. Estimation of the Extended Observability Matrix

In this section we shall focus our attention on estimation of the extended observability
matrix rather than estimation of the state vector since, as we have already pointed out,
no recipes are known to construct directly an oblique Markovian splitting subspace
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from measured data1. A more precise analysis would require the introduction of a sort
of ‘conditional’ model (given future inputs); details will be described in a forthcoming
publication.

In the code we have implemented three standard approaches for the estimation
of the observability matrix which are called the ‘orthogonal projection’, the ‘oblique
projection’, and the ‘canonical variate analysis’. They correspond, as pointed out in
(Van Overschee and De Moor, 1996), to different choices of weighting matrices. In
fact, the extended observability matrix is determined via SVD of the matrix

W1E‖Uk|2k−1
[
Yk|2k−1 | P0|k−1

]
W2 =W1ΓkE‖Uk|2k−1

[
Xk | P0|k−1

]
W2 = USV. (7)

The matrix P0|k−1 is either Y0|k−1∨U0|k−1 for the combined deterministic-stochastic
identification or P0|k−1 = U0|k−1 for deterministic identification, i.e., for the identi-
fication of the deterministic component in the orthogonal decomposition algorithm.

In an ideal situation, when the data are generated by an n-dimensional, ‘true’
linear time invariant system, and N tends to infinity, the matrix S has generical-
ly n singular values different from zero. We say ‘generically’ since there might be
pathological situations in which Ŷk|2k−1 looses rank (Jansson and Wahlberg, 1997);
nevertheless, the set of systems for which asymptotically S looses rank is non-generic
(Bauer and Jansson, 2000). We will discuss this point in the following. In fact, even
though this matrix looses rank on a set of ‘measure zero’, there are open neighbor-
hoods in the set of parameters that make the n-th singular value arbitrarily close to
zero.

In practical situations, i.e., for finite data, S has full rank and a reduction step
has to be performed. This corresponds to order estimation in subspace identification
methods and is of primary importance. Note that if S is partitioned as

S =

[
Ŝn 0

0 S̃n

]
'

[
Ŝn 0

0 0

]

and U and V are partitioned accordingly as

U =
[
Un U

⊥
n

]
, V =

[
Vn V

⊥
n

]
,

the corresponding estimates of the state space and observablity matrix are

Γ̂k =W
−1
1 UnS

1/2
n ,

ˆ̃
Xk = S

1/2
n V

T
n W

−1
2 . (8)

Even though a precise theoretical analysis is still lacking, there is some evidence
(Bauer, 1998; Chiuso and Picci, 2000a; Larimore, 1983; Verhaegen, 1994) that CVA
performs better in a broader range of situations. We now briefly review the aforemen-
tioned approaches.

1 We stress again that ‘directly’ here means without preliminary estimation of some of the system

parameters, e.g. the Markov parameters.
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4.1. Oblique Projection

This is the choice of basis which is done in N4SID (Van Overschee and De Moor,
1994). It is called oblique projection since it corresponds to the weighting matrices
W1 = W2 = I , i.e., to performing SVD of the oblique projection of future outputs
along future inputs onto the joint past:

USV T := Ŷk|2k−1 = E‖Uk|2k−1
[
Yk|2k−1 | P0|k−1

]
= ΓkX̃k. (9)

4.2. Orthogonal Projection

This factorization is performed e.g., in the PO-MOESP type of algorithms (Verhaegen,
1994) and is called orthogonal projection since it corresponds to projecting the optimal
oblique predictor onto the orthogonal complement of Uk|2k−1 in P0|k−1 ∨ Uk|2k−1,
i.e.

USV T := E
[
Yk|2k−1 |

(
P0|k−1 | U

⊥
k|2k−1

)]
= ΓkE

[
X̃k|U

⊥
k|2k−1

]
. (10)

It is apparent that this corresponds to W1 = I and W2 = ΠU⊥
k|2k−1

.

4.3. Canonical Variate Analysis

CVA is a way of choosing a basis in the state space which makes use of the concept
of Canonical Correlations (Katayama and Picci, 1999; Larimore, 1990). The idea is
to compute the canonical correlations between joint past P0|k−1 and future outputs
Yk|2k−1, given future inputs Uk|2k−1. Let us define

Lp|u⊥L
T
p|u⊥ = Σpp|u⊥ =

1

N

(
P0|k−1 | U

⊥
k|2k−1

)(
P0|k−1 | U

⊥
k|2k−1

)T

and similarly,

Ly|u⊥L
T
y|u⊥ = Σyy|u⊥ =

1

N

(
Yk|2k−1 | U

⊥
k|2k−1

)(
Yk|2k−1 | U

⊥
k|2k−1

)T
,

Σyp|u⊥ =
1

N

(
Yk|2k−1 | U

⊥
k|2k−1

)(
P0|k−1 | U

⊥
k|2k−1

)T
.

Then the following decomposition is performed:

USV T := L−1
y|u⊥
Σyp|u⊥L

−T
p|u⊥
,

which corresponds to the factorization (7) with weighting matrices

W1 = L
−1
y|u⊥
, W2 = ΠU⊥

k|2k−1
. (11)
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5. Estimation of AAA and CCC

The estimation of the matrices A and C is usually performed in two different ways.
One approach is based on the preliminary construction of an approximated state,
say X̃k, and its conditional shift X̃k+1, (CVA, N4SID ‘approximated’, cf. (Larimore,
1983; Van Overschee and De Moor, 1994)), or of a ‘pseudostate’ (together with its
shifted version), say Zk+1, Zk, (N4SID, cf. (Van Overschee and De Moor, 1994)) from
which (A,C) are estimated directly by solving a linear least-squares problem, namely

(
X̃k+1

Yk

)
'

(
A B

C D

)(
X̃k

Uk

)
⊕

(
K(k)Êk

Êk

)
, (12)

where the approximate state is computed from the oblique predictor
E‖Uk|2k−1

[
Yk|2k−1 | P0|k−1

]
as X̃k := Γ̂−Lk E‖Uk|2k−1

[
Yk|2k−1 | P0|k−1

]
. Similar-

ly, using the pseudostate Zk instead, the following recursion can be shown to hold
(Van Overschee and De Moor, 1994):

(
Zk+1

Yk

)
=

(
A K1

C K2

)(
Zk

Uk|2k−1

)
⊕

(
K(k)Êk

Êk

)
. (13)

The pseudo-state Zk is computed starting from the predictor

Ŷk|2k−1 = E
[
Yk|2k−1 | P0|k−1 ∨ Uk|2k−1

]

as Zk := Γ̂
−L
k Ŷk|2k−1.

With these approaches one can also estimate (B,D) directly from (12) or by
solving an overdetermined linear set of equations from K1 and K2 obtained in (13).
We shall further comment on this in Section 6.1.

On the other hand, one could enforce the shift invariance structure of the observ-

ability matrix Γk =
[
CT ATCT . . .

(
Ak−1

)T
CT

]T
. The matrix C can be taken

to be the first p rows of the estimated observability matrix Γ̂k. Let us denote by
−̂→
Γ k

the estimated observability matrix with the first p rows deleted. It is easy to see that
the matrix A should satisfy

Γ̂k−1A =
−̂→
Γ k.

This equation is not satisfied exactly for finite data when stochastic disturbances are
present and hence it has to be solved approximately. This is usually done in a variety
of ways including least squares solution, total least squares, or subspace fitting. Let
us just recall the most common solutions obtained by least squares as

Â = Γ̂†k−1
−̂→
Γ k

and by total least squares computing the singular value decomposition

[
Γ̂k−1

−̂→
Γ k

]
= U

(
Sn 0

0 S̃n

)(
V11 V12

V21 V22

)T
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and setting

Â = −V12V
†
22.

For a discussion on these topics see, e.g., (Lovera, 1997) and the references therein.

Our current implementation allows us to choose between least squares and total
least squares. However, practical experience has shown that there are no big differences
between the two approaches. Moreover, it can be shown that they are asymptotically
equivalent (Stoica and Viberg, 1995).

6. Estimation of BBB and DDD

It is well-known that, once estimates of A and C have been obtained, the problem
of estimating B and D can be formulated as a linear least-squares problem. As we
have seen in Section 5, some approaches to the estimation of (A,C) naturally yield
estimates for (B,D) as well. This is the case for the CVA algorithm of (Larimore,
1983) and for N4SID (Van Overschee and De Moor, 1994). In addition, a number of
different procedures have been proposed in the literature which yield consistent results
as the length of data sequences N tends to infinity. However, it is not clear which
of them gives better results. Our algorithm implements the most common procedures
and some variants which seem to give better results in some ill-conditioned cases.

As a guideline, we may say that the approach proposed by Van Overschee and De
Moor with some minor modifications and the ‘optimally weighted’ projection approach
(see Section 6.6) seem to give the best results.

We shall briefly describe the different approaches.

6.1. N4SID Based Approach

As we have anticipated in Section 5, B and D can be estimated by solving an
overdetermined set of linear equations, starting from the estimated parameters K1
and K2 (cf. eqn. (13)), which are linear functions of B and D once A and C are
given. The equations are as follows:

K(B,D):=

(
K1(B,D)

K2(B,D)

)

=




B −AΓ†k

(
D

Γk−1B

)
Γ†k−1H

d
k−1 −AΓ

†
k

(
0

Hdk−1

)

D − CΓ†k

(
D

Γk−1B

)
−CΓ†k

(
0

Hdk−1

)



. (14)

The solution is found by solving the weighted problem

min
B,D

∥∥(K̂ − K(B,D))L
∥∥2
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which is linear in the elements of B and D. Different choices of L are possible,
but the most common is L = I , which corresponds to the standard N4SID and L
computed from QR factorization of future inputs as Uk|2k−1 = LQ which amounts
to the so-called ‘robust’ algorithm in (Van Overschee and De Moor, 1996).

6.2. Minimum Prediction Error

A possible solution is computed via the minimization of the prediction error y(k) −
ŷ(k). Note that the Kalman gain K is needed, which, however, can be determined
without the knowledge of (B,D). Since the initial condition will also be estimated,
the gain corresponding to the stationary solution can be used. The one-step-ahead
predictor can be written as

ŷ(t)=C(A−KC)tx(0) +

t−1∑

i=0

C(A−KC)t−1−i(B −KD)u(i)

+
t−1∑

i=0

C(A−KC)t−1−iKy(i) +Du(t).

Because of the linearity in B, D and x(0), the minimization of the cost functional

Jpred(B,D, x(0)) =
T∑

k=0

∥∥y(k)− ŷ(k)
∥∥2,

can be easily performed.

6.3. Minimum Simulation Error

Another approach has been proposed (see, e.g., Lovera, 1997) based on the minimiza-
tion of the ‘simulation error’

y(t)− ŷ(t) = y(t)−

[
CAtx(0) +

t−1∑

i=0

CAt−1−iBu(i) +Du(t)

]
(15)

which is a linear functional of x(0), vec (B) and vec (D). Therefore, minimizing the
cost functional

Jsim
(
B,D, x(0)

)
=

T∑

k=0

∥∥y(k)− ŷ(k)
∥∥2

with respect to B, D and x(0) is just solving a linear least-squares problem.
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6.4. Block Minimum Simulation Error

Let us denote by Ŷ d
0|2k−1 = Γ2kX̂

d
o+H

d
2kU0|2k−1 the projection of the outputs Y0|2k−1

onto the space spanned by the inputs. Assuming that A and C are known, the i-th
column Ŷ d

0|2k−1(i) of the matrix Ŷ
d
0|2k−1 is a linear functional of X̂

d
o (i), i.e., the i-th

column of the initial state and of vec (B) and vec (D):

Ŷ d0|2k−1(i) = Γ2kX̂
d
o (i) +H

d
2kU0|2k−1(i).

Therefore, one could consider the following as a cost function for the estimation of
B and D:

Jsimb(B,D, x1, x2, . . . , xN ) =

N∑

i=1

∥∥∥Ŷ d0|2k−1(i)− Γ2kxi −Hd2kU0|2k−1(i)
∥∥∥
2

.

Again, this is linear in (vec (B), vec (D), x1, x2, . . . , xN ), for some choice of the inte-
ger N , which will be a trade-off between speed and accuracy.

6.5. Projection Approach

Rewriting the second equation in (3) as

Y0|k−1 = ΓkX0 +H
d
kU0|k−1 +H

s
kE0|k−1

and then projecting it onto the space spanned by the inputs U0|k−1, one obtains

Ŷ d0|k−1 := E
[
Y0|k−1|U0|k−1

]
:= ΦU0|k−1 = ΓkE

[
X0|U0|k−1

]
+HdkU0|k−1.

The first term on the right-hand side may be removed by multiplying from the left

by
(
Γ⊥k
)T
. For notational convenience, write

ΠΓ⊥ :=
(
Γ⊥k
)T
.

Since ΠΓ⊥ΓkX̂0 = 0, in this way we obtain

ΠΓ⊥ Ŷ
d
0|k−1 = ΠΓ⊥H

d
kU0|k−1.

Once the matrix H̄dk := ΠΓ⊥H
d
k = ΠΓ⊥Φ is available, we get

K

[
D

B

]
=




H̄k(:, 1 : m)

H̄k(:,m+ 1, 2m)
...

H̄k(:,m(k − 1) : km)



, (16)

where

K :=




ΠΓ⊥(:, 1 : p) ΠΓ⊥(:, p+ 1 : kp)Γk−1

ΠΓ⊥(:, p+ 1 : 2p) ΠΓ⊥(:, 2p+ 1 : kp)Γk−2
...

...

ΠΓ⊥(:, (k − 1)p+ 1 : 2p) 0



.
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This is implemented by the function BD proj.m.

A similar solution can be obtained by orthonormalizing the inputs via LQ fac-
torization2, i.e., computing

LQ = U0|k−1

and then solving the weighted problem

min
B,D

∥∥(ΠΓ⊥Φ−ΠΓ⊥Hdk (B,D))L
∥∥2

which is still linear in the elements of B and D. This solution gives much more robust
results when some canonical angles between the rows of U0|k−1 are small.

6.6. Optimally Weighted Projection

In this section we shall consider a procedure to estimate the matrices (B,D), which
is slightly different from standard procedures proposed in the literature. We shall also
see that the procedure proposed in (Verhaegen, 1994) is just a special case. Within
this framework it is possible to show that in an ideal situation, i.e., if A and C were
known exactly, this approach would guarantee a lower variance of the estimated pair
(B̂d, D̂d).

Let Ŷ0|k−1 := E
[
Y0|k−1 | U0|k−1

]
be the projection of outputs onto the input

space. Making the dependence on system parameters explicit, we have

Ŷ0|k−1 = ΓkE
[
X0 | U0|k−1

]
+Hdk (B,D)U0|−1 +H

s
kE
[
E0|k−1 | U0|k−1

]
. (17)

The third term should ideally be zero; in practice, due to finite-length effects, it is
not. Let us call this perturbation term Rk, i.e.,

R+k := H
s
kE
[
E0|k−1 | U0|k−1

]
= HskR̂EUR

−1
UUU0|k−1

with the obvious meaning of symbols. Defining Φ̂x such that Φ̂xU0|k−1 =

E
[
E0|k−1 | U0|k−1

]
, we can rewrite (17) as

Φ̂U0|k−1 := Ŷ0|k−1 = ΓkΦxU0|k−1 +H
d
k (B,D)U0|k−1 +H

s
kR̂EU R̂

−1
UUU0|k−1 (18)

which turns out to be an equation for the coefficients of the following form:

Φ̂ := ΓkΦx +H
d
k (B,D) +H

s
kR̂EUR

−1
UU . (19)

This equation is linear in the parameters (Φx, B,D) and can be easily rewritten in
the form

vec
(
Φ̂y

)
= [Ikm ⊗ Γk] vec (Φx) + Ld vec

(
B

D

)
+
(
R−1UU ⊗H

s
k

)
vec
(
R̂EU

)
(20)

for some matrix Ld.

2 Clearly, this can also be accomplished via SVD decomposition.
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The last term is regarded as a perturbation whose covariance matrix can be easily
computed. In fact, define

RUU (τ) = lim
N→∞

1

N
Uτ |τ+k−1U

T
0|k−1

and

REE(τ) = lim
N→∞

1

N
Eτ |τ+k−1E

T
0|k−1.

From standard calculations it follows that

Σres = E
[
vec
(
R̂EU

)
vecT

(
R̂EU

)]
=
1

N

∑

|τ |≤T−t

(
1−
|τ |

N

)
RUU (τ) ⊗REE(τ).

Defining

W0 :=
(
R−1UU ⊗H

s
k

)
Σres

(
R−1UU ⊗H

s
k

)T

and

Θ :=W
−1/2
0 [Ikm ⊗ Γk] ,

we can write the estimate of the input matrices as

vec

(
B̂

D̂

)
=
(
LTdW

−1/2
0 Θ⊥W

−1/2
0 Ld

)−1
LTdW

−1/2
0 Θ⊥W

−1/2
0 vec

(
Φ̂y

)
, (21)

i.e., the oblique projection of vec
(
Φ̂y

)
onto the column span of W−1/2Ld along the

column span of Θ.

It easy to verify that the projection approach, which was first proposed in (Ver-
haegen, 1994), is just a particular case of this with a suitably chosen weighting matrix
W , different from the optimal W0 computed above.

7. Simulation Results

In this section some simulation results comparing the joint approach with the or-
thogonal decomposition algorithm are presented. Owing to the space limitations, we
are able to present only one possible choice of Steps 1–3, i.e., the robust N4SID of
(Van Overschee and De Moor, 1996), and the orthogonal decomposition algorithm
with Step 1 corresponding to CVA, Step 2 using the pseudo-state, and Step 3 with
optimally weighted projection.

Cramér-Rao lower bounds for the variance of the estimated transfer function are
presented. The Cramér-Rao lower bound corresponding to a block parameterization of
the form (5) is lower than the one for the joint parameterization when the deterministic
and stochastic subsystems have completely disjoint dynamics. The opposite happens
when the dynamics are fully shared. Even though in our simulations the Cramér-Rao
bound has not been reached, the plots show how, in the case where the dynamics are
disjoint, the orthogonal decomposition performs better than expected. The interested
reader may contact the authors for more information concerning the experimental
conditions.
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Fig. 1. Example 1, in which the deterministic and stochastic dynamics are completely dis-
joint. The estimated (Monte Carlo) MSE of the transfer functions versus the Cramér-
Rao lower bound: (a) deterministic subsystem, (b) stochastic subsystem; dotted: or-
togonal decomposition algorithm, solid: joint (N4SID robust). The dotted line with
crosses is the CR lower bound for block parameterization; the solid line with asterisks
is the CR lower bound for joint parameterization.
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Fig. 2. Example 2, in which the deterministic and stochastic dynamics are in common (a
minimal realization has the same order as a minimal realization of both the stochastic
and deterministic part). The estimated (Monte Carlo) MSE of the transfer functions
versus the Cramér-Rao lower bound: (a) deterministic subsystem, (b) stochastic
subsystem; dotted: ortogonal decomposition algorithm, solid: joint (N4SID robust),
dashed: another joint algorithm. The dotted line with crosses is the CR lower bound
for block parameterization; the solid line with asterisks is the CR lower bound for
joint parameterization.
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The plots show the mean-square error of the estimated transfer function (a de-
terministic system and the minimum-phase spectral factor of a stochastic component)
versus the frequency (ranging from 0 to π) and the corresponding Cramér-Rao lower
bound.
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