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AUTOMATIC CONTROL OF MECHATRONIC SYSTEMS

Kurt SCHLACHER∗, Andreas KUGI∗∗,

This contribution deals with different concepts of nonlinear control for mecha-
tronic systems. Since most physical systems are nonlinear in nature, it is quite
obvious that an improvement in the performance of the closed loop can often be
achieved only by means of control techniques that take the essential nonlineari-
ties into consideration. Nevertheless, it can be observed that industry often hes-
itates to implement these nonlinear controllers, despite all advantages existing
from the theoretical point of view. On the basis of three different applications,
a PWM-controlled dc-to-dc converter, namely the Ćuk-converter, the problem
of hydraulic gap control in steel rolling, and the design of smart structures with
piezolelectric sensor and actuator layers, we will demonstrate how one can over-
come these problems by exploiting the physical structure of the mathematical
models of the considered plants.

Keywords: mechatronic systems, differential geometry, nonlinear H∞-control,
passivity, input/output linearization

1. Introduction

This paper presents different concepts of nonlinear control for mechatronic systems,
with special emphasis on the practical implementation in an industrial environment.
Differential geometry and differential algebra will serve as a common mathematical
basis for the controller design problem whilst the concepts of passivity and dissi-
pativity will be used to take the physical nature of the to-be-controlled plants into
account.

It turns out that in industrial applications large potential for improving the prod-
uct quality and increasing the efficiency lies in the automation system and the control
techniques used. Since most physical systems are nonlinear in nature, it is quite obvi-
ous that an improvement in the performance of the closed loop can often be achieved
only by means of control techniques that take the essential nonlinearities into consid-
eration. Moreover, the increasing availability of low cost digital signal processors and
the use of symbolic computation guarantee the applicability of the proposed nonlinear
control strategies. Nevertheless, it can be observed that industry often hesitates to
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implement these nonlinear controllers, despite all advantages existing from the theo-
retical point of view. There are several reasons for that, but they follow mainly from
the fact that a straightforward application of nonlinear control methods produces sat-
isfying results only in an idealized simulation environment. However, in the industrial
reality one has to cope with several restrictions, e.g., only some state variables are
measurable, signals are corrupted by nonnegligible transducer and quantization noise,
sensors and actuators have a limited accuracy, some parameters are known only inac-
curately or are slowly varying due to, e.g., aging processes, and, last but not least, the
controllers can be implemented only on a hardware platform with limited sampling
time. To our knowledge, a systematic approach to solving all these problems is not
available and, of course, we do not intend to present a general solution in this paper.
But on the basis of different applications, we will demonstrate how these restrictions
can be tackled.
We present the controller design for the Ćuk-converter, a special dc-to-dc con-

verter, in the first example. This example demonstrates a typical mechatronic design.
The electrical circuit is kept as simple as possible, which causes some inappropriate
behavior of the device. Therefore, one tries to eliminate these shortcomings by the
improvement of the controller. As a real-world hydro-mechanical application we will
develop the position/force control of a four-high mill stand in a cold rolling mill with
the hydraulic adjustment system acting on the upper backup roll. Although here the
design problem looks quite simple, the industrial environment corrupts the signals
with noise such that the state is available by measurement in principle, but one can
use only a subset of the signals for the feedback law.
Apart from the demands on the controller design due to the implementation in

an industrial environment, a second feature, mainly stimulated by the philosophy
of mechatronics, will be presented. Here, we propose to leave the classical way of a
separation between the constructional and the controller design. We will rather regard
the design of the actuators and sensors as part of the control loop synthesis. With
this, we gain additional degrees of freedom. Furthermore, the right choice of sensors
and actuators can often drastically simplify the control task. By means of piezoelectric
smart structures we will demonstrate the potential and the feasibility of this proposed
integrated design.
Throughout this paper, we consider several systems of ordinary and partial differ-

ential equations. To avoid additional technical problems, we assume that all functions
are smooth or either continuously differentiable as many times as needed. Roughly
speaking, we are more interested in an approach that allows us to implement the de-
rived equations in a computer algebra program than in functional analysis arguments.
To avoid long and messy formulas, we use the abbreviation

∑n
i=1 aib

i = aibi = aibi

for any vector or tensor under consideration, whenever the range of the index i is
clear.

2. Ćuk-Converter

Dc-to-dc converters are often used as interfaces between dc systems of different voltage
levels in regulated power supplies for electronic equipment and in dc-motor drive ap-
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plications (Kassakian et al., 1992; Mohan et al., 1989). By means of feedback control,
the average dc-output voltage of the dc-to-dc converter must be controlled to a desired
operating level and the dc-output must be kept at this level, if there are any variations
in the load or fluctuations in the input voltage. In the so-called high-frequency switch-
mode converters, the average output voltage is controlled by adjusting the on- and
off-durations of a semiconductor device switching at a rate that is fast compared with
the changes in the input and output signals. In the PWM (Pulse-Width-Modulation)
case this switching frequency is constant and here the ratio of the on-duration of the
switch to the fixed switching time period, also termed the switch duty ratio, is used
for controlling the system.

Figure 1 shows the circuit scheme of the Ćuk-converter with the supply voltage
Udc, the internal resistances R1, R2 of the inductors L1, L2, the capacitors C1, C2,
and the load conductance G2. Variations in the load will be considered in the sense
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Fig. 1. Circuit scheme of the Ćuk-converter.

of a Norton equivalent circuit (Kassakian et al., 1992) in the form of changes in the
output current ∆io, and fluctuations in the input voltage will be denoted by ∆Udc.
The switch S is assumed to have ideal characteristics, which means no losses and
zero turn-on and turn-off times. The coordinates xT =

[
i1L, u

1
C , i
2
L, u

2
C

]
(see Fig. 1)

form a chart of the network and we can derive the network equations for the switch
S in position A:

L1
d
dt
i1L = −R1i

1
L − u

1
C + Udc +∆Udc,

C1
d
dt
u1C = i

1
L,

L2
d
dt
i2L = −i

2
LR2 − u

2
C ,

C2
d
dt
u2C = i

2
L −G2u

2
C −∆io,

(1)
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and in position B:

L1
d
dt
i1L = −R1i

1
L + Udc +∆Udc,

C1
d
dt
u1C = i

2
L,

L2
d
dt
i2L = −u

1
C − i

2
LR2 − u

2
C ,

C2
d
dt
u2C = i

2
L −G2u

2
C −∆io.

(2)

The Ćuk-converter belongs to the class of pulse-width-controlled networks. Since
we choose the nonlinear H∞-approach to the controller design, we start with a short
introduction to PWM controlled networks and repeat some results of the nonlinear
H∞-design with full information. Finally, we finish this part with a description of the
experimental setup and the experimental results.

2.1. PWM Controlled Networks

A PWM controlled electrical network like the Ćuk-converter with one switch S (see
Fig. 1) is described by two systems of differential equations in the form

d
dt
x = aA (x) , t ∈

(
iT, (i+ dA)T

]
, S in A,

d
dt
x = aB (x) , t ∈

(
(i+ dA)T, (i+ 1)T

]
, S in B

(3)

for i = 0, 1, . . . with smooth vector fields aA, aB and dA + dB = 1. Here, dB ,
0 ≤ dB ≤ 1 denotes the so-called duty ratio, which specifies the ratio of the duration
of the switch S in position B to the fixed modulation period T . Let eaAt (x) and
eaBt (x) denote the flows of the network for the switch S in positions A and B,
respectively. Then a solution X (t) of the network fulfills the relation

X
(
(i+ 1)T

)
= eaBTdB ◦ eaATdA

(
X
(
iT
) )

(4)

for t = iT , i = 0, 1, . . . . The average model (see, e.g., Kassakian et al., 1992; Sira
Ramı́rez, 1989) of the PWM controlled network

d
dt
xa = aA (xa) + dB

(
aB (xa)− aA (xa)

)
(5)

is nothing else than the first-order approximation of X by Xa and

d
dt
Xa (iT ) = lim

T→0
∂T e

aBTdB ◦ eaAT (1−dB)
(
Xa (iT )

)
(6)

for iT = t. This follows directly from the Campbell-Baker-Hausdorff formula (Sastry,
1999)

eaBTdB ◦ eaATdA = e(aBdB+aAdA)T+
1
2 [aB ,aA]dAdBT

2+···. (7)
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Note that the same symbol x is used here for (3) and its approximation (5). Further-
more, the associated average model (5) is bilinear in the case of linear vector fields
aA and aB .

2.2. Nonlinear H∞∞∞-Design for AI-Systems

The system under consideration is described by the model

d
dt
xi = ai(x) + biα (x) u

α + kiβ (x) d
β ,

yγ = cγ(x),

(8)

with the state
(
xi
)
∈ U (0) ⊂

�
n , i = 1, . . . , n, where U (0) ⊂

�
n is an open

neighborhood of the origin, with the control input (uα) ∈
�
m , α = 1, . . . ,m, the

disturbance
(
dβ
)
∈

�
m′ , β = 1, . . . ,m′, and the output (yγ) ∈

�
l , γ = 1, . . . , l.

We assume for the free system that the origin is an equilibrium and that the set
{x ∈ U | yγ = 0} does not determine an invariant manifold of (8). Let ‖ · ‖ denote
the Euclidean norm. The goal of the nonlinear H∞-design is to find a control law

u = u(x), u(0) = 0, (9)

such that the objective function

J = sup
T∈[0,∞)

inf
u∈Lm2 [0,T ]

sup
d∈Lm

′

2 [0,T ]

∫ T

0

l dt (10)

with

2l (x, u, d) = ‖y‖2 + ‖u‖2 − γ ‖d‖2 (11)

is minimized with respect to u and maximized with respect to d, where γ > 0 must
be chosen such that the problem is solvable. In a second step, one can try also to
minimize γ.

One can show (see, e.g., Isidori and Astolfi, 1992; Knobloch et al., 1993; van der
Schaft, 1993; 2000) that the nonlinear H∞-design problem can be converted to the
problem of determining a positive definite solution V (x) of the Hamilton-Jacobi-
Bellman-Isaacs-equality

min
u
max
d

(
∂iV (ai + biαu

α + kiβd
β) + l

)
= 0 (12)

or HJBIe for short. Assuming that such a solution exists, we derive

ũα = −biα∂iV , γd̃β = kiβ∂iV (13)

with optimal choices ũ, d̃ of u, d. Inserting the optimal choice d = d̃ of (13) into (11),
we can rewrite (12) in the form

min
u

(

2∂iV
(
ai + biαu

α
)
+ ‖u‖2 + ‖y‖2

)

= −γ
∥
∥d̃
∥
∥
2
. (14)
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Therefore, a positive definite solution V (x) of (12) is also a Lyapunov function of the
closed loop, since ‖y‖2 is a positive semi-definite function of x. Asymptotic stability
follows from the assumption that the set {x ∈ U | yγ = 0} does not determine an
invariant manifold of the free system.
Unfortunately, it is a well-known fact that neither the HJBIe (12) nor the cor-

responding set of Hamiltonian equations can be solved easily. But sometimes it is
possible to find a positive definite solution V (x) of the HJBI-inequality

2∂iV ai + ‖y‖
2
− ‖ũ‖

2 + γ
∥
∥d̃
∥
∥
2
≤ 0 (15)

and the optimal choice u = ũ, d = d̃ of (13). Of course, this approach leads to
suboptimal solutions only. Furthermore, it is worth mentioning that one gets the
nonlinear H2-design for the limit γ →∞ in a straightforward manner.

2.3. Mathematical Model

The average model of the Ćuk-converter follows directly from the preceding two sub-
sections in the form

d
dt
xi =
(

Aij0 +A
ij
1 dB − S

ij
)

∂jV +Biαd
α (16)

with

[
xi
]
=










i1L

u1C

i2L

u2C










, [dα] =

[

Udc +∆Udc

∆io

]

(17)

for i, j = 1, . . . , 4 , α = 1, 2, with the two skew-symmetric matrices A0, A1,

[

Aij0

]

=















0
−1
L1C1

0 0

1
L1C1

0 0 0

0 0 0
−1
L2C2

0 0
1

L2C2
0















,

[

Aij1

]

=














0
1

L1C1
0 0

−1
L1C1

0
1

L2C1
0

0
−1
L2C1

0 0

0 0 0 0














,

(18)
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the symmetric matrix

[
Sij
]
=














R1
L21

0 0 0

0 0 0 0

0 0
R2
L22

0

0 0 0
G2
C22














, (19)

the input matrix

B =











1
L1

0

0 0
0 0

0 −
1
C2











(20)

and the stored energy function

V =
1
2

(

L1
(
i1L
)2
+ C1

(
u1C
)2
+ L2

(
i2L
)2
+ C2

(
u2C
)2
)

. (21)

Let ∆Udc = 0, ∆io = 0 and d̄B determine the operating point
[
ı̄1L, ū

1
C , ı̄
2
L, ū

2
C

]

of the Ćuk-converter. We shift this operating point to the origin via the simple trans-
formation

i1L = ∆i
1
L + ı̄

1
L, u1C = ∆u

1
C + ū

1
C ,

i2L = ∆i
2
L + ı̄

2
L, u2C = ∆u

2
C + ū

2
C ,

(22)

with dB = ∆dB + d̄B . In the new coordinates, (16) can be rewritten as

d
dt
∆xi = Aij1 ∂j V̄∆dB +B

i
α∆d

α +
(

Aij0 +A
ij
1 d̄B +A

ij
1 ∆dB − S

ij
)

∂j∆V (23)

with

[
∆xi
]
=










∆i1L

∆u1C
∆i2L
∆u2C










, [∆dα] =

[

∆Udc

∆io

]

, ∂j =
∂

∂∆xj
, (24)

V̄ = V (x̄) + ∂jV (x̄+∆x)|∆x=0∆x
j , V = V̄ +∆V (25)

and the matrices of (18)–(20) and V of (21). Note that ∆V is a positive definite
function of ∆x and that the relation

d
dt
∆V = ∂i∆V

(

Aij1 ∂j V̄∆dB +B
i
α∆d

α
)

− Sij∂i∆V ∂j∆V (26)

is satisfied.
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2.4. Controller Design for the Ćuk-Converter

The aim of the controller design is, on the one hand, to keep the output voltage
u2C very close to an operating level ū

2
C in the presence of disturbances ∆io and/or

∆Udc and, on the other hand, to track any reference trajectory in a prescribed family
of exogenous inputs ∆u2C,ref as well as possible. In order to reach these goals, the
model (16) is augmented with an integrator-like-system

d
dt
z = −az + b

(
u2C,ref − u

2
C

)
. (27)

Clearly, (27) describes only a pure integral action for a = 0. Again, the relations
z = z̄ +∆z, u2C,ref = ū

2
C,ref +∆u

2
C,ref allow us to rewrite (27) as

d
dt
∆z = −a∆z + b

(
∆u2C,ref −∆u

2
C

)
. (28)

Obviously, we additionally have

∆H = (∆z)2 /2,

d
dt
∆H = −a (∆z)2 + b∆z

(

∆u2C,ref −∆u
2
C

)

.
(29)

Since for a fixed duty ratio the Ćuk-converter can be locally stabilized by an integrator
with negative gain, we choose the control law of the form

∆dB = −∆z + v (30)

with a new plant input v. In the next step v is designed by means of the nonlinear
H∞-controller design to render the closed loop L2 -stable. Therefore, we introduce
the output y and new inputs u, d,

y = ky∆u2C
u = kuv

, d =







k1∆u2C,ref
k2∆Udc

k3∆io






, (31)

with real numbers ku, ky, kβ > 0, β = 1, 2, 3.

The controller design for the system (23), (28), (30) and (31) is based on the
HJBI-inequality (15). We choose V = ∆V + ∆H with ∆V from (25) and ∆H
from (29), see (Kugi and Schlacher, 1999). Now, minimization with respect to u
leads to

ũ = −k−1u
(

∆u1C
(
ı̄2L − ı̄

1
L

)
− ū1C

(
∆i2L −∆i

1
L

) )

(32)

and maximization with respect to dβ generates the relations

γd̃1 = k−11 b∆z, γd̃2 = k−12 ∆i
1
L, γd̃3 = −k−13 ∆u

2
C . (33)

Since the function

d
dt
V =

d
dt
∆V +

d
dt
∆H (34)
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with d∆V /dt from (26) and d∆H/dt from (29) is a quadratic form in the vari-
ables ∆xi and ∆z by construction, one can check the positive definiteness with the
Sylvester criterion. A straightforward calculation leads to the inequalities

2G2 > k2y, (35)

2R1k22γ > 1,
(
2G2 − k2y

)
k23γ > 1 (36)

and

a ≥
b2

2k21γ
+
1
2
k2u +

1
2

γk23b
2

(
2G2 − k2y

)
k23γ − 1

. (37)

For the nonlinear H2-design, or γ →∞ in (12), we have to meet only (35) and

a ≥
1
2
k2u +

1
2

b2

2G2 − k2y
. (38)

Summarizing (27), (28), (31) and (32), the control law takes the form

d
dt
∆z = −a∆z + b

(

∆u2C,ref −∆u
2
C

)

∆dB = −k−2u
(
∆u1C
(
ı̄2L − ı̄

1
L

)
− ū1C

(
∆i2L −∆i

1
L

))
−∆z

(39)

and the corresponding closed loop has an L2-gain ≤ γ with a lower bound for
γ from (36). Furthermore, the control law is linear and can be easily implemented
even in the form of an analog circuit. This is sometimes of great interest for low-cost
implementation, where digital processors are not available. The parameters a, b and
ku are used to adjust the performance of the closed loop, where the choice of these
parameters results from heuristic considerations (Kugi and Schlacher, 1999).

Apart from the nonlinear H∞-controller design with the objective function (31),
various other possible objective functions were taken into account. However, the reason
for the proposed choice can be summarized as follows. In this approach the tracking
task is actually performed by the integrator-like controller (27) and (28), and the
outer-loop nonlinear H∞-controller (32) is designed to render the closed loop system
dissipative. In this manner it is also guaranteed that the Ćuk-converter can operate
on different operating levels which are not known a priori. This was also supposed
to be a technological demand on our design. Another successful approach where the
integral part is systematically included in the nonlinear H2-controller design can be
found in (Kugi, 2000).

2.5. Experimental Setup

To check the feasibility of the proposed controller, a laboratory model has been set
up for performing the experiments of the Ćuk-converter with the parameter values
L1 = L2 = 10.9× 10−3H, R1 = R2 = 1.3Ω, C1 = 22.0× 10−6 F, C2 = 22.9× 10−6 F
and Udc = 12V. The capacitor C1 is located in an external pin base and can also
be exchanged due to experimental requirements. The load can be chosen to be either
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a resistor with a fixed conductance GL = 1/22.36 S or via a programmable load
simulator, and the load conductance can be set to an arbitrary value in a range
GL ≤ 1/6.4 S. The value of the programmable load simulator can be defined by a
control voltage uload. The switch S is realized with a standard MOSFET (BUZ11) in
combination with the MOSFET-drive-IC SI9910DJ and a Schottky Diode (MBR1060)
with a low forward voltage drop. The modulation frequency for the PWM actuator
(either IC SG3524 or internal PWM of the DSP-unit) is chosen as 25 kHz in order to
keep the total losses in the converter at a minimum. The two inductor currents i1L
and i2L are measured by means of 0.1Ω shunt resistors and instrumentation amplifier
ICs (Burr Brown INA2128/2) with low offset and drift. The capacitor voltages u1C
and u2C are also directly measured by means of instrumentation amplifier ICs and all
the measurement signals are filtered with 4th-order analog Bessel low-pass filters with
a cut-off frequency of 10 kHz. The Ćuk-converter experiment operates together with
a DSP-system (dSpace) integrated in a PC running WINDOWS NT which enables
us to use the Matlab/Simulink environment to test the controllers. This hard- and
software configuration allows the sampling times to be reduced to 2 × 10−4 s. For
more details concerning the experimental setup the reader is referred to (Kugi, 2000).

For analyzing small-signal dynamics, the Ćuk-converter system (23) is linearized
around an operating point x̄T =

[
ı̄1L, ū

1
C , ı̄
2
L, ū

2
C

]
. The symbol δ indicates the lin-

earized quantities. We consider the transfer function

δû2C = G
(
s, d̄B
)
δd̂B (40)

at an operating point d̄B as a function of the Laplace variable s. The symbol ‘ˆ’ indi-
cates the corresponding Laplace-transformed quantity. Now, it is possible to calculate
the poles and zeros of the transfer function as a function of d̄B . For the laborato-
ry model the zeros and poles are depicted in Figs. 2 and 3, respectively, where the
square indicates the point d̄B = 0 and the circles represent the results for d̄B in
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as a function of the duty ratio d̄B.
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Fig. 3. Poles of the transfer function G
(
s, d̄B
)
as a function of the duty ratio d̄B .

0.1 steps from d̄B = 0 to d̄B = 1. An important feature of the Ćuk-converter is
the fact that from d̄B = 0.227 upwards the zeros of the transfer function lie in the
closed right half s-plane or, in other words, the Ćuk-converter shows a bifurcation
of the zero dynamics. This fact can also be seen in Fig. 4, where the measured and
simulated transient responses of the nonlinear model for a step input of the duty
ratio δdB = 0.2σ

(
t− 5× 10−3

)
for two operating points d̄B = 0 and d̄B = 0.5 are

illustrated. In the case of d̄B = 0.5 the step responses of i2L and u
2
C exhibit a typical

non-minimum phase behavior.

2.6. Measurement and Simulation Results

For the experimental investigations the operating point of the duty ratio is fixed
at d̄B = 0.49 and hence with Udc = 12 V and GL = 1/22.36 S we get x̄T =[
ı̄1L, ū

1
C , ı̄
2
L, ū

2
C

]
= [0.44, 22.01,−0.45,−10.0]. The parameters of the controller (39)

are chosen as ku = 10, a = 0.001 and b = 8 and a sampling time of 3 × 10−4 s is
used.
Figure 5 shows the simulated and measured output voltage u2C and the corre-

sponding duty ratio dB for the reference input

∆u2C,ref = 8σ
(
t− 0.9× 10−2

)
− 18σ

(
t− 4.9× 10−2

)
+8σ
(
t− 8.9× 10−2

)
(41)

with σ (t) as the unit step.
Figure 6 depicts the simulated and measured transient responses of the output

voltage u2C and of the corresponding duty ratio dB , when the converter is subjected
to a load variation GL = 1/22.36+∆GL with

∆GL =
(
1
90
−
1
22.36

)

σ
(
t− 0.9× 10−2

)
−

(
1
90
−
1
7.5

)

σ
(
t− 4.9× 10−2

)
. (42)

One can easily convince oneself that the proposed controller has an excellent tracking
and disturbance rejection behavior, and that the duty ratio dB remains within the
admissible boundaries.
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Fig. 4. Step responses at two different operating points d̄B = 0 and d̄B = 0.5.

3. Hydraulic Gap Control

In rolling mills, there is a strong tendency to improve the quality of the rolled product,
especially concerning the thickness tolerance. Apart from the mechanical equipment,
the actuators and sensors, big potential for ensuring good quality lies in the automa-
tion system and the employed control techniques. Especially in the case of revamping
an existing mill, the mechanical equipment is not always of the state of the art but,
nevertheless, the automation system has to satisfy the customers’ requirements. Since
the time limits for the start-up time of a mill are very short, it is also necessary to test
the controllers in advance on a mill simulator in addition to the standard integration
tests of the automation system. Here, it is of great importance that the mathematical
models of the mill simulator take into account all the essential effects of the dynamic
behavior of the mill stand and that they match the real plant as well as possible.

Throughout this section, a position-controlled hydraulic adjustment system is
assumed. It is a matter of fact that the hydraulic adjustment system is nonlinear in
nature and therefore, in order to guarantee that the closed-loop system has the same
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Fig. 5. Measurement and simulation results for the tracking behavior.

dynamic behavior over the operating range, the essential nonlinearities have to be
taken into account in the controller design. Furthermore, the control task becomes
more difficult because not all quantities are available through measurement, and the
measured quantities are corrupted by transducer and quantization noise. Figure 7
presents the schematic diagram of a four-high mill stand with the hydraulic adjust-
ment system acting on the upper backup roll system. Subsequently, we assume with
no loss of generality that the hydraulic adjustment system consists of a double acting
hydraulic piston controlled by a critical center three-land-four-way spool valve.
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Fig. 6. Measurement and simulation results for the disturbance behavior.

We will use the well-known input/output linearization for the controller design.
Therefore, we give a short review of this method, after presenting the mathematical
model along with its properties and restrictions for the controller design. Then we
continue with the controller design and discuss some simulation results.

3.1. Mathematical Model

For the derivation of the mathematical model of the hydraulic piston the following
aspects are taken for granted: The servo valves are rigidly connected to a constant
pressure pump and the supply pressure remains constant during all possible opera-
tions. The temperature of the oil is constant and the oil is supposed to be isotropic.
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Fig. 7. Schematic diagram of a four-high mill stand.

From the last two properties we may deduce that the mass density of the oil ρoil
depends only on the pressure p of the corresponding chamber. Hence from Fig. 8 the
continuity equations for the two chambers read as

d
dt

(
ρoil
(
p1
) (
V 10 +A

1
effxk
))
= ρoil

(
p1
) (
q1 − qint − q

1
ext

)
,

d
dt

(
ρoil
(
p2
) (
V 20 −A

2
effxk
))
= ρoil

(
p2
) (
qint − q

2
ext − q

2
)
,

(43)

V 1

p T

q 1
e x t

p 1

A 1
e f f

x k

p 2 V 2

q 1 q 2

q i n t q 2
e x tA 2

e f f

Fig. 8. Double-ended, double-acting hydraulic ram.
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with volumes V 10 and V
2
0 of the forward and the return chamber for xk = 0, respec-

tively, effective piston areas A1eff and A2eff , the displacement of the piston xk, the
flow from the valve to the forward chamber q1, the flow from the return chamber to
the valve q2, the internal leakage flow qint, and the external leakage flows q1ext and
q2ext Inserting the relation for the isothermal bulk modulus of oil Eoil (Merritt, 1967)

Eoil∂ρoil
∂p

= ρoil (p) (44)

in (43), and using the fact that the leakage flows are laminar, we obtain
(
V 10 +A

1
effxk
) d
dt
p1 = Eoil

(
q1 −A1effvk − Cint

(
p1 − p2

)
− C1extp

1
)
,

(
V 20 −A

2
effxk
) d
dt
p2 = Eoil

(
−q2 +A2effvk + Cint

(
p1 − p2

)
− C2extp

2
)
, (45)

with vk = dxk/dt and the leakage coefficients Cint, C1ext and C2ext. The flows q
1,

q2 from and to the valve can be calculated by

q1 = K1v
√

pS − p1 sg (xv)−K2v
√

p1 − pT sg (−xv) ,

q2 = K2v
√

p2 − pT sg (xv)−K1v
√

pS − p2 sg (−xv) ,
(46)

with the supply and the tank pressure pS and pT , respectively, the valve displace-
ment xv , the function sg (x) = x for x > 0, and sg (x) = 0 for x ≤ 0 and the
coefficients Kiv = CdA

i
v

√

2/ρoil, i = 1, 2, where Aiv is the orifice area and Cd the
discharge coefficient (see, e.g., Merritt, 1967). In this description the leakage charac-
teristic and the friction of the valve have been neglected, although they are included
in the simulation model, and it is assumed that the valve is closed-center with zero
effective lap. Since the dynamics of the spool valve are much faster than the other
components of the system, we will neglect them and consider the valve displacement
xv as the plant input to the system.
For testing the controllers on the mill simulator, the mill stand is modeled in

the form of discrete masses, springs and dampers. One has to take into account the
roll force Fr as well as the friction forces between the work and the backup roll
chocks and the mill housing, see (Kugi, 2000). The deformation process of the strip
is considered in the form of static roll force models for cold or hot rolling. As long
as no spatial distribution of the roll load and no dynamic effects of the deformation
process are taken into account, we can reduce the deformation models to systems of
implicit nonlinear equations of the form

froll (Fr, hex, hen, σex, σen, ωroll, Tst, σF ) = 0

with exit and entry thicknesses hex and hen, specific exit and entry tensions σex
and σen , the angular velocity of the work or backup roll ωroll, the strip temperature
Tst, and the yield stress σF . However, the setting up of these deformation models
consists in solving various differential and integral equations as well as the definitions
of many parameters, e.g., the friction coefficient between the rolls and the strip (see,
e.g., (Hensel and Spittel, 1990) or more recently, (Fleck et al., 1992) and the references
cited therein).
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3.2. Properties and Restrictions of the Plant

There are certain features of the plant that must be taken into account for the con-
troller design and must be included in the mill simulator in order to obtain a controller
that can be successfully implemented in the plant.
(a) Only the pressures p1 and p2 of the two chambers of the hydraulic cylinder and
the displacement of the hydraulic piston xk are directly measurable.

(b) The measurement signals p1, p2 and xk are corrupted by transducer noise and
nonnegligible quantization noise.

(c) Due to different leakage flows of the valve, the pressures p1 and p2 in the forward
and return chambers may have a considerable offset value from symmetrical
pressure conditions. These offset pressures have a dominating influence on the
dynamic behavior of the hydraulic system, especially if the piston is near one of
the two edges of the cylinder.

(d) The velocity of the piston vk cannot be directly measured and an observer for
the velocity, which is based on the position signal, fails due to the transducer and
quantization noise. But the velocity-dependent term on the right-hand side of (45)
cannot be neglected in the dynamic case. Furthermore, the parameters of the
stand model are known rather inaccurately and the roll force Fr, or at least the
roll force deviation from the nominal value, has to be considered as a disturbance
on the system. This is also why the controllers based on the knowledge of the
state variables of the stand or on an observation of these state variables cannot
be used in practice.

(e) A very important fact for both the commissioning engineer and the maintenance
staff is that the dynamics of the hydraulic actuation system can be easily adjusted
and that the stability of the closed loop can be guaranteed over the operating
range.

3.3. Input/Output Linearization with Constraints

Now, the system under consideration is the simple SISO-system

d
dt
xi = ai(x) + bi (x) u (47)

with the state
(
xi
)
∈ U (0) ⊂

�
n , i = 1, . . . , n, where U (0) is an open neighborhood

of the origin, and with the single control input u ∈
�
.

Let us recall shortly the input/output linearization approach (e.g., see, Isidori,
1996; Nijmeijer and van der Schaft, 1991). We assume that there exists an output
y ∈

�
with y = c (x) such that the relations

(
bak−2 (c)

)
(x) = 0,

( (
bak−1

)
(c)
)
(x) 6= 0 (48)

are met in a neighborhood of a point x for k ≥ 1. Here a (c) = ai∂ic denotes
the Lie-derivative of a function c along the vector field a. Furthermore, we use the
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abbreviations ak+1 (c) = a
(
ak (c)

)
, a0 (c) = c, k ≥ 1, as well as ba (c) = b (a (c)) .

One can show that there exists a state-transformation

zi = wi (x) (49)

such that (47) takes the form

żj = zj+1,

żk =
(
ak (c)

)(
w−1 (z)

)
+
(
bak−1 (c)

)(
w−1 (z)

)
u,

żl = f l (z)

(50)

in the new coordinates z with j = 1, . . . , k − 1, l = k + 1, . . . , n and zj = aj−1 (c) .
Obviously, the input transformation

u =
v − ak (c)
bak−1 (c)

(51)

leads to a linear behavior between the new input v and the output y = c in a neigh-
borhood of x. Now, we impose the additional constraint that the part

(
z1, . . . , zk

)

of (50) is independent of the variable xn. From the relations ∂naj (c) = 0, j = 0, . . . , k
and (48), we get the additional conditions

(
adja∂n

)
(c) = 0, j = 1, . . . , k,

[

adk−1a b, ∂n

]

(c) = 0.
(52)

Here [ ·, · ] denotes the Lie-bracket [a, b] = b
(
ai
)
∂i − a

(
bi
)
∂i and ad

k
ab stands for

the repeated Lie-bracket with ad0ab = b, ad
k+1
a b =

[

adkab, b
]

.

3.4. Controller Design

Several different control strategies have been presented in the literature for the non-
linear control of hydraulic systems. Nevertheless, in industry one will often find the
classical approach of a P controller, sometimes with a static servo compensation.
One of the main reasons behind this situation is that many of the proposed nonlinear
controllers can neither be implemented in practice, due to the lack of measurements
or due to the sensitivity to quantization noise, nor improve the results obtained by
the classical approach.

Let us take as a basis for the controller design the continuity equations (45) and
assume that the internal and external leakage flows can be neglected when compared
with the other flows. Then (45) takes the form

(
V 10 +A

1
effxk
) d
dt
p1 = Eoil

(
q1 −A1effvk

)
,

(
V 20 −A

2
effxk
) d
dt
p2 = Eoil

(
A2effvk − q

2
)
,

(53)
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with q1 and q2 from (46). Furthermore, for the controller design, we neglect the
dynamics of the mill stand and then the equation of motion for the piston takes the
form

d
dt
xk = vk,

mk
d
dt
vk = Fh −mkg − dkvk − Fd,

(54)

where Fh = A1effp
1 −A2effp

2 and mk denotes the sum of the piston mass and all the
masses rigidly connected to the piston, dk is the damping coefficient, and Fd signifies
the external force on the piston, which is assumed to be constant but unknown.

Previously we discussed in detail that the control law must not contain the piston
velocity vk. Therefore, we are looking for a description of (53) where the dependence
on vk vanishes. This can be achieved by the following state transformation (Kugi et
al., 1999b):

z1 = p1 +Eoil ln
(
V 10 +A

1
effxk
)
,

z2 = p2 +Eoil ln
(
V 20 −A

2
effxk
)
.

(55)

Then (53) can be rewritten as

d
dt
z1 =

Eoil
V 10 +A

1
effxk

q1,

d
dt
z2 =

−Eoil
V 20 −A

2
effxk

q2.
(56)

One can immediately see that z1 and z2 remain constant as long as the flows from
and to the valve q1 and q2 are zero. Clearly, (55) is nothing else than the pressure of
the chambers p1 and p2 plus the deviation of the pressure due to the change in the
chamber volumes. However, assuming that the compressibility of oil Eoil is constant,
we directly obtain (55) by solving (44) with ρoil =M/V , where V is the considered
volume and M the mass of the oil in this volume. Now, we apply the input/output
linearization of (51) to the output function y,

y = A1effz
1 −A2effz

2. (57)

From (48) we get k = 1, and a short calculation shows that we obtain for all operating
conditions a linear input/output behavior from the new input u to y by applying
the input transformation

xv =
(

A1effEoil
V 10 +A

1
effxk

K1v
√

pS − p1 +
A2effEoil

V 20 −A
2
effxk

K2v
√

p2 − pT
)−1

u (58)

for xv > 0 and

xv = −
(

A1effEoil
V 10 +A

1
effxk

K2v
√

p1 − pT +
A2effEoil

V 20 −A
2
effxk

K2v
√

pS − p2
)−1

u (59)
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for xv < 0. Thus the system (53) and (54) takes the form

d
dt
z = u,

d
dt
xk = vk,

mk
d
dt
vk = z −mkg − dkvk − Fd − f (xk) ,

(60)

with

f (xk) = Eoil ln

(
V 10 +A

1
effxk
)A1eff

(V 20 −A
2
effxk)

A2
eff

. (61)

Obviously, the conditions (52) are met. For the subsequent considerations let us as-
sume without restriction of generality that the hydraulic cylinder is built up symmet-
rically, i.e., A1eff = A

2
eff = Aeff and V

1
0 = V

2
0 = V0. For controlling the position of the

hydraulic piston xk we use the control law (58), (59) and

u = α1f (∆xk) (62)

with the function f from (61) and ∆xk = xk,ref − xk , where xk,ref denotes the
reference value of xk and α1 > 0, see (Kugi, 2000). Now, if we formulate (60) with (62)
around a stationary point, then the closed-loop system written in deviations ∆ from
this stationary point reads as

d
dt
∆z = −α1f (∆xk) ,

d
dt
∆xk = ∆vk,

mk
d
dt
∆vk = ∆z − dk∆vk − f (∆xk) ,

(63)

with the nonlinear function

f (∆xk) = EoilAeff ln
(

V0 −Aeffxk,ref
V0 −Aeff (∆xk + xk,ref)

V0 +Aeff (∆xk + xk,ref)
V0 +Aeffxk,ref

)

. (64)

The key observation here is that the static nonlinearity f (∆xk) satisfies the sector
condition

0 ≤ ck∆x2k ≤ f (∆xk)∆xk <∞ (65)

with ck = 2EoilA2eff/V0 for ∆xk,min < ∆xk < ∆xk,max, ∆xk,min = −V0/Aeff − xk,ref
and ∆xk,max = V0/Aeff − xk,ref . Now, the mathematical model (63) and (64) can
be represented as a feedback interconnection of a reachable and observable linear
subsystem with the transfer function

G (s) =
s+ α1

mks3 + dks2 + cks+ ckα1
(66)
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and the static nonlinearity

ψ (∆xk) = f (∆xk)− ck∆xk (67)

with f (∆xk) from (64). By means of the Popov criterion (see, e.g., Khalil, 1992), it
can be shown that the closed loop is absolutely stable if the condition

0 < α1 < min
(
dk
mk

,
ck
dk

)

(68)

is satisfied (Kugi, 2000). At first sight, this result seems to be local because the sector
condition (65) holds only in the finite domain ∆xk,min < ∆xk < ∆xk,max. But it
can be shown that the set Ω = {∆z, ∆x, ∆v ∈

�
| ∆xk,min < ∆xk < ∆xk,max} is

positively invariant, i.e., every trajectory starting in Ω remains for all future time
moments in Ω (Kugi, 2000). Therefore we can deduce that every stationary point
defined by xk,ref is globally asymptotically stable in Ω.

3.5. Simulation Results

We consider three different operating positions of the hydraulic piston, namely when
the piston is in the middle of the cylinder (Case A), when the piston is in relation to
the length of the cylinder 5% from the top edge of the cylinder (Case B), and when
the piston is in relation to the length of the cylinder 5% from the bottom edge of the
cylinder (Case C). The simulation results for the position control with the reference
input

xk,ref = 50× 10−6 (2σ (t− 0.1)− σ (t− 0.3)) (69)

are presented in Fig. 9. Here ∆xk denotes the displacement deviation of the hydraulic
piston from the nominal operating position, xv is the corresponding spool valve
position, and σ stand for the unit step. For this simulation an operating point for the
roll force of 5.4MN, an offset pressure from symmetrical pressure conditions of 50 bar,
and a quantization of the position of the hydraulic piston of 5µm were assumed.
As can be seen from Fig. 9, the most important feature of this controller is that
the dynamic behavior of the hydraulic piston remains the same over the operating
range. Furthermore, it can be implemented by using only measurable quantities and
various simulation studies and field tests prove that it is robust against transducer and
quantization noise and varying leakage parameters. It is worth mentioning that the
only restriction for the state transformation (55) is the fact that the compressibility
of oil Eoil is constant but it does not rely on its specific value.

4. Smart Structures

Smart structures based on piezoelectricity represent an important new group of ac-
tuators and sensors for active vibration control of mechanical systems. In contrast to
conventional techniques, this technology allows us to construct spatially-distributed
devices (see, e.g., Tzou, 1992). This fact requires special control techniques to im-
prove the dynamical behavior of this kind of smart structures (see, e.g., Kugi et al.,
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Fig. 9. Simulation results of the position control concept.

1999a; Schlacher et al., 1996; Schlacher and Kugi, 2000), since the design of the spa-
tial distribution of actuators and sensors adds an additional degree of freedom to the
design of the control law. Therefore, the controller design has to be considered to-
gether with the design of actuators and sensors. Although the sensors and actuators
are spatially distributed, the number of control inputs and outputs always remains
finite.
Let us remind some results on finite elasticity. The description here is based on a

three-dimensional Euclidean space with standard orthonormal basis B = {∂1, ∂2, ∂3} ,
metric g = δijdxi ⊗ dxj , and coordinates xi, i = 1, 2, 3. In the following, the time t
is also denoted by t = x0. The symbol ⊗ denotes the tensor product. Now, it is well-
known that the dynamical equations of elasticity in this special coordinate system
take the form

ρRef∂
2
0u
i = f i + dj

(
pij
)
, i = 1, 2, 3. (70)
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Here u = ui∂i denotes the displacement of a point x, ρRef is the mass density in the
reference configuration, dj denotes the total derivative with respect to xj , f i’s are
the body forces, and p is the first Piola stress tensor p = pij∂i ⊗ ∂j . Furthermore,
we assume that p meets the assumption

pij = F ikσ
kj , σij = σji, F =

(
∂ju
i + δij

)
∂i ⊗ dxj (71)

with the second Piola stress tensor σ = σij∂i ⊗ ∂j and the deformation gradient F .
In the case of hyperelasticity, the relations

pij = ρRef∂ui
j
We, uij = ∂ju

i (72)

with the stored energy function We (x, F ) are met additionally. Any function We
is not suitable, because We must meet additional conditions concerning the frame
indifference and the symmetries of the body (see Gurtin, 1981). If the body force can
be derived from a potential Wf ,

f i = ρRef∂uiWf , (73)

then (70) can be put into a Lagrangian form with the Lagrangian

L =
∫

B

(
1
2
‖∂0u‖

2
−W

)

ρRef dx1dx2dx3 (74)

with W = We +Wf because of (71)–(73). The integral is taken over the reference
configuration B of the elastic body. Therefore, the next part is concerned with an
introduction to infinite-dimensional Lagrangian systems.

In the case of piezoelasticity, the potential (73) must be replaced by a more
complex one. Since we deal only with simple structures like beams, we are able to
derive this function in the second part under the condition that large deformations
but only small strain are taken into account. Based on this assumption, we present
solutions for a smart beam in the third part. All stability considerations rely on the
simple assumption that a decrease in the total energy implies the stability of the
controlled system. The collocation of sensors and actuators is the price which one has
to pay, but this can be achieved by special configurations of piezoelectric sensor and
actuator layers.

4.1. Lagrange Formalism

Before we consider the action principle in detail, it is advantageous to introduce some
useful notation (Olver, 1993). The systems of partial differential equations under
consideration involve p+1 independent coordinates denoted by

(
t, xi
)
∈ X ⊂

�
p+1 ,

i = 1, . . . , p, and q dependent coordinates (uα) ∈ U ⊂
�
q , α = 1, . . . , q. The total

space is the space E = X × U . Let us consider a smooth section f of E. The k-th
order partial derivatives of f will be denoted by

∂k

∂j00 ∂
j1
1 · · · ∂

jp
p

f = ∂Jf = fJ
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with J = j0, j1, . . . , jp, and k = #J =
∑p
i=0 ji. Roughly speaking, J is a multi-

index. The n-th jet space of E is denoted by J (n)E, where we use the coordinates
(
t, xi, u(n)

)
with u(n) = uαJ , α = 1, . . . , q, #J = 0, . . . , n. A smooth section f ,

uα = fα (t, x), has a unique n-th prolongation u(n) = f (n) (t, x) from E to J (n)E,
which is given by uαJ = ∂Jf

α.

Let ϕτ denote a one-parameter group acting on the variables (t, x, u) such that
the independent variables are not affected or

(t, x, ū) = ϕτ (t, x, u) (75)

is met. Then ϕ(n)τ = ϕτ
(
t, x, u(n)

)
denotes the prolongation of (75) to J (n)E. Let us

consider the Lagrangian functional

L =
∫

D

l
(

t, x, u(n)
)

dx (76)

with a Lagrangian density well-defined for t ≥ 0. The abbreviation dx denotes the
form dx = dx1 ∧ · · · ∧ dxp, and D ⊂

�
p stands for a sufficiently nice domain of

integration. The action principle states that a solution u = f (t, x) to the equations
of motion of a dynamical system with Lagrangian L satisfies the condition

d
dτ
A

∣
∣
∣
∣
τ=0

= δA = 0,

A =
∫

[t1,t2]×D

l
(

ϕ(n)τ

(

t, x, f (n)
))

dx ∧ dt

(77)

for any group (t, x, u) = ϕτ (t, x, u) with ϕτ = i for t ∈ {t1, t2} . Furthermore, A is
called the action integral (Frankel, 1997). Let v ∈ T E be the infinitesimal generator
of ϕ or

v = vα∂uα , vα =
d
dτ
ϕατ , vα = 0 for t ∈ {t1, t2} .

Then its prolongation to T J (n)E is given by

v(n) = vα∂uα + dJvα∂uα
J
, (78)

where

di = ∂i + uαJ+1i∂uαJ (79)

denotes the unique vector field that meets the condition

∂iv
α
(

t, x, f (n) (t, x)
)

= divα
(

t, x, u(n)
)∣
∣
∣
u(n)=f (n)

.

Here, the abbreviations J + 1i = j0, . . . , ji + 1, . . . , jp as well as dJ = d
j0
0 d
j1
1 · · · d

jp
p

have been used. From

δA =
∫

[t1,t2]×D

v(n) (l dx ∧ dt)
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and the application of the integration-by-parts formula, it follows that

d
dτ
A =
∫

[t1,t2]×D

vαδαl dx ∧ dt+ dω,

where δα denotes the variational derivative or the Euler-Lagrange operator

δα = (−1)
#J dJ∂uα

J
. (80)

Imposing boundary conditions such that the term dω vanishes on [t1, t2] × ∂D, we
see that the equations of motion are given by

δαl
(

t, x, u(n)
)

= 0. (81)

Now we present a very simplified version of Noether’s theorem (Olver, 1993).
Applying the special field d0 = ∂0 + uαJ+10∂uαJ to ldx ∧ dt, we obtain the identity

d0 (l dx ∧ dt) =
(
∂0l + d0 (e+ l)

)
dx ∧ dt+

(

uα1,j1,...,jpδαl
)

dx ∧ dt+ dω,

e =
∑

J

j0∑

k=1

uαk,j1,...,jp (−d0)
j0−k ∂uα

J
l − l.

Now, dω vanishes on the boundary because the imposed boundary conditions and
δαl = 0 are met for any solution of (81). Therefore, we get

∫

D

(e+ ∂0l) dx = 0 (82)

and

E =
∫

D

e dx (83)

as a constant of motion, whenever

∂0l = 0 (84)

is fulfilled. Of course, E is the total energy of the system, and (82) together with (84)
is nothing else than the principle of conservation of energy for time-invariant La-
grangian systems.

Finally, consider the time-varying case with the special Lagrangian density l,

l = l0 + ljUj , ∂uα
J+10

lj = 0,

∂0l
0 = ∂0lj = 0,
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and arbitrary functions Uj = Uj (t) , j = 1, . . . ,m. From the identity (82) we get
∫

D

d0
(
l0 + ljUj

)
dx =

∫

D

lj∂0Ujdx,

∫

D

d0 (l0) dx = −Uj

∫

D

d0ljdx,

−

∫

D

d0 (e0) = −Uj

∫

D

d0ljdx,

and derive directly the relation

d
dt
E0 = Uj

d
dt
Y j , Y j =

∫

D

ljdx , (85)

where E0 denotes the energy of the free system with Lagrangian density l0 and
d/dt being the time derivative taken along a solution to (81). A natural choice for
the output of a system of this type is Y j , j = 1, . . . ,m, since Uj dY j/dt is nothing
else than the flow of power caused by the input Uj .

4.2. Piezoelectric Actuators and Sensors

The design of piezoelectric sensors and actuators is based on fundamental relations
of linear piezoelectricity. Again, we use the three-dimensional Euclidean space with
standard orthonormal basis B = {∂1, ∂2, ∂3} and metric g = δijdxi⊗dxj to describe
the constitutive relations. Furthermore, we require that the strain tensor ε = εijdxi⊗
dxj ,

εij = F ki gklF
l
j − δij , (86)

remains small, or we have |εij | � 1. We use the bar symbol to indicate the lin-
earized quantity. This assumption allows us to identify the linearized first and second
Piola stress tensors or p̄ ≈ σ̄ (see (71)), and to set 2ε̄ij =

(

uij + u
j
i

)

. Neglecting
temperature effects, we may write for the constitutive relations of piezoelectricity

σ̄ij = cijkl ε̄kl − a
ij
k D
k, (87)

Ei = −akli ε̄kl + d
i
kD
k. (88)

Here D denotes the electric flux density and E stands for the electric field strength
(Nowacki, 1975). Equation (87) describes the indirect, and (88) the direct piezoelectric
effect. From the assumption concerning σ (71) and the definition of ε (see (86)), it
follows that cijkl = cjikl = cijlk , aijk = a

ji
k and (72) implies additionally c

ijkl = cklij .
Since the free volume charge density is zero inside the piezoelectric lamina and we
confine our considerations to the quasi-static case with respect to Maxwell’s equations,
we get the additional field equations

∂iD
i = 0, Ei = ∂iP (89)

for D and E with electric potential P .
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Piezoelectric actuators have a structure which is highly different with respect to
the spatial dimensions. They are usually plates or beams consisting of several piezo-
electric layers which are covered by metallic electrodes where a voltage is applied.
Although it is possible to derive the stored energy function We (x, F ) (cf. (72)) from
the relations (87), (89) for the linearized scenario (see, e.g., Kugi et al., 1999a; Schlach-
er et al., 1996), we pursue another, more axiomatic approach here. For the sake of
simplicity, we restrict our considerations to the beams which are considered as one-
dimensional structures moving in a two-dimensional Euclidean space with standard
metric g. Let

x1 = ϕ1 (S, t) , x2 = ϕ2 (S, t) (90)

describe the position of an idealized beam such that S is the arc length of the beam
at the reference position given by x1 = S = ϕ1 (S, 0) , x2 = 0 = ϕ2 (S, 0) for
0 ≤ S ≤ L. The independent variables are t and S, while the dependent ones are
u1 and u2 with ϕ1 = x1 + u1, ϕ2 = x2 + u2. Now, it is well-known that the arc-
length and the curvature of ϕ (S, t) determine the position unambiguously up to a
rotation. Furthermore, let us assume that the energy can be stored only by stretching
or bending. Then we may set

We =We,m (S, εm, κm, U) (91)

with

(1 + εm)
2 = ϕ∗ (g) =

(
ϕ10,1
)2
+
(
ϕ20,1
)2
, (92)

where U denotes the voltages applied to the different layers. Furthermore, we get the
additional relations

∂Ss = 1 + εm,

∂Sα = κm (1 + εm) ,
(93)

[

1 + u10,1

u20,1

]

= (1 + εm)

[

cos (α)

sin (α)

]

, (94)

with the angle α between ϕ0,1 (S, 0) and ϕ0,1 (S, t). To get a further simplification,
we assume that such a device is built up symmetrically with respect to the mid-plane
and that the different piezoelectric and structural layers are perfectly bonded to the
substrate. Although we assume symmetry with respect to the mid-plane, we can apply
the voltage Ui of the layer i symmetrically or anti-symmetrically with respect to this
plane. A choice for the function We that meets all the requirements presented above
is given by

∫

L

ρRefWe,mdS =
∫

L

ρRef
2

(
kεε
2
m + kκκ

2
m

)
dS −

nA∑

α=1

UAα L
α
A −

nB∑

β=1

UBβ L
β
B,

LαA =
∫

L

ρRefµ
α
A (S) εm dS,

LβB =
∫

B

ρRefµ
β
B (S)κm dS.

(95)



158 K. Schlacher and A. Kugi

The index A denotes couples of layers with symmetrically applied voltages
and the index B corresponds to the couples where the voltages are applied anti-
symmetrically. The functions µαA (S) and µ

β
B (S) depend on the special form of the

electrodes and/or the piezoelectric laminates. They will be designed later depending
on the requirements of the control problem. The following facts are worth mentioning.
If one simplifies the new stored energy function with respect to the small strain as-
sumptions, then this simplified function is derivable by classical beam theory based on
the relations (86)–(89), see, e.g., (Kugi, 2000; Schlacher et al., 1996). Within this small
strain scenario, the function ϕ(S, t) describes the movement of a coordinate line and
does not describe the movement of the physical mid-line in general. Figure 10 sketch-
es a possibility of creating a specified spatial distribution, µαA (S) and µβB (S) , by
means of shaping the corresponding electrodes. At this point it should be explained
that the poling direction in the piezoelectric layer can only be up or down, due to
polarity. The voltage supplied, UAα or U

B
β , is either positive or negative. Figure 10

shows all of the different possible combinations for creating a symmetrically or an
anti-symmetrically supplied piezoelectric layer couple. Figure 11 shows another pos-
sibility, where the thickness of the piezoelectric lamina varies over the length of the
layer. Of course, a combination of these methods is also possible. It should be empha-
sized that Figs. 10 and 11 depict only the ideas relating to the design of a specified
shaping function (Kugi et al., 1999a). In a practical application, one will use more
sophisticated surface patterns of the electrodes for achieving the shaping functions
(see, e.g., (Lee and Moon, 1990) and the references cited therein).

p i e z o  l a m i n a

p i e z o  l a m i n a m i d - p l a n e

e l e c t r o d e

x 1

x 3

U i

x 2

+ -

m i ( x 1 )

U i
+ -

p o l i n g
d i r e c t i o n s

Fig. 10. Principle of surface shaping of the electrode for an actuator layer couple.

s t r u c t u r a l  l a m i n a

m i d - p l a n e

e l e c t r o d e

U i
+ -

p i e z o  l a m i n a

U i
+ -

x 3

x 1

m i ( x 1 )

x 2

Fig. 11. Principle of shaping the piezoelectric lamina for an actuator layer couple.
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The design of piezoelectric sensors follows a procedure similar to the one applied
to the actuators. The corresponding electrodes of a layer are short circuited. Within
the small-strain scenario, the derivation of the sensor equations is based on the rela-
tions (86), (88), (89). The output of such a sensor is the charge Q of the capacity built
up by the electrodes and the piezoelectric laminate. Again, we assume the symmetry
of the device with respect to the mid-plane and we can take the sum or the difference
of the corresponding charges. The analysis of the modeling problem yields

YA =
∫

L

λA (S) εmρRef dS,

YB =
∫

L

λB (S)κmρRef dS,
(96)

where the index A denotes the couples of layers with the sum of the charges and
the index B corresponds to the couples where the difference is taken. Again, the
functions λA (S) and λB (S) depend on the special construction of the layers, and
they can be designed with respect to the control problem. The principle of shaping the
sensor layers is shown in Fig. 12, see (Kugi et al., 1999a). Here the right choice of the
polarization profile within each layer of one sensor layer couple offers an additional
possibility to create the shaping functions λA (S) and λB (S) too.

p i e z o  l a m i n a

p i e z o  l a m i n a
m i d - p l a n e

e l e c t r o d e

x 1

x 3

l i ( x 1 )

x 3

- x 3

m e a s u r e m e n t
i n s t r u m e n t

Y A

Y B

p o l i n g
d i r e c t i o n s

x 2

Fig. 12. Principle of surface shaping of the electrode for a sensor layer couple.

If we compare (95) and (96), then it can be seen that this design allows us to
collocate the actuators and sensors in a straightforward manner.

4.3. Design of a Smart Beam

Let us consider the cantilever beam of Fig. 13 moving in a two-dimensional Euclidean
space with standard orthonormal basis B. Again, the independent coordinates are
t, S = x1 and the dependent coordinates are the displacements uj , j = 1, 2. L
denotes the length of the beam in the reference configuration with u1 = u2 = 0 for
S ∈ [0, L]. Furthermore, we assume that the line mass density ρRef is constant in
this configuration. The beam is equipped with several piezoelectric actuator layers
to counteract the gravity with acceleration g and several sensor layers to supply the
control system with the required measurements. The design of the spatial distributions
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d e t a i l
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Fig. 13. The considered smart beam.

of these layers is part of the controller design itself. The map from the reference
configuration to the current one is again denoted by ϕ (cf. (90)). The derivation of
the evolutionary equations of the smart beam is based on the conservation of mass and
on the balance laws of momentum, as well as those of moment of momentum (Marsden
and Hughes, 1994). Furthermore, we neglect the rotational inertia. According to these
assumptions, we get the kinetic energy density Wk ,

Wk =
ρRef
2

((
u11,0
)2
+
(
u21,0
)2
)

. (97)

The effect of gravity, which acts like a body force on the beam, is taken into account
by the potential

Wf = gρRefu1 (98)

and the stored energy function We,m of the beam with piezoelectric layers is given
by (95). According to (74), one gets the Lagrangian

L =
∫

L

(Wk −We,m −Wf ) dS . (99)

To complete the problem, we have to add the kinematic boundary conditions which
are in this case given by

u(0, t) = 0 and α(0, t) = 0,

see Fig. 13. The dynamic boundary conditions follow directly from the Lagrange
formalism.
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Now we are able to formulate the design problem: Find a control law with suitable
actuators and sensors such that the reference position is stabilized and such that the
influence of the gravity is eliminated at least in this position. The controller design
takes place in two steps. In the first step, we change the potential energy function such
that its global minimum occurs at the required position. In the second step, we inject
damping to achieve asymptotic stability (see, e.g., (Schlacher, 1998)). Furthermore,
we have to distinguish two cases. If the beam is stiff enough such that there exists only
one equilibrium (of course, with α = 0), then we skip the following step. Otherwise,
we choose the control laws

UBj = −kBL
j
B, j = 1, . . . ,m

and the actuators (cf. (95)) with

µjB =

{

1 if S ∈
[
Sj , Sj +∆S

]
,

0 otherwise,

and 0 ≤ S1, Sj +∆S < Sj+1, j = 1, . . . ,m− 1, Sm +∆S ≤ L, ∆S > 0 of the type

LjB =
∫

L

µjBρRefκmdS = ρRef∆α
j , (100)

∆αj = α
(
Sj +∆S

)
− α
(
Sj
)
, µjB = 1.

Let s denote the arc length at the actual position. Then (100) follows from (93)
and ∂sα = κm. These actuators can be realized with patches of piezoelectric layers in
a straightforward manner. In addition, this type of control law is derivable from the
potential

W jU =
kB
2

(

LjB

)2

because of

δα

(
kB
2

(

LjB

)2
)

= kBL
j
B

︸ ︷︷ ︸

−UB
j

∫

L

δα

(

µjBρRefκm

)

dS

and δα of (80). For a sufficiently large kB > 0 and a sufficient number of patches,
we can always obtain that there exists only one equilibrium with α = 0.

To get a closer insight into the influence of the gravity on the beam, we rewrite
the form Wf/gρRef (cf. (98)) as

u1 = dS
(
(S − L)u1

)
+ (L− S)u10,1

= (L− S) ((εm + 1) cosα− 1) + dS
(
(S − L)u1

)

because of (94). Since the first term on the right-hand side vanishes on the boundary
S ∈ {0, L} , it is easy to see that the control law UA = −g with the actuator (95)

LA =
∫

L

(L− S) εmρRef dS (101)
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cancels the influence of the gravity on the beam at the equilibrium α = 0. The
collocated sensors for the actuators (100) and (101) follow directly from (96) as Y jB =
LjB and YA = LA.

According to this construction, the global minimum Wmin of the function W =
Wf +We,m occurs at α = 0, ε = 0. To finish the controller design, we have to add
damping to the system. According to the previous results, we choose the control laws

UBj = −kBY
j
B − dB

d
dt
Y jB ,

UA = −gYA − dA
d
dt
YA,

where dA > 0, dB > 0.

Finally, the set of evolutionary equations of the closed loop in Lagrangian form
can be derived from the potential presented above. The Euler-Lagrange operators are
given by (80) for #J = 2. It is worth deriving these equations using a computer
algebra program due to the enormous complexity of this set of equations. Of course,
we can only show that

d
dt
E0 = −dA

(
d
dt
YA

)2

− dB
∑m

j=1

(
d
dt
Y jB

)2

≤ 0

is met for the proposed controllers (see (85)). Asymptotic stability cannot be proven
here, but it follows from the insight into the physics of the smart beam. It is worth
mentioning that, although the piezoelectric beam is an infinite-dimensional dynamical
system, the control law uses a finite number of sensors and actuators only.

5. Conclusions

This contribution is concerned with different control strategies for mechatronic sys-
tems. The physical nature of the plants to be controlled in combination with a strong
mathematical formulation based on differential geometry and differential algebra serve
as a common basis for the controller design. Moreover, for the control concepts to be
practically feasible some special features and restrictions of the plants have to be
taken into account already within the control synthesis task. Thus, for example, in
most of the control applications only some state variables are measurable, the signals
are corrupted by transducer and quantization noise, the sensors and actuators have
a limited accuracy, and some parameters are only known inaccurately or are even
varying slowly due to, e.g., aging processes. Furthermore, it turns out that by an ap-
propriate design of actuators and sensors the control problem itself can be drastically
simplified. Of course, this paper does not intend to give a general solution to all these
problems. But by means of three different applications, namely a PWM-controlled dc-
to-dc converter, the hydraulic gap control in steel rolling, and an infinite-dimensional
smart beam structure, it is shown how control theory can be used to solve the control
design problem by considering special features of the plant and, what is even more
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challenging, how an interdisciplinary design can improve the existing products and is
able to lead to new ones.
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