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AN ALGORITHM FOR CONSTRUCTION OF
�
-VALUE

FUNCTIONS FOR THE BOLZA CONTROL PROBLEM

Edyta JACEWICZ∗

The problem considered is that of approximate numerical minimisation of the
non-linear control problem of Bolza. Starting from the classical dynamic pro-
gramming method of Bellman, an ε-value function is defined as an approxima-
tion for the value function being a solution to the Hamilton-Jacobi equation.
The paper shows how an ε-value function which maintains suitable properties
analogous to the original Hamilton-Jacobi value function can be constructed
using a stable numerical algorithm. The paper shows the numerical closeness of
the approximate minimum to the infimum of the Bolza functional.
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1. Introduction

It is well-known (Bellman, 1957; Cesari, 1983; Fleming and Rishel, 1975) that in clas-
sical dynamic programming the whole family of problems with fixed initial points is
considered. For one problem the initial point is fixed, but when a family of problems
with different initial points is considered, the solutions to these problems are depen-
dent on their initial points. This dependence is called the value function. The classical
dynamic programming method describes the properties of this function, e.g. presents
the necessary and sufficient conditions for the optimality of solutions. Starting from a
description of the classical dynamic programming method for finding an approximate
minimum (Nowakowski, 1990) of the Bolza functional (Cesari, 1983; Fleming and
Rishel, 1975), the ε-value function is used to approximate the value function being a
solution to the Hamilton-Jacobi equation (Cesari, 1983; Fleming and Rishel, 1975). It
has been shown that the ε-value function has properties that are analogous to those
of the value function itself.

The paper proposes a numerical algorithm and method for constructing an ε-
value function which must satisfy the partial differential inequality of dynamic pro-
gramming. According to this algorithm a formula for the ε-value function is obtained
and an approximate minimum is calculated. In this study a formula is developed for
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the estimate of the difference between the calculated minimum and the infimum of
the Bolza functional.

The value function approximation algorithm has been shown to be numerically
stable by Jacewicz and Nowakowski (1995). An example in Section 6 illustrates the
stability of the algorithm and the potential of this theory for the solution of non-linear
optimal control problems based on the Hamilton-Jacobi equation. The new method
of construction of the ε-value function is a major contribution in this research.

A numerical strategy for solving this problem was given by Polak (1997). In this
approach, the partial differential equation of optimal control is discretised, i.e. the
infinite-dimensional optimal control problem can be approximated by a sequence of
finite-dimensional state-space problems. This paper provides some insight into the
theory behind the derivation of the approximate minimum to the following Bolza
functional and is not concerned with the calculation of the optimal control.

Problem Statement: Consider the Bolza functional

J(x, u) =

b
∫

a

L
(

t, x(t), u(t)
)

dt+ l
(

x(b)
)

, (1)

where the absolutely continuous trajectory x : [a, b] → � n and the Lebesgue mea-
surable control function u : [a, b] → � m are subject to the non-linear controlled
state-space system:

ẋ(t) = f
(

t, x(t), u(t)
)

, a.e. in [a, b], (2)

u(t) ∈ U, t ∈ [a, b], (3)

x(a) = c, (4)

f : [a, b] × � n × � m → � n , L : [a, b] × � n × � m → � , l : C → � are given
functions, U is a compact subset of � m , C is a subset of � n , c is a point in the
state space � n .
It is assumed that:

(Z)
(t, x, u) → f(t, x, u) and (t, x, u) → L(t, x, u) are continuous and bounded
functions in [a, b] × � n × U ; they are Lipschitz functions with respect to t,
x, u; x→ l(x) is a Lipschitz function with respect to x.

Definition 1. A pair of functions x(·), u(·) is admissible if it satisfies (2), (3) and
t→ L(t, x(t), u(t)) is summable; then the corresponding trajectory t→ x(t) will be
called admissible.

The value of the approximate minimum of the Bolza functional is sought for the
admissible pair xε(·), uε(·), defined in [a, b], xε(a) = c, and such that:

J(xε, uε) ≤ inf J(x, u) + ε(b− a), (5)

where the infimum is taken over all admissible pairs x(·), u(·) satisfying (4) and
ε > 0 is any given number.
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The value J(xε, uε) is called an approximate minimum of the functional, and
(xε, uε) is an approximate solution to the problem under consideration (Nowakows-
ki, 1990).

Remark 1. A pair xε(·), uε(·) satisfying (5) always exists, provided that
inf J(x, u) > −∞.

The main problem considered in the literature is how to find an approximate
solution to the Bolza problem, i.e. how to calculate a pair xε(·), uε(·) satisfying (5).
The first answer for this problem belongs at least partially to Ekeland (1974, 1979),
who formulated it in the form of a variational principle. This corresponds to the
first variation in the ordinary extremum problem, i.e. for (1)–(4) it is simply the
ε-maximum Pontryagin principle.

However, we cannot infer that a pair satisfying this principle also satisfies (5).
The situation is even worse: not every pair satisfying (5) also satisfies the ε-maximum
Pontryagin principle. Nowakowski (1988, 1990) describes theories based on the gener-
alisations of the field of extremals and Hilbert’s independence integral, which allow us
to state, under additional geometrical assumptions, that a pair xε(·), uε(·) satisfying
the ε-maximum Pontryagin principle also satisfies (5), with an additional term on
the right-hand side.

The aim of this work is to describe the classical dynamic programming method for
an approximate minimum of the Bolza functional and to apply this method in order
to approximate the value function that is a solution to the Hamilton-Jacobi equation.
Using a new method of construction of the function approximating the value function,
an effective formula for the ε-value function can be obtained. Clearly, when this
formula is known, an approximate minimum of the Bolza functional can be calculated
for the admissible pair (xε, uε) satisfying (5) and the difference J(xε, uε)−inf J(x, u)
can be estimated.

The remainder of the paper is organised as follows:

The definition of the value function is given in Section 2 and its most important
properties described in terms of the classical dynamic programming are presented.
It is then shown how the classical dynamic programming can be used to find an
approximate minimum of the considered functional, i.e. the value function can be
approximated by an ε-value function satisfying the partial differential inequality of
dynamic programming (12).

Section 3 provides a description of the classical dynamic programming method
for finding an approximate minimum of the Bolza functional. The ε-value function is
defined and it is proved that it has properties analogous to those of the value function.
The most important property is the so-called verification theorem that gives sufficient
conditions for ε-optimality.

The purpose of Section 4 is to describe a method of constructing the func-
tion approximating the value function (t, x) → S(t, x), defined in a compact set
T ⊂ [a, b] × � n , satisfying the Lipschitz condition and being the solution to the
Hamilton-Jacobi equation. An ε-value function is constructed that satisfies the partial
differential inequality of dynamic programming. Hence, the value of the approximate
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minimum of the Bolza functional can be calculated and it is possible to estimate the
difference:

J(xε, uε)− inf J(x, u) ≤ ε(b− a),

where ε is a non-negative value, close to zero. This number is calculated while con-
structing consecutive functions in order to approximate the value function due to the
numerical algorithm proposed in Section 5. Using this algorithm, Section 6 gives an
example which serves to illustrate the power and effectiveness of the proposed method
of constructing the ε-value function.

2. Definition and Properties of the Value Function

As stated in Section 1, in the classical dynamic programming (Bellman, 1957; Cesari,
1983; Fleming and Rishel, 1975) a whole family of problems with fixed initial points
is considered. For one problem the initial point is fixed, but when a family of prob-
lems with different initial points is considered, the solutions to these problems are
dependent on their initial points. This dependence is called the value function (see
Definition 2). The classical dynamic programming method describes the properties of
this function, e.g. it presents necessary and sufficient conditions for the optimality of
solutions.

Let T ⊂ [a, b] × � n be a set with non-empty interior, covered by graphs of
admissible trajectories, i.e. for every (t0, x0) ∈ T there exists an admissible pair x(·),
u(·), defined in [t0, b], such that x(t0) = x0 and (s, x(s)) ∈ T for s ∈ [t0, b].

Definition 2. Function (t, x)→ S(t, x) defined in T is called the value function if

S(t, x) = inf







b
∫

t

L
(

s, x(s), u(s)
)

ds+ l
(

x(b)
)







,

where the infimum is taken over all admissible trajectories s→ x(s), s ∈ [t, b], which
start from (t, x) ∈ T , x(t) = x, and their graphs are contained in T .
If only the value function (t, x)→ S(t, x) is differentiable in the open set T0 ⊂ T ,

then it satisfies the partial differential equation of dynamic programming known as
the Hamilton-Jacobi equation (Cesari, 1983; Fleming and Rishel, 1975),

St(t, x) +H
(

t, x, Sx(t, x)
)

= 0, (t, x) ∈ T0 (6)

with the boundary condition

S(b, x) = l(x), (b, x) ∈ T0, (7)

where the Hamiltonian is given by

H(t, x, y) = yf
(

t, x, u(t, x)
)

+ L
(

t, x, u(t, x)
)

,

and (t, x)→ u(t, x) is an optimal feedback control.
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One can notice that for the considered Bolza problem (1)–(4) the above Hamilton-
Jacobi equation can be re-written in the following way:

∂

∂t
S(t, x) + min

u∈U

{

∂

∂x
S(t, x)f(t, x, u) + L(t, x, u)

}

= 0, (t, x) ∈ T0. (8)

One of the most important properties of the value function is stated in Theorem 1:

Theorem 1. If the functions (t, x, u) → f(t, x, u), (t, x, u) → L(t, x, u) and x →
l(x) satisfy assumptions (Z) from the Bolza problem (1)–(4), then the value function
(t, x) → S(t, x) satisfies a Lipschitz condition and is the solution to the Hamilton-
Jacobi equation:

∂

∂t
S(t, x) + min

u∈U

{

∂

∂x
S(t, x)f(t, x, u) + L(t, x, u)

}

= 0 for a.e. (t, x) ∈ T

with the boundary condition S(b, x) = l(x), (b, x) ∈ T .
Proof. See (Fleming and Rishel, 1975, Ch. IV, Th. 4.2).

A simple procedure for finding an approximate minimum of the Bolza functional
from the problem (1)–(4) will now be described. The classical dynamic programming
method for the approximate minimum is very useful for this purpose.

According to Fleming and Rishel (1975) and Cesari (1983), in the classical dy-
namic programming the sufficient condition for optimality of the solution to the con-
sidered problem is expressed as the solution to the Hamilton-Jacobi equation so that
following Theorem 2 holds.

Theorem 2. Let (t, x)→ G(t, x) be a solution of the class C1(T ) to the Hamilton-
Jacobi equation

Gt(t, x) +H
(

t, x,Gx(t, x)
)

= 0, (t, x) ∈ T0
with the boundary condition

G(b, x) = l(x), (b, x) ∈ T0,
where T0 ⊂ T is an open set, the Hamiltonian is given by the formula H(t, x, y) =
yf(t, x, u(t, x)) + L(t, x, u(t, x)), and (t, x) → u(t, x) is an optimal feedback control.
If x = x(t) and a pair x(·), u(·), defined in [a, b], x(a) = c, is admissible and such
that

∂

∂t
G
(

t, x(t)
)

+
∂

∂x
G
(

t, x(t)
)

f
(

t, x(t), u(t)
)

+ L
(

t, x(t), u(t)
)

= 0,

then the pair x(·), u(·) is optimal, and also G(t, x) = S(t, x), (t, x) ∈ T0, where
S(·, ·) is the value function.
Proof. see (Fleming and Rishel, 1975, Ch. IV, Th. 4.4).

It can be seen that some regularity of the function (t, x)→ G(t, x), being the so-
lution to the Hamilton-Jacobi equation, is required, i.e. it must be at least a Lipschitz
function (see Th. 1).
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There can be given some examples of control problems (Cesari, 1983) whose
solutions cannot be characterised in that way. The main reason behind this is an
‘insufficient regularity’ of the function (t, x, y)→ H(t, x, y).
For that kind of problems the following equation is considered:

Gt(t, x) +H
(

t, x,Gx(t, x), ε
)

= 0, (t, x) ∈ T0 (9)

with the boundary condition

G(b, x) = l(x, ε), (b, x) ∈ T0, (10)

where (t, x, y, ε) → H(t, x, y, ε) and (x, ε) → l(x, ε) are regular (smooth) enough,
and the problem (9)–(10) can be solved analytically or numerically.

Moreover, it is assumed that H(t, x, y, ε)→ H(t, x, y) uniformly with respect to
t, x, y, as ε→ 0 and that l(x, ε)→ l(x) uniformly with respect to x, as ε→ 0, i.e.
it is assumed that

∣

∣H(t, x, y, ε)−H(t, x, y)
∣

∣ ≤ ε for (t, x) ∈ T0, y ∈ � n ,
(11)

∣

∣l(x, ε)− l(x)
∣

∣ ≤ ε for (b, x) ∈ T0.

Hence, one can infer that if the function (t, x)→ G(t, x) is a solution to (9)–(10), it
satisfies the inequality

−ε ≤ Gt(t, x) +H
(

t, x,Gx(t, x)
)

≤ ε, (t, x) ∈ T0.

A new function, shifted to the left-hand side, is defined by the formula

Gε(t, x):=G(t, x) + ε(b− t), (t, x) ∈ T0.

This satisfies the inequality

−2ε ≤ Gεt(t, x) +H
(

t, x,Gεx(t, x)
)

≤ 0, (t, x) ∈ T0. (12)

The function (t, x) → Gε(t, x) satisfies the properties of an ε-value function in T0,
i.e. it satisfies

S(t, x) ≤ Gε(t, x) ≤ S(t, x) + 3ε, (t, x) ∈ T0,

l(x)− ε ≤ Gε(b, x) ≤ l(x) + ε, (b, x) ∈ T0,

where (t, x) → S(t, x) is the value function, and ε ≥ 0 is arbitrary and fixed for
further considerations.

If an admissible pair xε(·), uε(·) can be found as defined in [a, b], xε(a) = c,
and satisfying the inequality:

Gε(a, c) ≥
b
∫

a

L
(

t, xε(t), uε(t)
)

dt+ l
(

xε(b)
)

,

then t→ xε(t) is called an ε-optimal trajectory associated with (t, x)→ Gε(t, x).
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The above approximation of the value function by the ε-value function is nu-
merically stable in the following sense (Jacewicz and Nowakowski, 1995): for every
ε > 0 there exists an Ms > 0 such that for all H(t, x, y, ε1) and H(t, x, y, ε2) sat-
isfying (11) with ε on the right-hand side of these inequalities and corresponding
to them ε1-optimal and ε2-optimal trajectories xε1(·), xε2(·) and controls uε1(·),
uε2(·), the following inequality is satisfied:

∣

∣J(xε1 , uε1)− J(xε2 , uε2
∣

∣ ≤Msε.

This means that the difference between the values of the Bolza functional calculated
for two different approximate solutions (xε1 , uε1) and (xε2 , uε2) is limited by the
positive number Msε.

3. Classical Dynamic Programming Approach

In this section the classical dynamic programming method for finding approximate
minimum for the Bolza problem (1)–(4) is described. The ε-value function is defined
and its most important properties, which are necessary and sufficient conditions for
ε-optimality, are proved.

Let T ⊂ [a, b] × � n be a set with non-empty interior covered by graphs of
admissible trajectories (cf. Section 2).

Definition 3. The function (t, x) → Sε(t, x), defined in the set T , is called the
ε-value function if

S(t, x) ≤ Sε(t, x) ≤ S(t, x) + ε(b− a), (t, x) ∈ T,
(13)

Sε(b, x) = l(x), (b, x) ∈ T,

where (t, x) → S(t, x) is the value function, x → l(x) is the function described in
the Bolza problem (1)–(4) and satisfying the assumptions (Z), ε > 0 is arbitrary and
fixed for further consideration.

It is clear that the ε-value functions for fixed ε > 0 are non-unique. However,
for ε = 0, the formulae (13) define a unique value function.

It is assumed here that the function (t, x)→ Sε(t, x) is finite in T , i.e. the points
from T for which the function has values ±∞ should be excluded from this set.

Definition 4. An admissible trajectory s → xε(s), s ∈ [t, b], xε(t) = x is called
ε-optimal if

Sε(t, x) ≥
b
∫

t

L
(

s, xε(s), uε(s)
)

ds+ l
(

xε(b)
)

for a given, fixed Sε(t, x), (t, x) ∈ T .
Proposition 1 shows that the ε-value function has properties analogous to those

of the value function.
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Proposition 1. (i) Let x(·), u(·) be an admissible pair defined in [t0, b], for which
the trajectory t → x(t) lies in T and starts at the point (t0, x0) ∈ T . Then the
function (t, x)→ R(t, x) defined by

R(t, x) = Sε(t, x) −
b
∫

t

L
(

s, x(s), u(s)
)

ds,

evaluated along an admissible trajectory t→ x(t), satisfies the inequalities

R
(

t1, x(t1)
)

≤ R
(

t2, x(t2)
)

+ ε(b− a), t0 ≤ t1 ≤ t2 ≤ b.

(ii) For the ε-optimal trajectory t→ x0ε(t), t0 ≤ t ≤ b, the following inequalities are
valid:

R(t0, x0) ≥ l
(

x0ε(b)
)

and Sε(t, x
0
ε(t)) ≤

∫ b

t L(s, x
0
ε(s), u

0
ε(s)) ds+ l(x

0
ε(b)) + ε(b− a), t0 < t ≤ b.

Proof. Since part (ii) is a direct consequence of part (i) and the definition of the
ε-optimal trajectory, only part (i) must be proved.

Let x(·), u(·) be an admissible pair defined in [t0, b], x(t0) = x0. Then the pair
x(·), u(·) restricted to [t1, b] is also admissible. Let x2(·), u2(·) be an admissible
pair defined in [t2, b], x2(t2) = x(t2).

Let the function t→ u1(t) be defined in [t1, b] as follows:

u1(t) =







u(t) for t1 ≤ t ≤ t2,

u2(t) for t2 ≤ t ≤ b.

Then the pair x1(·), u1(·) defined in [t1, b] with x1(·) corresponding to u1(·) due
to (2) is admissible.

Hence

Sε
(

t1, x(t1)
)

≤
∫ b

t1

L
(

s, x1(s), u1(s)
)

ds+ l
(

x1(b)
)

+ ε(b− a).

As x2(·) defined in [t2, b] is an arbitrary admissible trajectory on [t2, b], the
following inequality holds:

Sε
(

t1, x(t1)
)

−
∫ b

t1

L
(

s, x(s), u(s)
)

ds

≤ inf
{

∫ b

t2

L
(

s, x̄(s), ū(s)
)

ds+ l
(

x̄(b)
)

}

−
∫ b

t2

L
(

s, x(s), u(s)
)

ds+ ε(b− a),

where the infimum is taken over all admissible trajectories x̄(·) defined in [t2, b],
which start at (t2, x(t2)). The result is that (i) above is satisfied.
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It is easy to see that these properties are necessary conditions for ε-optimality.
Proposition 2 asserts that these properties also satisfy sufficiency.

Proposition 2. Let (t, x) → G(t, x) be any real-valued function defined in T and
such that G(b, x) = l(x). Let (t0, x0) ∈ T be a given initial condition, and suppose
that for each admissible trajectory x(·) defined in [t0, b], x(t0) = x0, G(·, x(·)) is
finite in [t0, b] and

G
(

t1, x(t1)
)

−
∫ b

t1

L
(

t, x(t), u(t)
)

dt ≤ G
(

t2, x(t2)
)

−
∫ b

t2

L
(

t, x(t), u(t)
)

dt+ε(b−a) (14)

for all t0 ≤ t1 ≤ t2 ≤ b. If an admissible trajectory x0ε(·) defined in [t0, b], x0ε(t0) =
x0, is such that

G(t0, x0) ≥
∫ b

t0

L
(

t, x0ε(t), u
0
ε(t)
)

dt+ l
(

x0ε(b)
)

(15)

and

G
(

t0, x
0
ε(t)
)

≤
∫ b

t

L
(

s, x0ε(s), u
0
ε(s)
)

ds+ l
(

x0ε(b)
)

+ ε(b− a), (16)

for t0 < t ≤ b, then x0ε(·) is the ε-optimal trajectory for Sε(t0, x0) = G(t0, x0).
Proof. Let x(·) be an admissible trajectory defined in [t0, b], x(t0) = x0. Then

G(t0, x0)−
∫ b

t0

L
(

t, x(t), u(t)
)

dt ≤ l
(

x(b)
)

+ ε(b− a).

Hence

G(t0, x0) ≤ inf
{

∫ b

t0

L
(

t, x̄(t), ū(t)
)

dt+ l
(

x̄(b)
)

}

+ ε(b− a),

where the infimum is taken over all admissible trajectories x̄(·) defined in [t0, b],
x̄(t0) = x0. For x

0
ε(·) the following inequality holds:

G(t0, x0) ≥
b
∫

t0

L
(

t, x0ε(t), u
0
ε(t)
)

dt+ l
(

x0ε(b)
)

.

Consequently, x0ε(·) is the ε-optimal trajectory for Sε(t0, x0) = G(t0, x0).
A more important property of the ε-value function, from a practical standpoint,

is the so-called verification theorem.

Proposition 3. Let T ⊂ [a, b]× � n be an open set and the function (t, x)→ G(t, x),
defined in T , be a C1(T ) solution to the following inequality:

−ε ≤ Gt(t, x) + inf
{

Gx(t, x)f(t, x, u) + L(t, x, u) : u ∈ U
}

≤ 0, (17)
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which satisfies the boundary condition G(b, x) = l(x), (b, x) ∈ T .
If xε(·), uε(·) is an admissible pair defined in [a, b], xε(a) = c, such that

−ε ≤ Gt
(

t, xε(t)
)

+Gx
(

t, xε(t)
)

f
(

t, xε(t), uε(t)
)

+L
(

t, xε(t), uε(t)
)

≤ 0,(18)
then x0ε(·) is the ε-optimal trajectory for the ε-value function Sε(t, x) = G(t, x),
(t, x) ∈ T .
Proof. The dynamic programming partial differential inequality (17) for an admissible
pair x(·), u(·) implies

d

dt
G
(

t, x(t)
)

= Gt
(

t, x(t)
)

+Gx
(

t, x(t)
)

f
(

t, x(t), u(t)
)

≥ −ε− L
(

t, x(t), u(t)
)

.

Hence, we infer that (t, x)→ G(t, x) satisfies (14).
Similarly, from (18), the inequalities (15) and (16) can be obtained. Thus, by

Proposition 2, xε(·) is the ε-optimal trajectory for the ε-value function Sε(t, x) =
G(t, x), (t, x) ∈ T .
Note that the inequality (17) of dynamic programming has an important practical

meaning as the function (t, x) → G(t, x), (t, x) ∈ T satisfying this inequality is the
ε-value function Sε(t, x) = G(t, x) only if it is regular enough, i.e. it is at least a
function of class C1(T ). This property is then used in Section 4 while constructing a
function approximating the value function.

4. Approximation of the Value Function

This section describes a method of constructing an ε-value function (t, x)→ Sε(t, x)
which approximates the value function (t, x) → S(t, x) defined in the compact set
T ⊂ [a, b] × � n , satisfying the Lipschitz condition and being the solution to the
Hamilton-Jacobi equation for the considered Bolza problem (1)–(4) with the assump-
tions (Z). The proposed way of constructing the ε-value function of class C1(T ) en-
sures that the dynamic programming partial differential inequality (17) from Propo-
sition 3 is satisfied. Thus the value of the approximate minimum for this problem
can be calculated and the difference from the exact solution, i.e. from the infimum
of the Bolza functional, can be estimated. An arbitrary function (t, x) → w(t, x)
of class C1(T ) can be chosen and in a few steps of the construction it is modified

until the resulting function (t, x) → wβ,i3,j (t, x) satisfies the dynamic programming
inequality (17), i.e. it is the ε-value function.

Gonzalez proved (1976) that there exists a maximum solution to the Hamilton-
Jacobi equation which satisfies the Lipschitz condition and which is also the value
function. The results presented here are: the construction of the ε-value function
approximating the value function and giving an answer to the question of how much
the approximate minimum differs from the infimum of the Bolza functional. To get a
better result, i.e. to reduce the error in the estimate of the minimum, this procedure
should be repeated using the numerical algorithm proposed in Section 5.
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Let T ⊂ [a, b]× � n be a compact set with a non-empty interior covered by the
graphs of admissible trajectories.

The construction of the ε-value function starts with the choice of some arbitrary
function (t, x) → w(t, x) of class C1(T ). The lack of any other limitations (restric-
tions) connected with the choice of the start function is one of the advantages of the
method described in this paper.

The dynamic programming inequality (17) is an estimation from both sides of
the values of the left-hand side of the Hamilton-Jacobi equation. Hence, to make the
notation shorter and simpler, a function (t, x) → F (t, x) is defined in the set T by
the following formula:

F (t, x) :=
∂

∂t
w(t, x) + min

u∈U

{

∂w

∂x
(t, x)f(t, x, u) + L(t, x, u)

}

, (19)

where the functions (t, x, u) → f(t, x, u) and (t, x, u) → L(t, x, u) satisfy the as-
sumptions (Z) from Section 1, (t, x) → w(t, x) is an arbitrarily chosen function of
class C1(T ), and the infimum is replaced with the minimum taken over all controls u
from the compact set U .

The function (t, x) → F (t, x) defined so is considered in a compact set T . As
the function is continuous, due to the Weierstrass theorem, it reaches its infimum and
supremum (they are finite) in T . Denoting these extrema by κd and κg, respectively,
the values of the function F (·, ·) can be estimated as follows:

κd ≤ F (t, x) ≤ κg for all (t, x) ∈ T.

The function (t, x) → F (t, x), defined by (19) using (t, x) → w(t, x), can have
values of different signs, although it should satisfy the dynamic programming in-
equality (17), i.e. it should have non-positive values, close to zero. Accordingly, a
new function (t, x) → w1,j(t, x) must be constructed, and additionally, a new func-
tion (t, x) → F1,j(t, x) must be defined in a way analogous to the definition of the
function (t, x)→ F (t, x). The function (t, x)→ F1,j(t, x) should also satisfy (17).
Now a new function (t, x)→ w1,j(t, x) must be defined in non-intersecting sub-

sets Pj of the compact set T , which cover T completely. First, the domain of this
function must be constructed.

This is the reason why the interval [κd, κg] ⊂ � , as the image of the function
(t, x)→ F (t, x), needs to be divided into r+k subintervals using the following points:
(a) if infimum κd and supremum κg are of different signs, then

κd = y−r < y−r+1 < · · · < y−1 < y0 < y1 < · · · < yk = κg ,

where y0 = 0 and r, k ∈ � ;

(b) if infimum κd is non-negative, then

κd = y0 < y1 < · · · < yk = κg ,

where k ∈ � ;
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(c) if supremum κg is non-positive, then

κd = y−r < y−r+1 < · · · < y−1 < y0 = κg ,

where r ∈ � .

Later in the paper we consider the case when the infimum and supremum (κd
and κg) of the function (t, x) → F (t, x) are of different signs. The remaining two
cases are simpler.

Applying the approach analogous to that used for defining the Lebesgue integral,
some subsets of the set T can be defined. In these subsets the function (t, x) →
F (t, x) takes the values from the subintervals determined by each pair of adjacent
points from the division of the interval [κd, κg ] ⊂ � given above:

Pj :=
{

(t, x) ∈ T : yj ≤ F (t, x) < yj+1
}

, j ∈ {−r, . . . ,−1},

Pj :=
{

(t, x) ∈ T : yj−1 ≤ F (t, x) ≤ yj
}

, j = 1,

Pj :=
{

(t, x) ∈ T : yj−1 < F (t, x) ≤ yj
}

, j ∈ {2, . . . , k}.

Clearly, the pairs of defined subsets Pj , j ∈ {−r, . . . ,−1}∪ {1, . . . , k} of the set
T are non-intersecting, i.e. for all i, j ∈ {−r, . . . ,−1}∪{1, . . . , k}, i 6= j, Pi∩Pj = ∅,
and all these subsets cover the whole set T , i.e.

⋃k
j=−r Pj = T .

Let P̄j denote the closure of the set Pj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.
In such subsets Pj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} of T defined above a new

function (t, x)→ w1,j(t, x) will now be defined.
The function (t, x) → F (t, x) can have values of different signs on T , so the

following two cases must be considered:

Case 1. Let F (t, x) ≥ 0, (t, x) ∈ Pj , j ∈ {1, . . . , k}, i.e.

yj−1 ≤ F (t, x) ≤ yj , (t, x) ∈ Pj , j ∈ {1, . . . , k}. (20)

A new (transformed) function in subsets Pj , j ∈ {1, . . . , k} can be defined as

w1,j(t, x) := w(t, x) + γjyj(b− t), (21)

where the function (t, x)→ w(t, x) was chosen earlier and used in the definition of the
function (t, x)→ F (t, x) satisfying (20). The positive numbers yj , j ∈ {1, . . . , k} are
the points from the division of the interval [κd, κg ] ⊂ � , and the numbers 1 < γj < 2,
j ∈ {1, . . . , k} were chosen to estimate the non-negative values, close to zero, of a
new function (t, x)→ F1,j(t, x) defined in the subsets Pj , j ∈ {1, . . . , k} by

F1,j(t, x) :=
∂

∂t
w1,j(t, x)+min

u∈U

{

∂w1,j
∂x
(t, x)f(t, x, u) + L(t, x, u)

}

. (22)
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Using the definition of w1,j(·, ·) and substituting w1,j(·, ·) in the formula (22)
for F1,j(·, ·), we obtain a relation between functions F (·, ·) and F1,j(·, ·), where both
the functions are defined in the subsets Pj , j ∈ {1, . . . , k}, i.e.

F1,j(t, x) =
∂

∂t
w(t, x) − γjyj +min

u∈U

{

∂w

∂x
(t, x)f(t, x, u) + L(t, x, u)

}

= F (t, x) − γjyj .

From this result and using (20), the following inequality can be derived:

−µj ≤ F1,j(t, x) ≤ −ηj , (t, x) ∈ Pj , j ∈ {1, . . . , k},
where −µj = yj−1 − γjyj , −ηj = yj − γjyj , 1 < γj < 2. This estimation improves as
γj tends to 1.

It can easily be seen that the function w1,j(·, ·), defined and continuous in Pj ,
j ∈ {1, . . . , k}, can be extended to the closure P̄j ⊂ T , j ∈ {1, . . . , k}, using

w1,j(t, x) := w(t, x) + γjyj(b− t),
for all (t, x) ∈ P̄j\Pj , j ∈ {1, . . . , k}.
It is also clear that the extended function w1,j(·, ·) and consequently the function

F1,j(·, ·) will also be continuous in P̄j ⊂ T , j ∈ {1, . . . , k} as the function w(·, ·) is
continuous in the set T , and the functions f(·, ·, ·) and L(·, ·, ·) are continuous in
the set T × U .

Case 2. Let F (t, x) < 0, (t, x) ∈ Pj , j ∈ {−r, . . . ,−1}, which implies
yj ≤ F (t, x) ≤ yj+1, (t, x) ∈ Pj , j ∈ {−r, . . . ,−1}. (23)

In much the same way as in the previous case (21), a new function in the subsets
Pj , j ∈ {−r, . . . ,−1} can be defined as follows:

w1,j(t, x) := w(t, x) + δjyj+1(b− t), (24)

where the function (t, x) → w(t, x) was chosen earlier and can be seen in the
definition of the function (t, x) → F (t, x) satisfying (23). Negative numbers yj ,
j ∈ {−r, . . . ,−1} are the points from the division of the interval [κd, κg] ⊂ � . The
numbers 0 < δj < 1 were chosen to estimate the non-negative values, close to zero,
of a new function (t, x) → F1,j(t, x). This new function is defined in subsets Pj ,
j ∈ {−r, . . . ,−1} as follows:

F1,j(t, x) :=
∂

∂t
w1,j(t, x)+min

u∈U

{

∂w1,j
∂x
(t, x)f(t, x, u) + L(t, x, u)

}

. (25)

Using the definition of w1,j(·, ·) and substituting w1,j(·, ·) in the formula (25)
for F1,j(·, ·), we obtain a relation between the functions F (·, ·) and F1,j(·, ·) defined
in the subsets Pj , j ∈ {−r, . . . ,−1}, i.e.

F1,j(t, x) =
∂

∂t
w(t, x) − δjyj+1 +min

u∈U

{

∂w

∂x
(t, x)f(t, x, u) + L(t, x, u)

}

= F (t, x) − δjyj+1.
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From this result and using (23), the following inequality can be derived:

−µj ≤ F1, j(t, x) ≤ −ηj , (t, x) ∈ Pj , j ∈ {−r, . . . ,−1},
where −µj = yj−δjyj+1, −ηj = yj+1−δjyj+1, 0 < δj < 1. This estimation improves
as δj tends to 1.

It can easily be seen that the function w1,j(·, ·), defined and continuous in Pj ,
j ∈ {−r, . . . ,−1} can be extended to the closure P̄j ⊂ T , j ∈ {−r, . . . ,−1} by means
of the relationship

w1,j(t, x) := w(t, x) + δjyj+1(b− t),
for all (t, x) ∈ P̄j\Pj , j ∈ {−r, . . . ,−1}.
It is clear that the extended function w1,j(·, ·) and consequently the function

F1,j(·, ·) will also be continuous in P̄j ⊂ T , j ∈ {−r, . . . ,−1} as the function w(·, ·)
is continuous in the set T , and the functions f(·, ·, ·) and L(·, ·, ·) are continuous in
the set T × U .
The result of the first step of the construction method for the function approxi-

mating the value function is the construction of the function w1,j(·, ·) in all subsets
Pj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, and then defining the function F1,j(·, ·) in the
same domain, which has only non-positive values, close to zero.

This objective is achieved as the values of the function F1,j(·, ·) can be estimated
as follows:

−µj ≤ F1,j(t, x) ≤ −ηj , (t, x) ∈ Pj , (26)

where

µj =







−yj−1 + γjyj for j ∈ {1, . . . , k},

−yj + δjyj+1 for j ∈ {−r, . . . ,−1},

and

ηj =







−yj + γjyj for j ∈ {1, . . . , k},

−yj+1 + δjyj+1 for j ∈ {−r, . . . ,−1},

while 1 < γj < 2 for j ∈ {1, . . . , k}, 0 < δj < 1 for j ∈ {−r, . . . ,−1}.
If all the numbers γj and δj are close to 1, and the number of points yj ,

j ∈ {−r, . . . ,−1}∪{1, . . . , k} of the division of the interval [κd, κg] ⊂ � is very large,
i.e. r and k are very large natural numbers, then the numbers −µj and −ηj are
non-positive and very close to zero.

As the estimation of the values of the function F1,j(·, ·) given by (26) is valid, the
function w1,j(·, ·) defined by (21) and (24) and being used in formulae (22) and (25)
for the function F1,j(·, ·) would satisfy the dynamic programming inequality (17), i.e.
it would approximate the value function for the Bolza problem (1)–(4), if only it had
been regular (smooth) enough, i.e. at least of class C1(T ). This would have been the
last step of this construction.
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However, the function w1,j(·, ·) has just been defined in the subsets Pj ⊂ T ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, and although it is continuous in these subsets and
even in their closures, it is only piecewise continuous in the set T and may not be
sufficiently regular. To ensure sufficient regularity, the function w1,j(·, ·) must be
convolved with a function of class C∞0 ( � n+1 ) having a compact support.
Thus a new function (t, x) → wβ,i2,j (t, x) must be constructed for an arbitrary

and fixed β > 0, i ∈ � \{0, 1, 2, 3}, defined in the subsets Pj , j ∈ {−r, . . . ,−1} ∪
{1, . . . , k} of the set T , by using the convolution of the function w1,j(·, ·) with an
infinitely smooth function, having a compact support and shifting this convolution to
the left as follows:

wβ,i2,j (t, x) := (w1,j ∗ ρβ)(t, x) −
i− 2
i
ηj(b− t). (27)

The function (t, x) → w1,j(t, x), constructed earlier (see (21) and (24)), was
used in the definition of the function (t, x) → F1,j(t, x), given in (22) and (25),
having non-positive values, close to zero (see (26)). The function F1,j(·, ·) is bounded
from above by the numbers ηj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} in the subsets Pj ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}. In (27) we have the number i ∈ � \{0, 1, 2, 3}, and
as i → +∞, we get (i − 2)/i → 1. The function ρ1 : � × � n → � is of class
C∞0 ( � n+1 ), has a compact support and satisfies:

∫ �

n+1 ρ1(t, x) dt dx = 1; ρβ(t, x) :=
(1/βn+1)ρ1(t/β, x/β) ∈ C∞0 ( � n+1 ); supp ρ1 ⊂ B1( � n+1 ), where B1( � n ) is the ball
in � n with centre 0 and radius l.
Following the previously described construction steps, a new function (t, x) →

F β,i2,j (t, x), β > 0, i ∈ � \{0, 1, 2, 3}, must be defined in the subsets Pj , j ∈
{−r, . . . ,−1} ∪ {1, . . . , k} of the set T as follows:

F β,i2,j (t, x) :=
∂

∂t
wβ,i2,j (t, x)+min

u∈U

{

∂wβ,i2,j
∂x
(t, x)f(t, x, u) + L(t, x, u)

}

, (28)

where the function (t, x)→ wβ,i2,j (t, x) is defined by (27).
It can be clearly seen that the function wβ,i2,j (·, ·), defined and continuous in the

subsets Pj , j ∈ {−r, . . . ,−1}∪ {1, . . . , k}, can be extended to their closures P̄j ⊂ T ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} by

wβ,i2,j (t, x) :=
(

w1,j ∗ ρβ
)

(t, x)− i− 2
i
ηj(b− t),

for all (t, x) ∈ P̄j\Pj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.
Clearly, this extended function wβ,i2,j (·, ·) and consequently the function F β,i2,j (·, ·)

will also be continuous in P̄j ⊂ T , j ∈ {−r, . . . ,−1}∪{1, . . . , k}, because the function
(w1,j ∗ρβ)(·, ·) is continuous in the set T , and the functions f(·, ·, ·) and L(·, ·, ·) are
continuous in the set T × U .
The following description shows how the estimate of the function F β,i2,j (·, ·) is

obtained. The result of this formulation is that the values of this function are arbi-
trarily close to zero, although they are of different signs. Thus, although the function
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wβ,i2,j (·, ·) does not converge to the value function for the Bolza problem (1)–(4) under
consideration (with the assumptions (Z)), by shifting the function to the left we obtain

a new function wβ,i3,j (·, ·), which does approximate the value function. The correctness
of the estimation of the F β,i2,j (·, ·) values ensures that Theorem 3 is satisfied, and the
main result of this paper, i.e. the convergence of the function wβ,i3,j (·, ·) to the value
function, is formulated in Theorem 4.

Let us formulate and prove six lemmas, which will simplify and shorten the proof
of Theorem 3.

According to the proof of Theorem 3 the fact that the functions L(·, ·, ·) and
(L ∗ ρβ)(·, ·, ·) have values arbitrarily close to each other is needed, so Lemma 1
should be proved first. This gives an estimate of the difference between the values
of these two functions by an arbitrary real number, close to zero in P̄j × U , j ∈
{−r, . . . ,−1} ∪ {1, . . . , k}.

Lemma 1. Let L(·, ·, ·) be a function satisfying the assumptions (Z), and ρβ(·, ·) be
the function of class C∞0 ( � n+1 ) defined above. Then for arbitrary i ∈ � \{0, 1, 2, 3}
and ηj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} described during construction of the function
w1,j(·, ·) there exist βji > 0 such that for all β ≤ βji and for all (t, x, u) ∈ P̄j × U ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following inequality holds:

∣

∣L(t, x, u)− (L ∗ ρβ)(t, x, u)
∣

∣ <
1

i
ηj .

Proof. For (t, x, u) ∈ P̄j × U , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following estimation
is valid:

∣

∣L(t, x, u) − (L ∗ ρβ)(t, x, u)
∣

∣

=

∣

∣

∣

∣

∫

Bβ(

�

n+1)

[

L(t, x, u)− L(t− s, x− y, u)
]

ρβ(s, y) ds dy

∣

∣

∣

∣

≤ sup
u∈U, (t,x)∈P̄j

(s,y)∈Bβ(

�

n+1)

∣

∣L(t, x, u)− L(t− s, x− y, u)
∣

∣. (29)

The function L(·, ·, ·) is uniformly continuous in the compact sets P̄j × U , j ∈
{−r, . . . ,−1} ∪ {1, . . . , k}, and hence

sup

u∈U, (t,x)∈P̄j

(s,y)∈Bβ(

�

n+1)

∣

∣L(t, x, u)− L(t− s, x− y, u)
∣

∣→ 0 as β → 0.

Consequently,

∣

∣L(t, x, u)− (L ∗ ρβ)(t, x, u)
∣

∣→ 0 as β → 0.
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So, for arbitrary i ∈ � \{0, 1, 2, 3} and ηj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}
there exist βji > 0 such that for every β ≤ βji and for all (t, x, u) ∈ P̄j × U ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following is valid:

∣

∣L(t, x, u)− (L ∗ ρβ)(t, x, u)
∣

∣ <
1

i
ηj . (30)

Indeed, as L(·, ·, ·) is the function satisfying the Lipschitz condition with the
constant ML > 0 with respect to t, x and uniformly with respect to u and
satisfying (29), a constant ML > 0 exists such that for all (t, x, u) ∈ P̄j × U ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following is valid:

∣

∣L(t, x, u)− (L ∗ ρβ)(t, x, u)
∣

∣ ≤ML
√
n+ 1β.

Thus, replacing β with ηj/(iML
√
n+ 1), we obtain (30), where βji > 0 should

be equal to

βji =
ηj

iML
√
n+ 1

.

Moreover, limi→+∞ ηj/(iML
√
n+ 1) = 0 and limβ→0+ ηj/(βML

√
n+ 1) =

+∞, so if the natural number i ≥ 4 is increasing or the real number β > 0 is
decreasing, then an estimate of |L(t, x, u) − (L ∗ ρβ)(t, x, u)| by an arbitrarily small
positive real number (1/i)ηj will be obtained.

In the proof of Theorem 3 the fact that the functions ∂wβ,i2,j/∂x(·, ·)f(·, ·, ·) and
[((∂w1,j/∂x)f(·, ·, ·)) ∗ ρβ ](·, ·) have values arbitrarily close is required, so Lemma 2
must be proved. This gives an estimate of the difference between the values of these
two functions by a real number arbitrarily close to zero in P̄j ×U, j ∈ {−r, . . . ,−1}∪
{1, . . . , k}.

Lemma 2. Let w1,j(·, ·), wβ,i2,j (·, ·) and ρβ(·, ·) be functions defined in the subsets
P̄j , j ∈ {−r, . . . ,−1}∪ {1, . . . , k} (see (27)), and let f(·, ·, ·) be a function satisfying
the assumptions (Z). Then, for an arbitrary number i ∈ � \{0, 1, 2, 3} and ηj , j ∈
{−r, . . . ,−1}∪ {1, . . . , k} described during the construction of the function w1,j(·, ·),
there exist β̄ji > 0 such that for all β ≤ β̄ji and for all (t, x, u) ∈ P̄j × U, j ∈
{−r, . . . ,−1} ∪ {1, . . . , k} the following inequality holds:

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)f(t, x, u)−

[(

∂w1,j
∂x
f(·, ·, u)

)

∗ ρβ
]

(t, x)

∣

∣

∣

∣

<
1

i
ηj .

Proof. Note that w1,j(·, ·) is a function satisfying the Lipschitz condition in P̄j ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}. Accordingly, |∂w1,j/∂x| ≤ M1,j for some constant
M1,j > 0.
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Thus for all (t, x, u) ∈ P̄j×U, j ∈ {−r, . . . ,−1}∪{1, . . . , k} the following is valid:
∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)f(t, x, u) −

[(

∂w1,j
∂x
f(·, ·, u)

)

∗ ρβ
]

(t, x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Bβ(

�

n+1)

∂

∂x
w1,j(t− s, x− y)

(

f(t, x, u)− f(t− s, x− y, u)
)

ρβ(s, y) ds dy

∣

∣

∣

∣

≤ M1,j sup
u∈U, (t,x)∈ P̄j
(s,y)∈Bβ(

�

n+1)

∣

∣f(t, x, u)− f(t− s, x− y, u)
∣

∣. (31)

As the function s(·, ·, ·) is uniformly continuous in the compact sets P̄j ×U, j ∈
{−r, . . . ,−1} ∪ {1, . . . , k}, we have

sup
u∈U, (t,x)∈P̄j
(s,y)∈Bβ(

�

n+1)

∣

∣f(t, x, u)− f(t− s, x− y, u)
∣

∣→ 0 as β → 0,

and consequently,

∣

∣

∣

∣

∂wβ, i2,j
∂ x
(t, x)f(t, x, u)−

[(

∂w1, j
∂x
f(·, ·, u)

)

∗ ρβ
]

(t, x)

∣

∣

∣

∣

→ 0 as β → 0.

Thus, for arbitrary i ∈ � \{0, 1, 2, 3} and ηj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} there
exist β̄ji > 0 such that for all β ≤ β̄ji and for all (t, x, u) ∈ P̄j×U , j ∈ {−r, . . . ,−1}∪
{1, . . . , k} the following holds:

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)f(t, x, u)−

[(

∂w1,j
∂x
f(·, ·, u)

)

∗ ρβ
]

(t, x)

∣

∣

∣

∣

<
1

i
ηj . (32)

Since f(·, ·, ·) is the function satisfying the Lipschitz condition with constant
Mf > 0 with respect to t, x and uniformly with respect to u and satisfying (31), a
constant Mf > 0 must exist such that for all (t, x, u) ∈ P̄j × U, j ∈ {−r, . . . ,−1} ∪
{1, . . . , k} the following holds:

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)f(t, x, u)−

[(

∂w1,j
∂x
f(·, ·, u)

)

∗ ρβ
]

(t, x)

∣

∣

∣

∣

≤M1,jMf
√
n+ 1β.

Hence, by replacing β with ηj/(iM1,jMf
√
n+ 1), we obtain (32), where β̄ji > 0

should be

β̄ji =
ηj

iM1,jMf
√
n+ 1

.
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Moreover, limi→+∞ ηj/(iM1,jMf
√
n+ 1) = 0 and limβ→0+ ηj/(βM1,jMf√

n+ 1) = +∞, so if the natural number i ≥ 4 is increasing or the real number
β > 0 is decreasing, then an estimate of

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)f(t, x, u)−

[(

∂w1, j
∂x
f(·, ·, u)

)

∗ ρβ
]

(t, x)

∣

∣

∣

∣

by an arbitrarily small positive real number (1/i)ηj will be obtained.

In the proof of Theorem 3 the uniform convergence of the sequence
(∂wβ,i2,j/∂x)(t, x) to (∂w1,j/∂x)(t, x) as β → 0, for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1}∪
{1, . . . , k} is also required as ensured by the following result.

Lemma 3. Let w1,j(·, ·), wβ,i2,j (·, ·) and ρβ(·, ·) be functions defined in the subsets P̄j ,
j ∈ {−r, . . . ,−1}∪{1, . . . , k} (see (27)). Then, for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1}∪
{1, . . . , k} we have

lim
β→0

∂wβ,i2,j
∂x
(t, x) =

∂w1,j
∂x
(t, x)

and this convergence is uniform.

Proof. According to the definition of the uniform convergence of a function sequence,
to prove that this lemma holds, it is sufficient to show that for arbitrary εj > 0,

j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} a βji > 0 exists such that for every β ≤ βji and for all
(t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following holds:

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x) − ∂w1,j

∂x
(t, x)

∣

∣

∣

∣

≤ εj .

For all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1}∪{1, . . . , k} we have the following estimate:
∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x) − ∂w1,j

∂x
(t, x)

∣

∣

∣

∣

=

∣

∣

∣

∣

(

∂w1,j
∂x
∗ ρβ
)

(t, x)− ∂w1,j
∂x
(t, x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Bβ(

�

n+1)

[

∂

∂x
w1,j(t− s, x− y)−

∂

∂x
w1,j(t, x)

]

ρβ(s, y) ds dy

∣

∣

∣

∣

≤ sup
(t,x)∈P̄j

(s,y)∈Bβ(

�

n+1)

∣

∣

∣

∣

∂

∂x
w1,j(t− s, x− y)−

∂

∂x
w1,j(t, x)

∣

∣

∣

∣

. (33)

The function (∂w1,j/∂x)(·, ·) is uniformly continuous in the compact sets P̄j ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, and hence

sup
(t,x)∈P̄j

(s,y)∈Bβ(

�

n+1)

∣

∣

∣

∣

∂

∂x
w1,j(t− s, x− y)−

∂

∂x
w1,j(t, x)

∣

∣

∣

∣

→ 0 as β → 0.
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Consequently

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)− ∂w1,j

∂x
(t, x)

∣

∣

∣

∣

→ 0 as β → 0.

Therefore, for an arbitrary εj > 0, j ∈ {−r, . . . ,−1}∪{1, . . . , k} a βji > 0 exists
such that for all β ≤ βji and for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the
following holds:

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)− ∂w1,j

∂x
(t, x)

∣

∣

∣

∣

≤ εj .

To simplify and shorten the notation, the following abbreviations will be used:

gβ,i2,j (t, x, u) :=
∂wβ,i2,j
∂x
(t, x)f(t, x, u) + L(t, x, u),

g1,j(t, x, u) :=
∂w1,j
∂x
(t, x)f(t, x, u) + L(t, x, u),

for (t, x, u) ∈ P̄j × U, j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, where β > 0, i ∈ � \{0, 1, 2, 3}.
It is also useful to employ the following notation:

pβ,i2,j(t, x) := min
u∈U
gβ,i2,j (t, x, u) = g

β,i
2,j

(

t, x, uβ,i2,j(t, x)
)

,

p1,j(t, x) := min
u∈U
g1,j(t, x, u) = g1,j

(

t, x, u1,j(t, x)
)

,

for (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, where β > 0, i ∈ � \{0, 1, 2, 3}.
Lemma 3 immediately implies the following Conclusion 1 ensuring the uniform

convergence of the function sequence gβ,i2,j (t, x, u) to g1,j(t, x, u) as β → 0, for all
(t, x, u) ∈ P̄j × U , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.

Conclusion 1. Let w1,j(·, ·), wβ,i2,j (·, ·) and ρβ(·, ·) be functions defined in the subsets
P̄j , j ∈ {−r, . . . ,−1}∪ {1, . . . , k} (see (27)), and let g1,j(·, ·, ·) and gβ,i2,j (·, ·, ·) be the
functions defined above. Therefore, if for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1}∪{1, . . . , k}
we have

lim
β→0

∂wβ,i2,j
∂x
(t, x) =

∂w1,j
∂x
(t, x)

and the convergence is uniform, then, for all (t, x, u) ∈ P̄j × U , j ∈ {−r, . . . ,−1} ∪
{1, . . . , k},

lim
β→0
gβ,i2,j (t, x, u) = g1,j(t, x, u)

and this convergence is also uniform.
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Proof. According to the definition of the uniform convergence of function sequences,
in order to prove this conclusion, it is sufficient to show that for arbitrary ε′j > 0,

j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} there exist β̄ji > 0 such that for every β ≤ β̄ji and for
all (t, x, u) ∈ P̄j × U, j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following holds:

∣

∣

∣
gβ,i2,j (t, x, u)− g1,j(t, x, u)

∣

∣

∣
≤ ε′j .

Using the definitions of the functions g1,j(·, ·, ·) and gβ,i2,j (·, ·, ·), we obtain

∣

∣

∣
gβ,i2,j (t, x, u)− g1,j(t, x, u)

∣

∣

∣
=

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x) − ∂w1,j

∂x
(t, x)

∣

∣

∣

∣

|f(t, x, u)|

for (t, x, u) ∈ P̄j × U , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.
According to Lemma 3, for an arbitrary εj > 0, j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}

a βji > 0 exists such that for all β ≤ βji and for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪
{1, . . . , k} we have |(∂wβ,i2,j/∂x)(t, x) − (∂w1,j/∂x)(t, x)| ≤ εj , and the function
f(·, ·, ·) is bounded by a constant M > 0 in T ×U . Hence, for all (t, x, u) ∈ P̄j ×U ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, the following estimate is valid:

∣

∣

∣
gβ,i2,j (t, x, u)− g1,j(t, x, u)

∣

∣

∣
≤ ε′j ,

if we set ε′j = εjM .

We have εj → 0 as β → 0 (see the proof of Lemma 3) and ε′j = εjM , and so
ε′j → 0 as β → 0.

The uniform convergence of the sequence pβ,i2,j(t, x) to p1,j(t, x) as β → 0 for all
(t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, is also required and leads to the following
result:

Lemma 4. Let pβ,i2,j(·, ·) and p1,j(·, ·) be the functions defined above. Then for all
(t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, limβ→0 pβ,i2,j(t, x) = p1,j(t, x) and the
convergence is uniform.

Proof. Let us first prove the pointwise convergence of the sequence pβ,i2,j(t, x) to

p1,j(t, x) as β → 0, for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, and then
prove its uniform convergence.

1o. To prove this, assume that limβ→0 p
β,i
2,j(t̄, x̄) < p1,j(t̄, x̄) for some pair (t̄, x̄) ∈ P̄j .

Then, for this pair and an arbitrary ε̄ > 0 there exists δ > 0 such that for all β ≤ ε̄
the following inequality holds:

∂wβ,i2,j
∂x
(t̄, x̄)f

(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

+ L
(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

<
∂w1,j
∂x
(t̄, x̄)f

(

t̄, x̄, u1,j(t̄, x̄)
)

+ L
(

t̄, x̄, u1,j(t̄, x̄)
)

− δ.
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It can easily be seen that by replacing in this inequality the control u1,j(·, ·),
corresponding to the minimum in the formula for p1,j(·, ·), with the control uβ,i2,j(·, ·),
for this pair (t̄, x̄) ∈ P̄j the following holds:

∂wβ,i2,j
∂x
(t̄, x̄)f

(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

+ L
(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

<
∂w1,j
∂x
(t̄, x̄)f

(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

+ L
(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

− δ,

which implies

−
[

∂w1,j
∂x
(t̄, x̄)−

∂wβ,i2,j
∂x
(t̄, x̄)

]

f
(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

< −δ. (a1)

According to Conclusion 1 we have
∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)− ∂w1,j

∂x
(t, x)

∣

∣

∣

∣

|f(t, x, u)| ≤ ε′j

for all (t, x, u) ∈ P̄j × U , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, where ε′j → 0 as β → 0, so
setting ε′j = δ/2 for the pair (t̄, x̄) ∈ P̄j and considering assumption 1o, we get

[

∂w1,j
∂x
(t̄, x̄)−

∂wβ,i2,j
∂x
(t̄, x̄)

]

f
(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

≤ δ/2. (a2)

Adding the corresponding left-hand sides and similarly the right-hand sides of
inequalities (a1) and (a2), we obtain 0 < −δ/2. This leads to a contradiction with
assumption 1o, i.e. that lim

β→0
pβ,i2,j(t̄, x̄) < p1,j(t̄, x̄) for some pair (t̄, x̄) ∈ P̄j .

2o. Now let limβ→0 p
β,i
2,j(t̄, x̄) > p1,j(t̄, x̄) for some pair (t̄, x̄) ∈ P̄j . Then, for this pair

and an arbitrary ε̄ > 0 there exists δ > 0 such that for all β ≤ ε̄ the following
inequality holds:

∂wβ,i2,j
∂x
(t̄, x̄)f

(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

+ L
(

t̄, x̄, uβ,i2,j(t̄, x̄)
)

>
∂w1,j
∂x
(t̄, x̄)f

(

t̄, x̄, u1,j(t̄, x̄)
)

+ L
(

t̄, x̄, u1,j(t̄, x̄)
)

+ δ.

Clearly, replacing the control uβ,i2,j(·, ·), corresponding to the minimum in the
formula for the function pβ,i2,j(·, ·), with the control u1,j(·, ·), for this pair (t̄, x̄) ∈ P̄j
the following holds:

−δ +
∂wβ,i2,j
∂x
(t̄, x̄)f

(

t̄, x̄, u1,j(t̄, x̄)
)

+ L
(

t̄, x̄, u1,j(t̄, x̄)
)

>
∂w1,j
∂x
(t̄, x̄)f

(

t̄, x̄, u1,j(t̄, x̄)
)

+ L
(

t̄, x̄, u1,j(t̄, x̄)
)

,
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which implies

−
[

∂wβ,i2,j
∂x
(t̄, x̄)− ∂w1,j

∂x
(t̄, x̄)

]

f
(

t̄, x̄, u1,j(t̄, x̄)
)

< −δ. (b1)

According to Conclusion 1 we have

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)− ∂w1,j

∂x
(t, x)

∣

∣

∣

∣

|f(t, x, u)| ≤ ε′j

for all (t, x, u) ∈ P̄j × U , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, where ε′j → 0 as β →
0, and hence by substituting ε′j = δ/2 for the pair (t̄, x̄) ∈ P̄j and considering
assumption 2o, we obtain

[

∂wβ,i2,j
∂x
(t̄, x̄)− ∂w1,j

∂x
(t̄, x̄)

]

f
(

t̄, x̄, u1,j(t̄, x̄)
)

≤ δ/2. (b2)

Adding the corresponding left- and right-hand sides of inequalities (b1) and (b2),
we obtain 0 < −δ/2, which leads to a contradiction with assumption 2o that
limβ→0 p

β,i
2,j(t̄, x̄) > p1,j(t̄, x̄) for some pair (t̄, x̄) ∈ P̄j .

As both the assumptions, i.e. 1o that limβ→0 p
β,i
2,j(t̄, x̄) < p1,j(t̄, x̄) for some pair

(t̄, x̄) ∈ P̄j , and 2o that limβ→0 pβ,i2,j(t̄, x̄) > p1,j(t̄, x̄) for this pair (t̄, x̄) ∈ P̄j , lead to
the above contradiction, it is proved that limβ→0 p

β,i
2,j(t, x) = p1,j(t, x) for all pairs

(t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.
Accordingly, the pointwise convergence of the sequence pβ,i2,j(t, x) to p1,j(t, x) as

β → 0 for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} is proved. In order to ensure
that this convergence is uniform, it is sufficient to prove that for an arbitrary ε′j > 0,

j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} a β̄ji > 0 exists such that for all β ≤ β̄ji and for all
(t̄, x̄) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following inequality holds:

∣

∣pβ,i2,j(t, x)− p1,j(t, x)
∣

∣ ≤ ε′j .

From the first part of the proof we have that for an arbitrary ε′j > 0, j ∈
{−r, . . . ,−1} ∪ {1, . . . , k} and an arbitrary, fixed pair (t̄, x̄) ∈ P̄j there can be found
β̄ji > 0, for which Conclusion 1 is satisfied and the above inequality holds at the point
(t̄, x̄) ∈ P̄j , where i ∈ � \{0, 1, 2, 3}.
Now consider an arbitrary fixed β ≤ β̄ji calculated from the pair (t̄, x̄) ∈ P̄j , for

the following two cases:

(i) Let (t, x) ∈ Z ′j , where

Z ′j = {(t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} : pβ,i2,j(t, x) ≥ p1,j(t, x)}.
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Then, due to the definitions of functions pβ,i2,j(·, ·) and by p1,j(·, ·) and replacing
the control uβ,i2,j(·, ·), corresponding the minimum in the formula for the function
pβ,i2,j(·, ·), with the control u1,j(·, ·), we obtain the following condition for (t, x) ∈ Z ′j :

0 ≤ pβ,i2,j(t, x)− p1,j(t, x)

=
∂wβ,i2,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

+ L
(

t, x, uβ,i2,j(t, x)
)

− ∂w1,j
∂x
(t, x)f

(

t, x, u1,j(t, x)
)

− L
(

t, x, u1,j(t, x)
)

≤
∂wβ,i2,j
∂x
(t, x)f

(

t, x, u1,j(t, x)
)

+ L
(

t, x, u1,j(t, x)
)

− ∂w1,j
∂x
(t, x)f

(

t, x, u1,j(t, x)
)

− L
(

t, x, u1,j(t, x)
)

≤
[

∂wβ,i2,j
∂x
(t, x)− ∂w1,j

∂x
(t, x)

]

f
(

t, x, u1,j(t, x)
)

≤ εjM = ε′j ,

which is implied directly from Conclusion 1 and assumption (i).

(ii) Now let (t, x) ∈ Z ′′j , where

Z ′′j = {(t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} : pβ,i2,j(t, x) < p1,j(t, x)}.

Similarly, due to the definitions of functions pβ,i2,j(·, ·) and p1,j(·, ·), and by re-
placing the control u1,j(·, ·), corresponding to the minimum in the formula for the
function p1,j(·, ·), with the control uβ,i2,j(·, ·), we obtain the following condition for
(t, x) ∈ Z ′′j :

0 < p1,j(t, x)− pβ,i2,j(t, x)

=
∂w1,j
∂x
(t, x)f

(

t, x, u1,j(t, x)
)

+ L
(

t, x, u1,j(t, x)
)

−
∂wβ,i2,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

− L
(

t, x, uβ,i2,j(t, x)
)

≤ ∂w1,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

+ L
(

t, x, uβ,i2,j(t, x)
)

−
∂wβ,i2,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

− L
(

t, x, uβ,i2,j(t, x)
)

≤
[

∂w1,j
∂x
(t, x)−

∂wβ,i2,j
∂x
(t, x)

]

f
(

t, x, uβ,i2,j(t, x)
)

≤ εjM = ε′j ,

which is implied directly from Conclusion 1 and assumption (ii).
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Thus, in both cases (i) and (ii), i.e. for (t, x) ∈ Z ′j ∪ Z ′′j = P̄j , the estimate
|pβ,i2,j(t, x)− p1,j(t, x)| ≤ ε′j is valid, and as β was chosen arbitrarily, this implies the
uniform convergence of the sequence pβ,i2,j(t, x) to p1,j(t, x) as β → 0 for all pairs
(t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.
To prove Theorem 3 the uniform convergence of the sequence uβ,i2,j(t, x) to

u1,j(t, x) is required as β → 0 for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k},
which is guaranted by the following result.

Lemma 5. Let pβ,i2,j(·, ·) and p1,j(·, ·) be the functions defined above and let the
following assumptions be satisfied:

(L1) an ᾱj > 0 exists such that for (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} we
have |(∂w1,j/∂x)(t, x)| ≥ ᾱj;

(L2) for every u0 ∈ U a subset U0 ⊂ U exists and αf > 0 exists such that for
all u1, u2 ⊂ U0 and (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the inequality
αf |u1 − u2| ≤ |f(t, x, u1)− f(t, x, u2)| holds;

(L3) ᾱjαf−ML > 0, where ML > 0 is a Lipschitz constant for the function L(·, ·, ·).

Hence, if pβ,i2,j(t, x) → p1,j(t, x) as β → 0, (t, x) ∈ P̄j uniformly, then also
uβ,i2,j(t, x)→ u1,j(t, x) as β → 0, (t, x) ∈ P̄j uniformly, i.e. if for an arbitrary ε′j > 0,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} a β̄ji > 0 exists such that for every β ≤ β̄ji and for
all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} we have |pβ,i2,j(t, x)− p1,j(t, x)| ≤ ε′j,
then for an arbitrary ε′′j > 0, j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, a ¯̄βji > 0 exists such
that for every β ≤ ¯̄βji and for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} holds
∣

∣uβ,i2,j(t, x)− u1,j(t, x)
∣

∣ ≤ ε′′j .
Proof. It can easily be seen that for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the
following is true:

∣

∣pβ,i2,j(t, x) − p1,j(t, x)
∣

∣

=

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

+ L
(

t, x, uβ,i2,j(t, x)
)

− ∂w1, j
∂x
(t, x)f

(

t, x, u1,j(t, x)
)

− L
(

t, x, u1,j(t, x)
)

∣

∣

∣

∣

≥
∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

− ∂w1,j
∂x
(t, x)f

(

t, x, u1,j(t, x)
)

∣

∣

∣

∣

−
∣

∣

∣
L
(

t, x, uβ,i2,j(t, x)
)

− L
(

t, x, u1,j(t, x)
)

∣

∣

∣

=

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

− ∂w1,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)
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+
∂w1,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

− ∂w1,j
∂x
(t, x)f

(

t, x, u1,j(t, x)
)

∣

∣

∣

∣

−
∣

∣

∣
L
(

t, x, uβ,i2,j(t, x)
)

− L
(

t, x, u1,j(t, x)
)

∣

∣

∣

≥ −
∣

∣

∣

∣

∂wβ, i2, j
∂ x
(t, x)− ∂w1, j

∂ x
(t, x)

∣

∣

∣

∣

∣

∣f
(

t, x, uβ,i2,j(t, x)
)∣

∣

+

∣

∣

∣

∣

∂w1,j
∂x
(t, x)

∣

∣

∣

∣

∣

∣

∣
f
(

t, x, uβ,i2,j(t, x
)

)− f
(

t, x, u1, j(t, x)
)

∣

∣

∣

−
∣

∣

∣
L
(

t, x, uβ,i2,j(t, x)
)

− L
(

t, x, u1,j(t, x)
)

∣

∣

∣
. (34)

From Lemma 4 we have the following condition:
∣

∣pβ,i2,j(t, x)− p1,j(t, x)
∣

∣ ≤ ε′j .

Also, from Conclusion 1 we have

−
∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x) − ∂w1,j

∂x
(t, x)

∣

∣

∣

∣

∣

∣f
(

t, x, uβ,i2,j(t, x))
∣

∣ ≥ −ε′j .

Furthermore, from assumptions (L1)–(L3) in Lemma 5 the following three con-
ditions are also satisfied:

∣

∣

∣

∣

∂w1,j
∂x
(t, x)

∣

∣

∣

∣

≥ ᾱj ,
∣

∣

∣
f
(

t, x, uβ,i2,j(t, x)
)

− f
(

t, x, u1,j(t, x)
)

∣

∣

∣
≥ αf

∣

∣uβ, i2, j(t, x)− u1, j(t, x)
∣

∣,

−
∣

∣

∣
L
(

t, x, uβ,i2,j(t, x)
)

− L
(

t, x, u1,j(t, x)
)

∣

∣

∣
≥ −ML

∣

∣uβ, i2, j(t, x)− u1, j(t, x)
∣

∣.

Thus, due to (34) and the above conditions, the following inequality holds:

ε′j ≥
∣

∣pβ,i2,j(t, x)− p1,j(t, x)
∣

∣

≥ −ε′j +
(

ᾱjαf −ML
) ∣

∣uβ,i2,j(t, x)− u1,j(t, x)
∣

∣.

Hence

∣

∣uβ,i2,j(t, x)− u1, j(t, x)
∣

∣ ≤
2ε′j

ᾱjαf −ML
= ε′′j .

According to the proof of Conclusion 1, we have ε′j → 0 as β → 0, and further-
more, if ε′′j = 2ε

′

j/(ᾱjαf −ML), then ε′′j → 0 as β → 0.
Before formulating the main theorem in this section, a new function (t, x) →

F̄ β,i2,j (t, x) must be defined. It must also be proved that, as β → 0, this function is
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uniformly convergent to the function (t, x) → F1,j(t, x) defined by (22), (25). The
uniform convergence of this function is proved in Lemma 6 below.

Let (t, x) → uβ,i2,j(t, x) be a function corresponding the minimum in the def-
inition of the function (t, x) → F β,i2,j (t, x), i.e. in (28). Define, in the sets P̄j ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} a function (t, x)→ F̄ β,i2,j (t, x) as follows:

F̄ β,i2,j (t, x) :=
∂

∂t
w1,j(t, x) +

∂w1,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

+ L
(

t, x, uβ, i2,j (t, x)
)

.

Lemma 6. Let F̄ β,i2,j (·, ·) be the function defined above, where w1,j(·, ·) is the function
defined by (21) and (24) in the subsets P̄j , j ∈ {−r, . . . ,−1}∪{1, . . . , k}, and f(·, ·, ·)
and L(·, ·, ·) are the functions satisfying the assumptions (Z). Then for all (t, x) ∈ P̄j ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following is satisfied:

lim
β→0

∣

∣F̄ β,i2,j (t, x)− F1,j(t, x)
∣

∣ = 0,

and the convergence is uniform.

Proof. Let (t, x)→ u1,j(t, x) be the function realising the minimum in the definition
of (t, x) → F1,j(t, x) defined by (22) and (25). Note that for all (t, x) ∈ P̄j , j ∈
{−r, . . . ,−1} ∪ {1, . . . , k} the following is satisfied:

∣

∣F̄ β,i2,j (t, x)− F1,j(t, x)
∣

∣

=

∣

∣

∣

∣

∂

∂t
w1,j(t, x) +

∂w1,j
∂x
(t, x)f

(

t, x, uβ,i2,j(t, x)
)

+ L
(

t, x, uβ,i2,j(t, x)
)

− ∂
∂t
w1,j(t, x) −

∂w1,j
∂x
(t, x)f (t, x, u1,j(t, x))− L (t, x, u1,j(t, x))

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂w1,j
∂x
(t, x)

∣

∣

∣

∣

∣

∣

∣
f
(

t, x, uβ,i2,j(t, x)
)

− f (t, x, u1,j(t, x))
∣

∣

∣

+
∣

∣

∣
L
(

t, x, uβ,i2,j(t, x)
)

− L (t, x, u1,j(t, x))
∣

∣

∣

≤ M1,jMf
∣

∣uβ,i2,j(t, x) − u1,j(t, x)
∣

∣+ML
∣

∣uβ,i2,j(t, x) − u1,j(t, x)
∣

∣

=
(

M1,jMf +ML
) ∣

∣uβ,i2, j(t, x)− u1,j(t, x)
∣

∣, (35)

because the functions f(·, ·, ·) and L(·, ·, ·) satisfy the Lipschitz condition with respect
to t, x and u, and the function w1,j(·, ·) satisfies the Lipschitz condition with respect
to t and x.

Lemmas 3–5 imply that if for (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} we
have limβ→0(∂w

β,i
2,j/∂x)(t, x) = (∂w1,j/∂x)(t, x), then limβ→0 u

β,i
2,j(t, x) = u1,j(t, x)
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and the convergence is uniform. Hence, it follows that for all (t, x) ∈ P̄j , j ∈
{−r, . . . ,−1} ∪ {1, . . . , k} the following is satisfied:

lim
β→0

∣

∣F̄ β,i2,j (t, x)− F1,j(t, x)
∣

∣ = 0.

We now formulate and prove the section’s main theorem, which gives the evalu-
ation of the functions F β,i2,j (·, ·). In the proof of Theorem 3 the results of Lemmas 1–6
are used.

Theorem 3. Let wβ,i2,j (·, ·) and F β,i2,j (·, ·) be the functions defined in the sets P̄j , j ∈
{−r, . . . ,−1}∪{1, . . . , k} by (27) and (28), respectively, and suppose that the assump-
tions (L1)–(L3) from Lemma 5 are satisfied. Then for arbitrary i ∈ � \{0, 1, 2, 3}
and µj , ηj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, described during the estimation (26) of
the values of the function F1,j(·, ·) defined by (22) and (25), and for the numbers
ξj = ε

′′

j (M1,jMf +ML), j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, a βji > 0 exists such that
for all β ≤ βji and for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following
inequality holds:

−ξj − µj +
i− 4
i
ηj ≤ F β, i2, j (t, x) ≤ ξj .

Proof. Note that the formula for the function F β,i2,j (·, ·) can be transformed in such a
way that for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} the following is satisfied:

F β,i2,j (t, x) =
∂

∂t
wβ,i2,j (t, x) +

∂

∂x
wβ,i2,j (t, x)f

(

t, x, uβ,i2,j(t, x)
)

+ L
(

t, x, uβ,i2,j(t, x)
)

= L
(

t, x, uβ,i2,j(t, x)
)

− (L ∗ ρβ)
(

t, x, uβ,i2,j(t, x)
)

+
i− 2
i
ηj

+

[(

∂w1,j
∂t
+
∂w1,j
∂x
f
(

·, ·, uβ,i2,j
)

+ L
(

·, ·, uβ,i2,j
)

)

∗ ρβ
]

(t, x)

+
∂

∂x
wβ,i2,j (t, x)f

(

t, x, uβ,i2,j(t, x)
)

−
[(

∂w1,j
∂x
f
(

·, ·, uβ,i2,j
)

)

∗ ρβ
]

(t, x). (36)

In order to estimate the values of the function F β,i2,j (·, ·), it is sufficient to estimate
the values of the individual terms in (36).

From Lemma 5 and the proof of Lemma 6, the following estimation is valid:
∣

∣F̄ β,i2,j (t, x)− F1,j(t, x)
∣

∣ < ε′′j (M1, jMf +ML),

where β > 0, i ∈ � \{0, 1, 2, 3}, (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, Mf and
ML are the Lipschitz constants for the functions f(·, ·, ·) and L(·, ·, ·), respectively,
and the constant M1,j > 0 is such that |(∂w1,j/∂x)(·, ·)| ≤M1,j .
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Therefore, using the estimation (26) of the values of F1,j(·, ·) and setting ξj =
ε′′j (M1,jMf +ML), the following inequality holds:

−ξj − µj ≤ F̄ β,i2, j(t, x) ≤ ξj − ηj , (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}. (37)

From Lemma 1 we know that for arbitrary i ∈ � \{0, 1, 2, 3} and numbers ηj ,
j ∈ {−r, . . . ,−1}∪{1, . . . , k} bounding the values of the function F1,j(·, ·) from above
(see (26)) there exist βji > 0 such that for all β ≤ βji and for all (t, x, u) ∈ P̄j × U ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} we get

∣

∣L(t, x, u)− (L ∗ ρβ)(t, x, u)
∣

∣ <
1

i
ηj .

Furthermore, Lemma 2 ensures that for arbitrary i ∈ � \{0, 1, 2, 3} and the num-
bers ηj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} bounding the values of the function F1,j(·, ·)
from above (see (26)) there exist β̄ji > 0 such that for all β ≤ β̄ji and for all
(t, x, u) ∈ P̄j × U , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} we have

∣

∣

∣

∣

∂wβ,i2,j
∂x
(t, x)f(t, x, u)−

[(

∂w1, j
∂x
f(·, ·, u)

)

∗ ρβ
]

(t, x

∣

∣

∣

∣

<
1

i
ηj .

Let us note that the above conditions are valid for all β ≤ min{βji , β̄ji }, where
i ∈ � \{0, 1, 2, 3} is arbitrary and fixed, and j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.
Therefore, using the values of all terms in (36), based on the definition of the

convolution, inequality (37), and Lemmas 1 and 2, it is possible to estimate the values

of the function F β,i2,j (·, ·) for all (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} as follows:

−ξj − µj +
i− 4
i
ηj ≤ −

1

i
ηj +

i− 2
i
ηj + ((−ξj − µj) ∗ ρβ) (t, x)−

1

i
ηj

≤ F β, i2, j (t, x)

≤ 1
i
ηj +

i− 2
i
ηj + ((ξj − ηj) ∗ ρβ) (t, x) +

1

i
ηj = ξj .

In order to simplify the notation, we formulate the following Conclusion 2 from
Theorem 3.

Conclusion 2. Using ν ij = µj − i−4i ηj , the following estimation of the values of the
function F β,i2,j (·, ·) can be obtained:

−ξj − νij ≤ F β,i2, j(t, x) ≤ ξj (38)

for (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} and ξj defined above (see (37)).
It should be noted that as ξj = ε

′′

j (M1,jMf +ML) and ε
′′

j can be arbitrarily
small, then also ξj can be arbitrarily small. Moreover, as µj , ηj , j ∈ {−r, . . . ,−1}∪
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{1, . . . , k} are arbitrarily small for r, k → +∞, and also (i− 4)/i→ 1 as i→ +∞,
the numbers νij = µj − ((i−4)/i)ηj are also arbitrarily small. The function F β,i2,j (·, ·)
defined in P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} can have values of different signs, but
close to zero.

The above fact implies that the dynamic programming inequality (17) is not

satisfied yet. Therefore, a new function wβ,i3,j (·, ·) must be defined in P̄j , j ∈
{−r, . . . ,−1} ∪ {1, . . . , k}, by shifting the function wβ,i2,j (·, ·) to the left as follows:

wβ,i3,j (t, x) := w
β,i
2,j (t, x) + ξj(b− t), (39)

where the numbers ξj are defined above and the function w
β,i
2,j (·, ·) defined by (27)

satisfies Theorem 3.

Using the previous construction steps described in this section (and summarised
in the algorithm of Section 5), we now define the following function:

F β,i3,j (t, x) :=
∂

∂t
wβ,i3,j (t, x) + min

u∈U

{

∂wβ,i3,j
∂x
(t, x)f(t, x, u) + L(t, x, u)

}

= F β,i2,j (t, x) − ξj , (40)

for (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.
The main result of this work is formulated in Theorem 4, which ensures the

convergence of the function wβ,i3,j (·, ·) to the value function.

Theorem 4. Let the functions wβ,i3,j (·, ·) and F β,i3,j (·, ·) be defined in the sets P̄j ,
j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} by (39) and (40), respectively. Then the values of the
function F β,i3,j (·, ·) can be estimated as follows:

−2ξj − νij ≤ F β,i3,j (t, x) ≤ 0, (41)

where (t, x) ∈ P̄j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}, and the numbers ξj and νij are
defined above.

Proof. Theorem 4 is implied immediately from Conclusion 2, from the definitions of
the functions wβ,i3,j (·, ·) and F β,i3,j (·, ·), and the numbers ξj and νij .

Note that both the functions wβ,i3,j (·, ·) and F β,i3,j (·, ·) defined above satisfy the
assumptions of Proposition 3 for arbitrarily small β > 0, because ξj and ν

i
j can be

arbitrarily small as j → +∞ and i → +∞. The inequality (17) from Proposition 3
will be satisfied if we use ε = max{2ξj + νij : j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}} for
arbitrary and fixed i ∈ � \{0, 1, 2, 3}.
It is worth noting here that the function wβ,i3,j (·, ·) constructed in this paper,

belonging to the class C1(T ), is an ε-value function of the Bolza problem (1)–(4),
under assumptions (Z). Clearly, with the knowledge of an effective formula defining the

ε-value function, the value wβ,i3,j (a, c) of an approximate minimum for the considered
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problem can be calculated and hence the difference from the infimum of the Bolza
functional can be estimated.

Section 5 presents, in some detail, a numerical algorithm for determining the
formula for the ε-value function.

5. Numerical Algorithm

The numerical algorithm proposed here is used for constructing the ε-value function
and calculating the value of the approximate minimum of the Bolza functional for the
problem under consideration, (1)–(4) with the assumptions (Z).

Algortihm:

1. Read the real numbers a, b, c (a < b, x(a) = c) and the natural numbers n,
m; define the compact subsets T ⊂ [a, b]× � n and U ⊂ � m .

2. Read the required calculation accuracy ε0 > 0.

3. Define the functions (t, x, u)→ f(t, x, u), (t, x, u)→ L(t, x, u) described in the
Bolza problem (1)–(4). Calculate:

(i) the Lipschitz constants Mf and ML for these functions,

(ii) the constant αf from Lemma 5,

(iii) the constant M bounding the function (t, x, u)→ f(t, x, u) in T .

4. Choose a starting function (t, x) → w(t, x) of class C1(T ) and define the
function (t, x)→ F (t, x) of (19) in the set T .

5. Calculate κd and κg, i.e. the infimum and supremum of the function (t, x) →
F (t, x) in the set T , respectively.

6. Read the step size h > 0 of the subinterval of the interval [κd, κg].

7. Partition the interval [κd, κg] into r+k subintervals with step size h as follows:

(a) if κd < 0 < κg , then

κd = y−r < y−r+1 < · · · < y−1 < y0 < y1 < · · · < yk = κg ,
where y0 = 0,

yj = y0 + jh, j ∈ {−r, . . . ,−1} ∪ {1, . . . , k},

r = −κd/h, k = κg/h.

(b) if κd ≥ 0, then
κd = y0 < y1 < · · · < yk = κg, yj = y0 + jh,

j ∈ {1, . . . , k}, k = (κg − κd)/h.



422 E. Jacewicz

(c) if κg ≤ 0, then
κd = y−r < · · · < y−1 < y0 = κg, yj = y0 + jh,

j ∈ {−r, . . . ,−1}, r = (κg − κd)/h.

Remark 2. The following calculations will be completed for Case (a); in Cases (b)
and (c), the calculations are analogous.

8. Calculate the subsets Pj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} of the set T .

9. Calculate the numbers 1 < γj < 2, j ∈ {1, . . . , k} and define the function
(t, x)→ w1,j(t, x) using (21) in Pj , j ∈ {1, . . . , k}.

10. Calculate the numbers 0 < δj < 1, j ∈ {−r, . . . ,−1} and define the functions
(t, x)→ w1,j(t, x) using (24) in Pj , j ∈ {−r, . . . ,−1}.

11. Calculate the lower bounds ᾱj for |(∂w1,j/∂x)(·, ·)| and check if the assump-
tions (L1)–(L3) from Lemma 5 are satisfied.

If NOT, then choose another starting function and repeat the calculations start-
ing from Step 4.

If YES, then define the functions (t, x) → F1,j(t, x) using (22) in Pj , j ∈
{1, . . . , k} and (t, x)→ F1, j(t, x) using (25) in Pj , j ∈ {−r, . . . ,−1}.

12. Calculate the numbers µj , ηj , j ∈ {−r, . . . ,−1}∪{1, . . . , k} which will be used
in order to estimate (see (26)) the values of the function (t, x)→ F1,j(t, x):

µj =

{

−yj−1 + γjyj for j ∈ {1, . . . , k},
−yj + δjyj+1 for j ∈ {−r, . . . ,−1},

and

ηj =

{

−yj + γjyj for j ∈ {1, . . . , k}
−yj+1 + δjyj+1 for j ∈ {−r, . . . ,−1}.

13. Calculate the numbers M1,j bounding |(∂w1,j/∂x)(·, ·)| from above and the
number β > 0 as the minimum of all numbers βij , β̄

i
j , for j ∈ {−r, . . . ,−1} ∪

{1, . . . , k} and an arbitrary and fixed i ∈ � \{0, 1, 2, 3}, using the formulae from
Lemmas 1 and 2 (see Section 4).

14. Define the functions (t, x) → wβ,i2,j (t, x) using (27) and (t, x) → F β,i2,j (t, x) us-
ing (28) in Pj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.

15. Calculate the numbers from Conclusion 2, i.e. νij = µj − ((i − 4)/i)ηj , for j ∈
{−r, . . . ,−1} ∪ {1, . . . , k} and an arbitrary, fixed i ∈ � \{0, 1, 2, 3}.
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16. Calculate the numbers ε′j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} from Conclusion 1
based on the formula ε′j = εjM , where εj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} are
the constants from Lemma 3, and M > 0 is the constant bounding the function
(t, x, u)→ f(t, x, u).

17. Calculate the numbers ε′′j , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} from Lemma 5 based
on the formula

ε′′j =
2ε′j

ᾱjαf −ML
.

18. Calculate the numbers ξj , j ∈ {−r, . . . ,−1}∪{1, . . . , k} from Theorem 3 based
on the formula ξj = ε

′′

j (M1,jMf +ML).

19. Define the functions (t, x) → wβ,i3,j (t, x) using (39) and (t, x) → F β,i3,j (t, x) us-
ing (40) in Pj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k}.

20. Calculate the value wβ,i3,j (a, c) of the approximate minimum of
the Bolza functional and the achieved calculation accuracy ε =
max{2 ξj + ν ij : j ∈ {−r, . . . ,− 1} ∪ {1, . . . , k}}, for an arbitrary and fixed
i ∈ � \{0, 1, 2, 3}. Check if ε > ε0.

21. If YES, then the required calculation accuracy was not achieved. Calculate a
new step size h, e.g. by replacing h with h/2 , and repeat the calculations from
Steps 7–20, or choose another starting function (t, x)→ w(t, x) of class C1(T )
and repeat the calculations from Steps 4–20.

If NO, i.e. if the requirement ε > ε0 is not fulfilled, this means that the re-
quired calculation accuracy is achieved. Print the results of the calculations and
terminate the program.

A computer program for this algorithm has been written in Pascal. Computations
were made for the example illustrating the method described in this paper. The results
of these calculations, based on an example, are described in Section 6.

6. Example

According to the numerical algorithm proposed in Section 5 some calculations were
made to illustrate the power of the method described in this paper for constructing
the ε-value function. The following provides a tutorial example of the application of
the algorithm.

The approximate minimum of the following Bolza functional is sought:

J(x, u) =

∫ 1

0

[

x2(t) + u2(t)
]

dt,
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subject to

ẋ(t) = u(t) a.e. in [0, 1],

u(t) ∈ U, t ∈ [0, 1],

x(0) = 1.

In this example we have

a = 0, b = 1, c = 1, n = 1, m = 1, U = [1, 3], T = [0, 1]× [1, 3],

f(t, x, u) = u, L = (t, x, u) = x2 + u2,

with Mf = 1, M = 3, αf = 1, ML = 6. The calculations are made to the accuracy
ε0 = 0.1.

The chosen starting function w(·, ·) of class C1(T ) is as follows:

w(t, x) = 9t+ x2 + 6x, (t, x) ∈ T.

The function F (·, ·) is then given by the formula

F (t, x) = −6x, (t, x) ∈ T,

and its infimum and supremum are respectively equal to

κd = −18, κg = −6.

Let the step size h > 0 used for the partition of the interval [κd, κg] = [−18,−6]
be h = 3. The number of the subsets of the interval [κd, κg ] = [−18,−6] is equal to
r = (κg − κd)/h = 4, so the next calculations will be made for j ∈ {−r, . . . ,−1} =
{−4,−3,−2,−1}.
The partition points of the interval [κd, κg] = [−18,−6] are calculated as follows:

yj = y0 + jh, j ∈ {−4,−3,−2,−1}, y0 = κg .

The subsets Pj , j ∈ {−4,−3,−2,−1} of the set T are calculated as

Pj := {(t, x) ∈ T : yj ≤ F (t, x) < yj+1} , j ∈ {−4,−3,−2},

Pj := {(t, x) ∈ T : yj ≤ F (t, x) ≤ yj+1} , j = −1.

Let the numbers 0 < δj < 1 be equal to δj = 0.99, j ∈ {−4,−3,−2,−1}. The
functions w1,j(·, ·) defined in Pj , j ∈ {−4,−3,−2,−1} are given by the formulae

w1, j(t, x) = (9− δjyj+1)t+ x2 + 6x+ δjyj+1b.

The numbers ᾱj bounding |(∂w1,j(t, x))/∂x| = |2x+ 6| from below for (t, x) ∈ Pj ,
j ∈ {−4,−3,−2,−1} are equal to ᾱ−4 = 11, ᾱ−3 = 10, ᾱ−2 = 9, ᾱ−1 = 8.
Note that assumptions (L1)–(L3) from Lemma 5 are satisfied because ᾱjαf −

ML > 0 for j ∈ {−4,− 3,− 2,− 1}. Thus the following construction guarantees that
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there can be achieved a good result, i.e. the obtaining of an effective formula for the
ε-value function.

If assumptions (L1)–(L3) are not satisfied, then the starting function should be
replaced by another and all the calculations should be repeated for this new function.
Fortunately, the assumptions (L1)–(L3) for Lemma 5 are satisfied, and the calculations
can be continued.

The functions F1,j(·, ·) are defined in Pj , j ∈ {−4,− 3,− 2,− 1} by

F1,j(t, x) = −6x− δjyj+1.

The numbers µj , ηj are lower and upper bounds, respectively, for F1,j(·, ·), in
Pj , j ∈ {−4,− 3,− 2,− 1}. They can be calculated as follows:

µj = −yj + δjyj+1, ηj = −yj+1 + δjyj+1.

The numbers M1,j bounding |(∂w1,j(t, x))/∂x| = |2x+ 6| from above for (t, x) ∈ Pj ,
j ∈ {−4,−3,−2,−1} are equal to M1,−4 = 12, M1,−3 = 11, M1,−2 = 10, M1,−1 = 9.
Since M1,j > ML and Mf = 1, the numbers β̄

i
j from Lemma 2 are small-

er than βij from Lemma 1. Therefore, it is only necessary to calculate the num-

bers β̄ij = ηj/(iM1,jMf
√
2). The calculations were made for i = 1000 and j ∈

{−4,−3,−2,−1}.
Additional calculations were made for β = min β̄ij . For this case β =

0.0000047140 was used. In order to construct the function (t, x) → wβ,i2,j (t, x) giv-
en by the formula:

wβ,i2,j (t, x) := (w1,j ∗ ρβ)(t, x) −
i− 2
i
ηj(b− t),

the function (t, x) → ρβ(t, x) defined below (see Adams, 1975) can be used. First
define

ρ1(t, x) =







Ke−1/1−(t
2+x2) for

√
t2 + x2 ≤ 1,

0 for
√
t2 + x2 > 1,

where the constant K is chosen so that
∫ �

n+1 ρ1(t, x) dt dx = 1, and in this example
we have n = 1. Also note that ρ1 : � × � n → � is a function of class C∞0 ( � n+1 )
having compact support and such that supp ρ1 ⊂ B1( � n+1 ), where B1( � n ) is a ball
in � n , with centre 0 and radius 1.
Thus the function ρβ(t, x) := (1/β

n+1)ρ1(t/β, x/β) ∈ C∞0 ( � n+1 ) is defined by

ρβ(t, x) =







K
1

β2
e−β

2/(β2−(t2+x2)) for
√
t2 + x2 ≤ β,

0 for
√
t2 + x2 > β.

The next calculations were made using the function (t, x) → ρβ(t, x) defined
above, and for β = 0.0000047140 and i = 1000. The functions wβ,i2,j (·, ·) defined in
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Pj , j ∈ {−4,−3,−2,−1} are given by the formulae

wβ,i2,j (t, x) =

(

9− δjyj+1 +
i− 2
i
ηj

)

t+ x2 + 2(3 + β)x

+ β(β + 15− δjyj+1) + b
(

δjyj+1 −
i− 2
i
ηj

)

.

The functions F β,i2,j (·, ·) defined in Pj , j ∈ {−4,−3,−2,−1} are given by the
formulae

F β,i2,j (t, x) = −2(3 + β)x− (3 + β)2 + 9− δjyj+1 +
i− 2
i
ηj .

The numbers νij = µj − i−4i ηj are calculated for j ∈ {−4,−3,−2,−1} and i = 1000.
Choosing εj = 0.001 and calculating the numbers ε

′

j = εjM , ε
′′

j = 2ε
′

j/ᾱjαf −ML
and ξj = ε

′′

j (M1,jMf +ML) for j ∈ {−4,−3,−2,−1}, the functions wβ,i3,j (·, ·) defined
in Pj , j ∈ {−4,−3,−2,−1} are given by the formulae:

wβ,i3,j (t, x) =

(

9− δjyj+1 +
i− 2
i
ηj − ξj

)

t+ x2 + 2(3 + β)x

+ β(β + 15− δjyj+1) + b
(

δjyj+1 −
i− 2
i
ηj + ξj

)

.

The functions F β,i3,j (·, ·) defined in Pj , j ∈ {−4,−3,−2,−1} are given by

F β,i3,j (t, x) = −2(3 + β)x− (3 + β)2 + 9− δjyj+1 +
i− 2
i
ηj − ξj .

The desired value wβ,i3,j (a, c) = w
β,i
3,j (0, 1) of the approximate minimum is equal to

1.0452281402. For the step size h = 3 (r = 4) the calculation accuracy ε = 3.09024
was achieved.

The required calculation accuracy was not achieved because ε > ε0 = 0.1. There-
fore, the calculations were repeated for a smaller step size of h = 0.015 (r = 800) and
the following results were obtained: the value of the approximate minimum was equal
to wβ,i3,j (0, 1) = 1.0422565818, and the calculation accuracy was given by ε = 0.09927.
Clearly, the required accuracy was achieved and the parameter ε reached the stopping
criterion ε < ε0 = 0.1.

7. Final Conclusions

The theory, illustrated via the above example shows that, using the method described
in this paper, a suitably chosen arbitrary starting function (t, x) → w(t, x) of class
C1(T ) can be used to construct an ε-value function for the Bolza optimal-control
problem. An arbitrary starting function may not lead to a proper result of construc-
tion of the ε-value function, although the example shows that if the assumptions
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given in Lemma 5 (Section 4) are satisfied, this method guarantees that the effective
formula for the ε-value function can be obtained. Furthermore, the method enables
the calculation of the value of the approximate minimum for the Bolza functional to
be made.

The example of Section 6 also shows that the achieved calculation accuracy will be
better if a smaller step size h > 0 is used for the partition of the interval [κd, κg] into
the required subintervals, during construction of the subsets Pj , j ∈ {−r, . . . ,−1} ∪
{1, . . . , k} of the set T .
There is some significance in the way in which the numbers 0 < δj < 1, j ∈

{−r, . . . ,−1}, 1 < γj < 2, j ∈ {1, . . . , k}, εj , j ∈ {−r, . . . ,−1} ∪ {1, . . . , k} (from
Lemma 3) and the natural number i ≥ 4 are chosen. The example illustrates that
as the numbers δj and γj tend to 1, the numbers εj become close to 0, and once
the natural number i becomes larger (i.e. the number β > 0 is smaller), then the
estimations obtained for the consecutive functions defined in Section 4 improve.

This paper is concerned with the use of the classical dynamic programming
method. However, the dual dynamic programming approach could be the subject
of a future investigation. Furthermore, whilst this paper is based on a rigorous study
of the theory behind the derivation of the approximate minimum of the Bolza func-
tional, future studies could combine this work with numerical strategies described by
Polak (1997).
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