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SELF-TUNING GENERALIZED PREDICTIVE CONTROL

WITH INPUT CONSTRAINTS

Andrzej KRÓLIKOWSKI∗, Damian JERZY∗

The handling of various input constraints in the self-tuning generalized pre-
dictive control (STGPC) problem of ARIMAX/ARMAX systems is considered.
The methods based on the Lagrange multipliers and Lemke’s algorithm are used
to solve the constrained optimization problem. A self-tuning controller is imple-
mented in an indirect way, and the considered constraints imposed on the control
input signal are of the rate, amplitude and energy types. A comparative simu-
lation study of self-tuning control system behaviour is given with respect to the
design parameters and constraints. The stability of a closed-loop control system
is analyzed and the computational loads of both the methods are compared.

Keywords: generalized predictive control, constraints, self-tuning,

ARIMAX/ARMAX systems

1. Introduction

Predictive control is popular in academic research and industry for its simplicity and
succesful industrial applications.

Constraints of different kind are ubiquitous in control engineering applications,
therefore the way of handling them in control system design is an important question.
However, this does not often happen in the design of control algorithms proposed in
the literature. Disregarding constraints or imposing them on the control signal in a
heuristic way may cause performance deterioration or even instability, especially in
adaptive control of unstable systems.

Taking constraints into account in the design stage inherently leads to the solution
of a constrained optimization problem. It is well-known that quadratic programming
(QP) techniques can be applied to solve miscelaneous types of predictive control
problems under constraints.

The generalized predictive control (GPC) considered in this paper is perhaps,
apart from the dynamic matrix control (DMC), the most succesful representative
amongst predictive control proposals. The application of the QP to solve the GPC
problem is widely used, see, e.g. the comments given in (Kothare et al., 1996; Rossiter
and Kouvaritakis, 1993). The constrained GPC was also discussed in (Camacho,
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1993; Camacho and Bordons, 1995), where the QP problem was transformed into
the so-called Linear Complementarity Problem (LCP) which, in turn, was solved us-
ing Lemke’s algorithm. This reduced the amount of computations as compared to the
QP. Another attempt to reduce the computational burden was presented in (Tsang
and Clarke, 1988), where the Lagrange multipliers (LM) were used to handle separate-
ly rate and amplitude constraints. As an alternative to the QP, a method based on a
modification of Lawson’s weighted least-squares algorithm was proposed in (Rossiter
and Kouvaritakis, 1993). An algorithm for selecting the control weighting so that un-
constrained GPC over the control horizon satisfies the rate and amplitude constraints
was derived in (Lee et al., 1997). Another approach to solve the constrained opti-
mization problem involves Linear Matrix Inequalities (LMI) (Kothare et al., 1996).
In (Soufian et al., 1997), an interesting approach based on the dynamic programming
was proposed to solve the constrained model predictive control. The desaturating
approach to adaptive receding-horizon predictive control in the case of simultaneous
amplitude and rate constraints is presented in (De Nicolao et al., 1996).

In recent years some research has been done on the predictive control of stochastic
systems containing parametric uncertainties. Here, as in all adaptive systems, it is
necessary to combine both the facets of the adaptive controller, i.e. identification and
control algorithms, in order to obtain a proper interplay between them resulting in a
robust performance of the adaptive controller.

In this paper, the constrained STGPC for a discrete-time stochastic system of
ARIMAX/ARMAX structure with unknown but constant parameters is considered.
For the indirect adaptive controller considered here, the controller parameters are
tuned on the basis of system parameter estimates along with the Certainty Equivalence
Principle, and the rate, amplitude and energy constraints are assumed to be imposed
on the control input. To solve the constrained optimization problem, the concepts
proposed in (Camacho, 1993; Tsang and Clarke, 1988) are adopted for simulation
comparison and computational analysis.

Investigation of closed-loop stability and performance properties for the STGPC
with input constraints is difficult and analytically unfeasible, especially for unstable
open-loop systems. Consequently, the objective of this paper is to present a simulation-
based comparison of these properties with respect to control design parameters and
constraints. A comparison of computational loads for both the methods is also drawn.
Stable, unstable and non-minimum phase systems of second order are taken for the
simulation study.

2. Standard GPC

The standard unconstrained GPC problem of ARIMAX/ARMAX systems will be
first shortly characterized. An ARMAX model is given by

A(q−1)yt = q
−1B(q−1)ut + C(q

−1)et, (1)

where A, B and C are polynomials in the backward shift operator q−1, i.e.

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na,
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B(q−1) = b0 + b1q
−1 + · · ·+ bnbq

−nb,

C(q−1) = 1 + c1q
−1 + · · ·+ cncq

−nc,

while yt is the output, ut denotes the control input, and et is assumed to be a
zero-mean white noise with variance σ2e .

In some applications it is more preferable to use the ARIMAX model given by

A(q−1)yt = q
−1B(q−1)ut +

C(q−1)

∆
et, (2)

where ∆ = 1− q−1.

The GPC cost function is taken in the form

J(Ny, Nu, qu) = E

[ Ny
∑

i=1

(yt+i − rt+i)
2 + qu

Nu
∑

i=1

u∗2t+i−1

]

, (3)

where the weight qu ≥ 0 and the horizons Ny, Nu are basic design parameters
of GPC. The notation u∗t signifies ut for positional control based on an ARMAX
model or ∆ut for incremental control when an ARIMAX model is assumed. Usually,
a choice Nu ≤ Ny is made, which means u

∗

t+i = 0 for i ≥ Nu.

The goal of the GPC is to force the output yt to follow the reference signal rt
taking into account the control effort. It is well-known that (3) can be expressed as

J(Ny, Nu, qu) = (Gū+ f − r)
T (Gū+ f − r) + quū

T ū, (4)

where the matrix G is composed of the impulse response coefficients, {gi}, of the
control channel B/A∆ in the case of the ARIMAX model

G =

















g0 0 . . . 0

g1 g0 . . . 0

. . . . . . . . . . . .

gNy−1 gNy−2 . . . gNy−Nu

















,

and the vectors f and r are

f =
(

ft+1, · · · , ft+Ny
)T
,

r =
(

rt+1, · · · , rt+Ny
)T
.

The unconstrained optimal control is then (Bitmead et al., 1990; Camacho and Bor-
dons, 1995; Tsang and Clarke, 1988)

ūo =
(

GTG+ quI
)

−1
GT (r − f), (5)

where

ūo =
(

∆uot , . . . ,∆u
o
t+Nu−1

)T
, (6)
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and the free response ft+i = ŷt+i/t, where ŷt+i/t is the prediction of yt+i, i =
1, . . . , Ny, assuming that ut+i = 0, i = 0, . . . , Ny − 1. The first element of the
sequence (6), i.e. ∆uot , is applied to the system. Then the optimization procedure
starts again at the next time instant t + 1 with the current data. In the non-
adaptive case, this means that in the control law (5) only the vectors f and r
should be updated. However, in the self-tuning implementation the system parame-
ters θ = (a1, . . . , ana, b0, . . . , bnb, c1, . . . , cnc)

T should be updated as well.

The GPC controller for an ARMAX system needs some modifications to the
two polynomial partitions in the standard derivation (Bitmead et al., 1990). In the
first identity associated with the prediction partition, the polynomial A must be
used, not A∆ as in the ARIMAX case. In the second identity concerning the control
variables separation, the polynomials Gi =

∑i−1
j=0 gjq

−j appearing in the ARIMAX
derivation must be replaced by Gi∆ for the ARMAX case. Thus, in the GPC for
an ARMAX system, the coefficients gi are the impulse response parameters of the
transfer function B/A.

3. GPC Subject to Constraints

Now, the GPC in the presence of input rate, amplitude and energy constraints will be
examined. As already mentioned, QP techniques are reported to be computationally
demanding. However, as pointed out by Tsang and Clarke (1988), for reducing the
computation load the separate treating of amplitude and rate constraints can be
advantageous. First, the main results of (Tsang and Clarke, 1988) are given for the
case of rate and amplitude constraints issuing from the unconstrained GPC solution
(5) to an ARIMAX model.

3.1. Lagrange-Multiplier (LM) Method

3.1.1. Rate Constraint

The rate of the control input is constrained in magnitude, i.e.

|∆ut| ≤ duc. (7)

Using the LM method as proposed in (Tsang and Clarke, 1988), the constrained
optimal control in the case when only one future control saturates at +duc or −duc
can be found from

ūc = ūo +
(

GTG+ quI
)

−1
λjej , (8)

where ej = (0, 0, . . . , 1, 0, . . . , 0)
T , and unity is in the j-th position. To find the

Lagrange multiplier λj , the following equation has to be solved for +duc, say:

duc = ∆u
o
t+j−1 + gjjλj (9)

with respect to λj for j = 2, . . .Nu, where gjj is the (j, j) entry of the matrix
(GTG+quI)

−1. Now, the optimal constrained ∆uct can be found by putting λj back
to (8).
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The above procedure can be extended to the case when more than one future
control saturate (i.e. for Nu > 2). However, as pointed out in (Tsang and Clarke,
1988), an unsolved problem is on which limits the optimum lies. A reasonable heuristic
solution is based on the assumption that the constrained optimal control lies on
the constraint which is violated by the unconstrained optimum. In particular, this
reasoning is valid for Nu = 2. In the presented approach, the optimization procedure
starts for λj which corresponds to the control most saturated with respect to the
unconstrained optimum. Next, the control horizon is reduced by one and the procedure
is repeated in the same way until all controls are feasible.

3.2. Amplitude Constraint

The amplitude constraint imposed on the control input is given as follows:

|ut| ≤ uc. (10)

First, it can be noted that the calculation of optimal amplitude-constrained controls
for an ARIMAX is more complex than for an ARMAX model. The opposite statement
can be made in the case of the rate constraint.

Again, the use of the Lagrange-multiplier method for solving the amplitude-
constrained GPC for the ARIMAX model is possible; however, in the general case the
involved computations do not make this approach beneficial any more. The important
case Nu = 2 makes an exception. Consider this case following the idea of (Tsang and
Clarke, 1988). If the future control is feasible, then

uct = sat[u
o
t ;uc], (11)

where uot = ut−1+∆u
o
t is the control signal obtained by the standard unconstrained

algorithm.

When the future control signal violates the constraint, say ut+1 = uc, we get

∆ut = ∆u
o
t −

σ1
σ1 + σ2

[

u
′

− (∆uot +∆u
o
t+1)
]

, (12)

where σ1 and σ2 are the sums of the first and second rows of the (2 × 2) matrix
(GTG+ quI)

−1, respectively, and u
′

= uc − ut−1. Note that the constrained control
sequence lies on the boundary u

′

= ∆ut + ∆ut+1. The applied control signal then
follows from

uct = sat[ut−1 +∆ut;uc], (13)

where ∆ut is given by (12). In case Nu > 2, when more than one control saturates,
the procedure described earlier can be similarly applied.

3.3. Simultaneous Constraints

First, both control sequences are calculated separately for each constraint. Then, in
the case of an ARIMAX model, if the amplitude constraint is violated, then the smaller
absolute value of ∆ut is selected as the control signal. In the case of an ARMAX
model, if the rate constraint is violated, then the control signal ut which differs from
ut−1 less is selected and applied to the system.
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3.4. Energy Constraint

Consider the GPC for an ARMAX model with the cost function (4) for qu = 0,

J(Ny, Nu) = (Gū+ f − r)
T (Gū+ f − r), (14)

under the energy constraint on the input signal

ūT ū ≤ e2c . (15)

For the minimization of (14) under the constraint (15), the Kuhn-Tucker condi-
tions yield

GTGū+GT (f − r) + λū = 0, (16)

λ(ūT ū− e2c) = 0, (17)

λ ≥ 0. (18)

The optimal constrained control is then given by

ūc = (GTG+ λI)−1GT (r − f), (19)

where the multiplier λ can be calculated from

(r − f)TG
(

GTG+ λI
)

−1T (
GTG+ λI

)

−1
GT (r − f) = e2c. (20)

Summarizing, when the constraint (15) is fulfilled, the applied optimal control is
the unconstrained optimal control ūo calculated for qu = 0. Otherwise, the applied
constrained control is given by (19), where the multiplier λ must be recalculated
at each time step t whenever the constraint (15) is violated. It is worth noticing
that (GTG + λI)−1 can be calculated in a recursive way along with the increasing
control horizon Nu. The above constrained minimization problem can also be solved
iteratively with Carroll’s method (Bazaraa and Shetty, 1979) using an unconstrained
minimization technique for the modified cost function

Jm(Ny, Nu) = (Gū+ f − r)
T (Gū+ f − r) + rk(e

2
c − ū

T ū)−1, (21)

where for monotonically decreasing rk, so that rk → 0, the succsessive minimizations
of (21) yield the desired constrained minimum.

3.5. The Method Based on the Solution to the Linear Complementarity
Problem (LCP)

Transformation of the GPC problem into the LCP form enables the simultaneous
consideration of rate and amplitude constraints of the input. In a noise-free system
an amplitude constraint of the output can be additionally included. The solution
method based on Lemke’s algorithm (Camacho, 1993; Camacho and Bordons, 1995)
can then be applied.
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3.6. Handling Constraints

The input constraints (in rate and amplitude) and the output constraint (in ampli-
tude) for an ARIMAX system can be represented as follows (Camacho, 1993):

R1ū ≤ c1, (22)

where c1 is the vector containing upper and lower constraints and R1 denotes the
block matrix defined by

c1 =































I1duc

I1duc

I1uc − I1ut−1

I1uc + I1ut−1

I2ymax − f

−I2ymin + f































, R1 =































I

−I

T

−T

G

−G































, (23)

respectively, where I1(Nu×1) = (1, . . . , 1)
T , I2(Ny×1) = (1, . . . , 1)

T , T(Nu×Nu) is a
lower triangular matrix whose non-zero entries equal 1 and I is the Nu×Nu identity
matrix. Usually, the input sequence is written in the form which is further exploited
in Lemke’s algorithm:

ū = −I1duc + x. (24)

By substituting (24) into (23), the following final form of the constraints can be
obtained:

Rx ≤ c, x ≥ 0, (25)

where

R =























I

T

−T

G

−G























c =























2I1duc

I1uc + TI1duc − I1ut−1

I1uc − TI1duc + I1ut−1

I2ymax − f +GI1duc

−I2ymin + f −GI1duc























. (26)

Similar derivations can be made for an ARMAX model.

3.7. Formulation of LCP

Taking account of (24), the cost function (4) can be expressed in the form

J =
1

2
xTHx+ xT a+ d. (27)
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Assuming that all constraints are violated by control inputs within the horizon
Nu, the Lagrange multipliers λ1 and λ2 are vectors. Forming the Lagrangian and
differentiating it, we get (Camacho, 1993)

λ3 +Rx = c, (28)

λ2 −Hx−R
Tλ1 = a,

where λ3 is a vector of complementary variables which change the inequality (25)
into equality. The above equations take the form of the LCP

s−Mz = q, (29)

where s = (λT3 , λ
T
2 )
T , z = (λT1 , x

T )T are unknown vectors while the block matrix M
and the vector q, respectively given by

M =





0 −R

RT H



 , q =





c

a



 ,

are known. The conditions s, z ≥ 0 and sT z = 0 must also be fulfilled.

The LCP can be solved in various ways, e.g. using interior point methods.

3.7.1. Lemke’s Algorithm

Solution of (29) is trivial when q ≥ 0, as it then suffices to take s = q and z = 0.
Otherwise, an additional variable z0 ≥ 0 is introduced to eqn. (29),

s−Mz − z0I3 = q, (30)

where I3[(4Nu+2Ny)×1] = (1, 1, . . . , 1)
T . To solve (30) Lemke’s algorithm can be applied

(Camacho, 1993; Camacho and Bordons, 1995).

4. Closed-Loop Stability Analysis

It is well-known that in general, GPC does not guarantee closed-loop stability even in
a non-adaptive case. However, by a proper choice of design parameters the stability
for the unconstrained non-adaptive GPC can be achieved. In this case the closed-loop
characteristic polynomial in z-domain when the open-loop system is of the ARIMAX
type has the form (Bitmead et al., 1990)

Ac = A∆+

Ny
∑

i=1

αi(B −GiA∆)z
i−1, (31)

where Gi are polynomials forming the matrix G, i.e. the coefficients of Gi correspond
to the i-th row of G. The poles zi are involved functions of design parameters
Ny, Nu, qu. Some simulation plots for maxi |zi| as a function of design parameters are
given in Section 6. The analysis of the closed-loop stability for the GPC with input
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constraints is much more complicated, and an analytical representation like in the
unconstrained case (31) seems unfeasible. Moreover, the stability of the constrained
GPC depends on initial conditions and the reference signal, and in the adaptive
case additionally on the initial parameter estimates. The stability issue is especially
crucial for unstable open-loop systems. In this case the global closed-loop stability of
constrained STGPC cannot be assured; however, in some conditions a local stability
can be achieved. Some stability results obtained through simulations are presented in
Section 6.

5. Self-Tuning Control

The self-tuning controller proposed here is a certainty-equivalence controller where the
unknown system parameters θ = (a1, . . . , ana, b0, . . . , bnb, c1, . . . , cnc)

T are estimated
on-line by means of the RELS method and next used for tuning the GPC controller.
From (5) it follows that the unconstrained optimal control signal actually applied is
given by

∆uot = ∆u
o
t−1 + q

T
1 (r − f), (32)

where qT1 denotes the first row of the matrix (G
TG + quI)

−1GT . This means that
in the self-tuning control only q1 and predictions f have to be recalculated at each
discrete time instant t along with the standard derivation of the GPC algorithm.
Obviously, the implementation of a constrained self-tuning controller increases the
computational load. In this case the performance and stability of the closed-loop
system depend strongly on the initial parameter uncertainty and constraints.

At present, there are no rigorous theoretical results regarding the stability of
finite horizon STGPC when amplitude and/or rate constraints are imposed on the
input. If the system (1) is unstable, the global stability cannot be achieved due to the
constraints even in the noise-free case, i.e. et = 0. However, some closed-loop stability
boundaries could be evaluated in terms of initial uncertainties (initial parameter esti-
mates) as well as initial conditions and constraints if a noise-free or a noise-bounded
system is considered.

6. Simulations

The following examples are taken for simulation:

1. The second-order stable ARIMAX/ARMAX system with numerical values of
parameters a1 = −1.8, a2 = 0.9, b0 = 1.0, b1 = 0.5,

2. The second-order unstable ARIMAX/ARMAX system with numerical values of
parameters a1 = 1.8, a2 = −0.9, b0 = 1.0, b1 = 0.5,

3. The second-order non-minimum phase ARIMAX/ARMAX system with numer-
ical values of parameters a1 = −1.5, a2 = 0.7, b0 = −1.0, b1 = 2.0.
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The polynomial C, is taken as C = 1, and the noise variance σ2e was set to 0.01.
System parameters θ are identified using the standard RELS method with initial
estimates θ̂0 close to zero. Prior to the control process, an off-line pre-identification
was performed, which yields initial estimates for constrained STGPC to be started up.

Simulation runs were performed for a square wave as a reference signal given by

r20N+t+5 = 5(−1)
N , t = 0, 1, . . . , 39, N = 0, 1, . . . .

The design parameters were set at Nu = Ny = 3, qu = 0.1 unless stated otherwise. It
should be noted that for Ny > Nu the tracking performance is generally worse than
for Ny = Nu, because in the former case the matrix G is truncated. Programmes were
written in MATLAB for both the presented methods, and selected simulation runs
are presented below. Obviously, both the methods yield the same optimal constrained
control inputs when the non-adaptive, noise-free case is considered for a given set of
design parameters.

6.1. Rate Constraint

Figures 1 and 2 show the control behaviour (LM) for the ARIMAX and ARMAX
models of Example 1, respectively. Exemplary plots of hard-constrained control signals
with duc = 2 (ARIMAX) and duc = 2.4 (ARMAX) are included. Self-tuning disables
good tracking in the initial phase of the control process. An example of one estimation
run with initial estimates â1 = −1.25, â2 = 0.40, b̂0 = 0.33, b̂1 = 0.20 is shown in
Fig. 3 for a stable ARIMAX case. Simulation (LCP) of the ARIMAX of Example
2 is shown in Fig. 4 with control signal constrained at duc = 6.7. The tracking
deterioration takes place for duc ≤ 7. The ARIMAX of Example 3 is simulated (LM)
in Fig. 5 for Nu = Ny = 5 and qu = 0.2, where the control signal constrained by
duc = 7 is also shown. Poor tracking occurs for duc ≤ 6. Here and in other simulations
of non-minimum phase systems, a longer prediction horizon and a larger value of the
weight qu were needed in order to stabilize the control system.

6.2. Amplitude Constraint

The results for the ARIMAX (LM) of Example 1 are shown in Fig. 6, while in Fig. 7
they correspond to the ARMAX (LCP). In both the cases, hard-constrained control
signals with uc = 0.8 and uc = 0.5 are given. Simulation for the ARMAX (LCP) of
Example 2 is shown in Fig. 8 including the control signal with uc = 7. The tracking
deteriorates very much when the constraint is imposed on the control signal. This is
also the case for an ARIMAX model. The ARIMAX (LM) of Example 3 is simulated
in Fig. 9, where hard constraints uc = 2, 3 are considered. In this case, the tracking is
not satisfactory; however, for larger values of uc (not included here) a good tracking
was observed.

6.3. Energy Constraint

The control behaviour for the ARIMAX of Example 1 (LM) is shown in Fig. 10 for
ec = 4, where an on-line adjustment of λ is also reflected. The multiplier λ plays
here the role of the weight qu which is tuned along with the control process.
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Fig. 1. STGPC under rate constraints (Example 1, ARIMAX).

Fig. 2. STGPC under rate constraints (Example 1, ARMAX).
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Fig. 3. Run of parameter estimates.

Fig. 4. STGPC under rate constraints (Example 2, ARIMAX).
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Fig. 5. STGPC under rate constraints (Example 3, ARIMAX).

Fig. 6. STGPC under amplitude constraints (Example 1, ARIMAX).
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Fig. 7. STGPC under amplitude constraints (Example 1, ARMAX).

Fig. 8. STGPC under amplitude constraints (Example 2, ARMAX).
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Fig. 9. STGPC under amplitude constraints (Example 3, ARMAX).

Fig. 10. STGPC under energy constraints (Example 1, ARIMAX).
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6.4. Output Constraint

In some cases, imposing a constraint on the system output may be required, e.g.
for safety reasons. This kind of constraint can be especially useful in the control of
non-minimum systems. The output constraint has the form

ymin ≤ yt ≤ ymax,

where ymin = rt−yc and ymax = rt+yc, cf. (23). It is worth noticing that the output
constraint included into Lemke’s algorithm makes sense when the system output is
noise-free. In this case, imposing the output constraint can keep the system output
within the limits (ymin, ymax) even when the control system destabilizes.

Figure 11 shows the simulation for the noise-free ARIMAX (LCP) system of
Example 2, where duc = 8, uc = 10, yc = 3. One can see that under constraints duc
and uc comparable to those of Figs. 4 and 8, the output yt attains ymin = 2 only
at one point. Moreover, this takes place in the initial phase of identification, when a
substantial self-tuning occurs.

6.5. Simultaneous Rate and Amplitude Constraints

In Figs. 12 and 13, both the constraints (duc = 4.5, uc = 3.7) are considered for
the ARIMAX of Example 1 simulated by LM and LCP methods, respectively. The
tracking is satisfactory; however, both constraints are not much comparable with
those in Figs. 1 and 6.

Table 1. Destabilizing constraint values.

Example Rate Constr. Ampl.Constr. Energy Constr.

1, 2, 3 dudest udest edest

1 ARIMAX 2.0 0.8 0.6

1 ARMAX 2.0 0.3 0.5

2 ARIMAX 6.7 7.0 140

2 ARMAX 9.5 7.0 55

3 ARIMAX 6.0 1.5 0.7

3 ARMAX 6.0 1.8 0.9

6.6. Stability Analysis

Figures 14, 15 and 16 show the plots of the pole maxi |zi| versus qu obtained from (31)
for Examples 1, 2 and 3 (all ARIMAX), respectively, for different horizons Nu = Ny.
In all cases, it is easier to assure stability for long horizons. This is particularly
evident for non-minimum phase systems. It can be seen from Figs. 14 and 15 that for
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the design parameters Nu = Ny = 3, qu = 0.1 considered in the above simulations,
the closed-loop stability of an unconstrained non-adaptive control system is assured
for Systems 1 and 2. From Fig. 16 it can be observed that for a non-minimum phase
system (Example 3), a longer prediction horizon Ny = 5 and a larger weighting
constant qu = 0.2 are needed to ensure the stability. As already mentioned in Section
4, the analytical discussion of stability is not feasible when constraints are present
and active.

For the presented simulation examples of constrained control, the stability limits
are evaluated through simulations for all the open-loop systems considered. The rate,
amplitude and energy constraint values for which the stgpc control system destabilizes
are denoted by dudest and udest and edest, respectively. The approximate values of
destabilizing constraints imposed separately on the input are given in Table 1 for all
simulated examples. Obviously, one can observe much larger values of dudest, udest
for unstable systems (Example 2) when compared with stable and non-minimum
phase systems (Examples 1 and 3). Surprisingly large values of edest = 140, 55 occur
for unstable ARIMAX and ARMAX systems. However, in the non-adaptive case the
corresponding values were found to be edest = 5, 6, respectively.

6.7. Computation Analysis

In Table 2, a comparison of the computation amount measured by the number of
floating-point operations required by the LM method (separate constraint handling)
and by Lemke’s algorithm (simultaneous constraint handling) is given for a non-
adaptive control of a stable noise-free ARIMAX system where Nu = Ny = 3, qu = 0,
and for the total number of control steps set at 80. The number of flops which
is automatically registered by MATLAB is presented in terms of constraints given
as a percentage of the unconstrained (full range) control signal. One can see the
computational advantage of the LM method over Lemke’s algorithm, which is even
more evident when hard constraints are imposed on the input.

Table 2. Number of flops.

Constraints Range of input signal LM LCP

− % F lops F lops

unconstrained 100 8168 13619

duc = 11.5 50 8381 27132

duc = 3.3 14 10246 48756

uc = 6.6 50 8405 20270

uc = 2.66 20 8781 30586

uc = 0.93 7 9140 69848

duc = 15.2, uc = 4 66, 30 8595 27325

duc = 5.75, uc = 4 25, 30 9008 36178

duc = 4.6, uc = 2.66 20, 20 9089 48475



476 A. Królikowski and D. Jerzy

Fig. 11. STGPC under input (rate, amplitude) and output constraints.

Fig. 12. STGPC under input constraints (Example 1, ARIMAX).
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Fig. 13. STGPC under input constraints (Example 1, ARIMAX).

Fig. 14. Poles of the closed-loop system (Example 1, ARIMAX).
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Fig. 15. Poles of the closed-loop system (Example 2, ARIMAX).

Fig. 16. Poles of the closed-loop system (Example 3, ARIMAX).
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7. Conclusions

An STGPC problem is presented for rate, amplitude and energy-constrained inputs.
The self-tuning of constrained GPC is implemented in an indirect way. Second-order
stable, unstable and non-minimum phase examples are analyzed and simulated for
different configurations of design parameters. Simulation results reveal an essential
influence of design parameters and constraints on the stability and control perfor-
mance. This is especially crucial in the analysis of the closed-loop stability of unstable
systems. For assumed initial conditions the destabilizing values of constraints can be
established through simulations. Finally, from a comparison of computation loads for
both the methods considered, a conclusion can be drawn that the separate handling
of constraints is advantageous. However, this usually takes place at the cost of some
optimality deterioration.
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