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MINIMAL DECISION RULES BASED ON

THE APRIORI ALGORITHM †
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José M. PEÑA∗∗, Socorro MILLÁN***

Based on rough set theory many algorithms for rules extraction from data have
been proposed. Decision rules can be obtained directly from a database. Some
condition values may be unnecessary in a decision rule produced directly from
the database. Such values can then be eliminated to create a more comprehensi-
ble (minimal) rule. Most of the algorithms that have been proposed to calculate
minimal rules are based on rough set theory or machine learning. In our ap-
proach, in a post-processing stage, we apply the Apriori algorithm to reduce
the decision rules obtained through rough sets. The set of dependencies thus
obtained will help us discover irrelevant attribute values.

Keywords: rough sets, rough dependencies, association rules, Apriori algo-
rithm, minimal decision rules

1. Introduction

One way to construct a simpler model computed from data, easier to understand
and with more predictive power, is to create a set of simplified rules (Shan, 1995).
A simplified rule (also referred to as a minimal rule or a kernel rule) is the one in
which the number of conditions in its antecedent is minimal. Thus, when dealing
with decision rules, some condition values can be unnecessary and can be dropped
to generate a simplified rule preserving essential information. In (Pawlak, 1991) an
approach to simplify decision tables is presented. Such an approach consists of three
steps:

� computation of reducts of condition attributes,
� elimination of duplicate rows,
� elimination of superfluous values of attributes.
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∗ DLSIIS Facultad de Informática, U.P.M., Madrid, Spain,
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This approach to the problem is not very useful from the practical point of view,
because both the computation of reducts and the superfluous equivalence classes are
NP-hard.

Many algorithms and methods have been proposed and developed to generate
minimal decision rules. From the point of view of algorithms, some of them are based
on inductive learning (Grzymala-Busse, 1993; Michalski et al., 1986; Quinlan, 1986),
and some others are based on rough set theory (Bazan, 1996; 1998; Shan, 1995; Shan
and Ziarko, 1994; 1995; Skowron, 1995; Stefanowski, 1998). Some of the procedures
associated with rough set theory are complex to compute. Thus, rough set theory
has been applied to solve data mining problems integrated with other knowledge
extraction methods.

Shan (1995) proposes and develops a systematic method for computing all mini-
mal rules, called maximally general rules, based on decision matrices. Based on rough
set and Boolean reasoning, Bazan (1996) proposes a method to generate decision rules
using the concept of dynamic reducts. Dynamic reducts are stable reducts of a given
decision table that appear frequently in random samples of a decision table. Skowron
(1995) proposes a method that, when applied over consistent decisions tables, makes
it possible to obtain minimal decision rules. Based on the relative discernibility matrix
notion, the method enables us to calculate the set of all relative reducts of a decision
table. An incremental learning algorithm for computing the set of all minimal decision
rules based on the decision matrix method is proposed in (Shan and Ziarko, 1995).

On the other hand, some efforts have been made to integrate different data mining
tasks for obtaining better rules. In (Choobineh et al, 1997), an approach integrating
fuzzy logic and modified rough sets is proposed in order to classify new objects into
one of the different decisions categories when this classification cannot be perfectly
made. Świniarski (1998a; 1998b) proposes integration of rough sets with statistical
methods and neural networks. In the former proposal, Principal Component Analysis
(PCA) and Bayesian inference are integrated with rough sets for data mining applied
to breast cancer detection. PCA is applied for feature extraction and reduction. Rough
set theory is used to find reduct sets from patterns obtained as a result of PCA. In
the latter, rough sets and neural networks are combined for data mining and pattern
recognition and then implemented as a rough-neural system. Rough sets are used to
reduce the size of a knowledge base, while neural networks are used for classification.
Furthermore, in (Kosters et al, 1999) a method to extract clusters based on the Apriori
algorithm is proposed. The method considers the highest possible order association
rules. One of these rules with the highest confidence is selected, and all the customers
that bought items in the antecedent rule constitute a first cluster. The customers
in this cluster are removed from the original data set and the process is iterated,
leading to a hierarchical clustering. The method for stopping uses either a maximum
number of cluster parameters or the minimum support threshold for the generated
rules. Another combined algorithm based on both the Apriori algorithm and rough
set theory can be found in (Lin, 1996).

Kryszkiewicz (1998a; 1998b; Kryszkiewicz and Rybinski, 1998) proposed a new
algorithm which mines very large databases based on association rules generation.
This algorithm is a modification of the Apriori algorithm (Agrawal et al., 1993) espe-
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cially suited for seeking rules with a user-specified consequent.

We present an approach based on the Apriori algorithm that, in a post-processing
stage, will allow us to reduce decision rules obtained by means of rough sets. We will
assume that a positive region has already been calculated, so that a set of possible
redundant rules is available. The set of dependencies obtained by applying the Apriori
will help us discover irrelevant attribute values.

The proposed approach is based on the following idea: The problem of finding
dependencies with a degree greater than a given number k can be assimilated to the
problem of discovering rules having a confidence ≥ k from the set of large itemsets
obtained by the application of the Apriori algorithm. Our approach differs from the
one proposed in (Kryszkiewicz, 1998a) on the following points: (i) the input of the
algorithm in (Kryszkiewicz, 1998a) is a modified decision table while the input in
our approach is a table containing a positive region, (ii) the methods used to extract
association rules from the frequent itemsets are different, (iii) our contribution also
applies a postprocessing step in which rules are analyzed and pruned.

The reminder of the paper is organized as follows: Section 2 presents the funda-
mentals of rough sets as well as those of the Apriori algorithm. Section 3 describes
both the basis of the new approach and the proposed algorithm itself. In Section 4
the algorithm is validated with different sample datasets. Finally, Section 5 presents
a discussion of the results as well as ideas for future research.

2. Preliminaries

2.1. Rough Set Theory

The original rough set model was proposed by Pawlak (1991). This model is concerned
with the analysis of deterministic data dependencies. According to Ziarko (1993),
rough set theory is the discovery representation and analysis of data regularities.
In this model, the objects are classified into indiscernibility classes based on pairs
(attribute, values).

Let OB be a non-empty set called the universe, and let IND be an equivalence
relation over the universe OB , called the indiscernibility relation, which represents a
classification of the universe into classes of objects which are indiscernible or identical
in terms of the knowledge provided by given attributes. The main notion in rough set
theory is that of the approximation space which is formally defined as

A = (OB , IND). (1)

The equivalence classes of the relation are also called the elementary sets. Any fi-
nite union of elementary sets is called a definable set. Let us take X ⊆ OB
which represents a concept. It is not always the case that X can be defined ex-
actly as the union of some elementary sets. That is why two new sets are de-
fined: Apr(X) = {o ∈ OB/[o] ⊆ X} will be called the lower approximation, and
Apr(X) = {o ∈ OB/[o] ∩ X 6= ∅} will be called the upper approximation. Any set
defined in terms of its lower and upper approximations is called a rough set.
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2.2. Information Systems

The main computational effort in the process of data analysis in rough set theory is
associated with the determination of attribute relationships in information systems.
An information system is the quadruple S = (OB ,AT , V, f), where:

� OB is a set of objects,
� AT is a set of attributes,
� V =

⋃

Va, Va being the values of an attribute a,

� f : OB ×AT → V .

2.3. Decision Tables

Formally, a decision table S is the quadruple S = (OB , C,D, V, f). All the concepts
are defined similarly to those of information systems; the only difference is that the
set of attributes has been divided into two sets, C and D, which are conditions and
decisions, respectively.

Let P be a nonempty subset of C ∪D, and let x, y be members of OB . Here
x, y are indiscernible by P in S if and only if f(x, p) = f(y, p) for all p ∈ P . Thus
P defines a partition on OB . This partition is called a classification of OB generated
by P . Then for any subset P of C ∪D, we can define an approximation space, and
for any X ⊂ OB , the lower approximation of X in S and the upper approximation
of X in S will be denoted by P (X) and P (X), respectively.

2.4. Association Rules

The goal of the association discovery is to find items that imply the presence of other
items. An association rule is formally described as follows: Let I = {i1, i2, . . . , in} be
a set of literals called items. Let D be a set of transactions where each transaction
T is a set of items such that T ⊂ I . An association rule is an implication of the form
X → Y , where X ⊂ I , Y ⊂ I and X ∩ Y = ∅ . The rule X → Y holds in the
transaction set D with confidence c if c% of transactions in D that contain X also
contain Y . The rule X → Y holds in the transaction set D with support s if s%
of transactions in D contain X ∪ Y .

Given a set of transactions D, the problem of mining association rules is to
generate all the association rules that have support and confidence greater than the
user-specified minimum support (minsup) and minimum confidence (minconf ), re-
spectively.

In order to derive the association rules, two steps are required:

� find large itemsets for a given minsup, and
� compute rules for a given minconf based on the itemsets obtained before.
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The Apriori algorithm for finding all large itemsets makes multiple passes over the
database. In the first pass, the algorithm counts item occurrences to determine large
one-item sets. The other passes consist of two steps. First, the large itemsets Lk−1
found in the (k − 1)-th pass are used to generate the candidate itemsets Ck; next,
all those itemsets which have some k − 1 subset that is not in Lk−1 are deleted,
yielding Ck. Once the large itemsets are obtained, rules of the form a→ (l − a) are
computed, where a ⊂ l and l is a large itemset.

3. A New Algorithm to Reduce Decision Rules

In this section we present an algorithm to post-process rules extracted by other clas-
sification algorithms. Given the model generated by the previous algorithm to be
expressed as a set of rules (a ruleset), our objective is to obtain a reduced set of
rules in terms of both rule complexity (measured by the number of conditions in the
antecedent) and the ruleset size (number of rules). The proposed algorithm calculates
the positive region of a decision table by means of Variable Precision Rough Set Model
(VPRSM) and takes it as its input.

Each row of the table will be considered as a rule, taking the form Lefti → Righti.
Lefti is a set of multiple conditions {C1, C2, . . . , Cm}. These conditions are attribute-
value pairs (Aj , vj) (usually presented in the form Aj = vj) with Aj ∈ AT and
vj ∈ Vaj (Vaj is the set of all the possible values attribute Aj can take). Righti is
any possible value of the decision attribute (Righti ∈ VD). Thus R = {r1, r2, . . . , rn}
will be the set of rules obtained in this way.

There are two different kinds of characteristics in these sets of rules that may
increase the complexity of the ruleset:

➀ The cardinality of the ruleset represents the number of rules the ruleset has.
When dealing with real world problems, many algorithms tend to generate a
large number of very specialized rules. Each of these rules describes a very
reduced set of cases used for training (a very low support).

➁ Some of the rules in the ruleset have redundant conditions in their antecedents
allowing for the removal of one or more conditions from the antecedent, while
keeping the meaning and classification power of the rule.

3.1. Formal Representation

In order to present these two abnormalities in a formal way, several definitions have
to be introduced.

Rule matching: Let OB be the set of objects and R be a ruleset. We define the
rule matching functor as an incomplete function: Match : OB ×R −→ Vd,

Match(o,Left → Right) =

{

Right if ∀(A = v) ∈ Left : f(A, o) = v,
undefined otherwise.

(2)
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Predicted value: For an object o ∈ OB and a ruleset R, by the predicted value of
o using R we mean

Pred(o,R) = Right ,

if ∃(Left → Right) ∈ R : Match(o,Left → Right) 6= undefined.
(3)

This functor represents how a ruleset can give a value for each presented object. It is
assumed that there is only one predicted value for each object, so that there are no
contradictory rules in the ruleset.

Ruleset coverage: Let R be a ruleset, D ∈ AT a decision attribute, and OB a
set of objects. Cov (R,D,OB) ⊆ OB is the subset of objects classified successfully
by the ruleset in terms of the values of attribute D (the equivalence classes defined
by D),

o ∈ Cov (R,D,OB)⇐⇒ o ∈ OB ∧ Pred(o,R) = f(D, o). (4)

Coverage set calculation by Cov has the distributive property over the union (∪) and
the difference (−) of rulesets, which can be proved as follows:

Cov (R ∪ S,D,OB) = Cov (R,D,OB) ∪ Cov (S,D,OB), (5)

∀o ∈ Cov (R ∪ S,D,OB)⇔ Pred(o,R ∪ S) = f(D, o), (6)

∀o ∈ Cov (R ∪ S,D,OB)⇔ ∃r ∈ R ∪ S : Match(o, r) = f(D, o), (7)

∀o ∈ Cov (R ∪ S,D,OB)⇔

{

∃r ∈ R : Match(o, r) = f(D, o), or

∃r ∈ S : Match(o, r) = f(D, o),
(8)

∀o ∈ Cov (R ∪ S,D,OB)⇔

{

Pred(o,R) = f(D, o), or

Pred(o, S) = f(D, o),
(9)

∀o ∈ Cov (R ∪ S,D,OB)⇔ o ∈ Cov (R,D,OB) or o ∈ Cov (S,D,OB), (10)

∀o ∈ Cov (R ∪ S,D,OB)⇔ o ∈ Cov (R,D,OB) ∪ Cov (S,D,OB). (11)

The proof in the case of the difference operation is analogous.

Ruleset equivalence: Let OB be the set of objects. Then two rulesets, R and R′,
are defined as equivalent according to D if

R ∼D R
′ ⇐⇒ Cov (R,D,OB) = Cov (R′, D,OB). (12)

Rule equivalence: Let OB be the set of objects. Then two rules, r and r′, are
defined as equivalent if

r ∼ r′ ⇐⇒ ∀o ∈ OB

{

Match(o, r) =Match(o, r′), or

both Match(o, r) and Match(o, r′) are undefined.
(13)
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Using these definitions, Problems ➀ and ➁ can be expressed as follows:

➀ If R is the original ruleset, the first objective is to find a new ruleset R′ with
the restriction R ∼D R′. The new ruleset should have fewer rules than the
previous one (|R′| < |R|). This can be done in two different ways, namely by
deleting redundant rules, or by combining a subset of the ruleset obtaining a
reduced subset:

• Redundant rule deletion: r ∈ R is a redundant rule if

∀o ∈ OB ∃r′ ∈ R : r′ 6= r

{

Match(o, r) =Match(o, r′), or both

Match(o, r) and Match(o, r′) are undefined
(14)

With this definition, it is easy to prove that R ∼D R− {r}. Indeed, suppose
that R and R− {r} are not equivalent. Then

Cov (R,D,OB) 6= Cov (R − {r}, D,OB), (15)

∃o ∈ OB : Pred(o,R) 6= f(o,D) or Pred(o,R − {r}) 6= f(o,D), (16)

∃o ∈ OB : Pred(o,R) 6= Pred(o,R− {r}). (17)

This can only be true under three possible conditions:

First: ∃o ∈ OB : Pred(o,R− {r}) = v1 and

Match(o, r) = v2 with v1 6= v2.
(18)

But in this case, the ruleset R would have contradictory rules.

Second: ∃o ∈ OB : Pred(o,R− {r}) = undefined and

Match(o, r) = v2.
(19)

Pred(o,R − {r}) = undefined ⇔ � r′ ∈ R : r′ 6= r
Match(o, r′) 6= undefined.

(20)

Thus this formula and (14) are contradictory.

Third: ∃o ∈ OB : Pred(o,R− {r}) = v1 and

Match(o, r) = undefined.
(21)

Pred(o,R − {r}) = v1 ⇔ ∃r′ ∈ R : r′ 6= r

Match(o, r′) = v1.
(22)

But this formula and (14) are contradictory.

• Rule combination: A set of rules R′ (a subset of the original ruleset R) can
be combined to create a new set of rules R′′ under the following conditions:

R′ ∩ R′′ = ∅, (23)

Cov (R′, D,OB) = Cov (R′′, D,OB), (24)

R−R′ ∪ R′′ has no contradictory rules. (25)
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This definition can be used to prove that R ∼D ((R−R′) ∪R′′). Indeed, the
equivalence relationship between rulesets is calculated based on the coverage
sets:

R ∼D ((R−R′)∪R′′)⇐⇒Cov (R,D,OB) = Cov ((R−R′)∪R′′), D,OB). (26)

Using the distributive property of the coverage over the ruleset union and
difference, we see that R ∼D ((R−R′) ∪ R′′) iff

Cov (R,D,OB) = Cov (R,D,OB)− Cov (R′, D,OB) ∪ Cov (R′′, D,OB). (27)

Using (24), we get

Cov (R,D,OB) = Cov (R,D,OB)− Cov (R′, D,OB) ∪ Cov (R′, D,OB), (28)

Cov (R,D,OB) = Cov (R,D,OB). (29)

➁ The second objective deals with the reduction of the rule complexity. For each
rule in R ((Left → Right) ∈ R), the left-hand side has one or more predicate
conditions that are able to describe the objects covered by the rule. Therefore
a value is predicted for all the objects described by these conditions.

One of these conditions ((Ai = vi) ∈ Left) is called superfluous if

∀o ∈ OB : Match(o,Left → Right) =Match(o,Left − {(Ai, vi)} → Right). (30)

These conditions are equivalent to

∀(Aj = vj) ∈ Left : f(Aj , o) = vj ,

∀(Aj = vj) ∈ Left : f(Aj , o) = vj ∧ (Aj = vj) 6= (Ai = vi).
(31)

This formula is true when

∀(Aj = vj) ∈ Left : f(Aj , o) = vj ∧ (Aj = vj) 6= (Ai = vi)⇔ f(Ai, o) = vi. (32)

3.2. Post-Processing Algorithm

Input: The algorithm takes a ruleset Ro extracted by applying the positive region
procedures of VPRSM to a decision table.2 OB are the objects successfully classified
by Ro using the attribute D ∈ AT as a decision attribute.

Output: A new ruleset Rf that is able to classify the same objects OB .

Algorithm:

➊ The Apriori algorithm is executed to obtain the itemsets of size k or less.

2 The ruleset is in fact a set of equivalence classes.
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➋ A set of association rules is calculated with minimal support and confidence.
This set of rules is called AR and the rules have the form

(A1 = v1) ∧ (A2 = v2) ∧ · · · ∧ (An = vn) −→ (B = vb). (33)

➌ Each of the rules is processed with the following criteria:

❐ If D = B, the association rule has the decision attribute as a predicate on
its right-hand side.This rule is included in Rf . This kind of rules is called
the direct a-priori rules. Once this rule is moved to the final ruleset, all the
rules in AR and R whose left-hand sides are a supersets of the left-hand
sides of this association rule are deleted.

❐ If D ∈ {A1, A2, . . . , An}, the decision attribute appears on the left-hand
side of the rule. In these cases the rule is ignored.

❐ If D do not belong to the rule, then all the rules in Ro are scanned. If all
the conditions from the association rule (A1 = v1)∧(A2 = v2)∧· · ·∧(An =
vn) as well as the right-hand side B = vb belong to the left-hand side of
the decision rule, then the condition B = vb is deleted from the decision
rule, because it is redundant:

The association rule : (ALeft → ARight) ∈ AR, (34)

All the decision rules : ∀(Left → Right) ∈ R. (35)

If (ALeft ∪ARight) ⊆ Left ,
the new decision rule is (Left −ARight)→ Right .

(36)

➍ Once all the rules in AR have been processed, the remaining rules in Ro are
moved to Rf . These rules are called the reduced rules.

4. Validation of the Algorithm

This algorithm has been used to reduce the models generated by the positive region
calculation with several datasets from the UCI machine learning repository (Blake
and Merz, 2001). The datasets selected for this test have the following characteristics:

❶ All the attributes must be discrete (nominal), because we do not deal with
continuous values.

❷ The dataset should have more than 8 attributes and 100 objects. When the
positive region is calculated for datasets with either few attributes or few ob-
jects, the number of rules and their complexity are less significant than in large
datasets. Because our algorithm deals with complex datasets, we reduce the
cases studied to those of these sizes.

With these conditions only six datasets were selected.
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Table 1. Experimental results.

Positive region Using the post-processing algorithm

A-priori rules Reduced rules Total rules

Dataset RS MS MRC Size RS MS MRC RS MS MRC RS MS MRC

breast-
cancer

176 1.03 9.00 5 16 7.38 4.06 109 1.02 7.33 125 1.83 6.91

led24 200 1.00 24.00 5 10 5.00 5.00 151 1.00 14.28 161 1.25 13.70

mushroom 8107 1.00 22.00 3 170 10.33 2.93 128 1.00 11.01 298 6.32 6.40

soybean-
large

629 1.08 35.00 3 121 8.13 2.99 434 1.05 13.18 555 2.60 10.96

vote 342 1.27 16.00 2 3 46.33 2.00 121 1.42 14.49 124 2.51 14.19

zoo 42 1.60 16.00 2 3 35.33 2.00 14 1.64 6.00 17 7.59 5.29

In order to assess the results, the following parameters were calculated:

� Ruleset size (RS): The number of rules belonging to the ruleset.
� Mean support (MS): The mean number of objects successfully classified by the
rules.

� Mean rule complexity (MRC): The mean number of conditions on the left-hand
side of the rules.

The results obtained are presented in Table 1. The columns are grouped in two blocks:

� The first three columns are the values measured when the positive region algo-
rithm is executed. As can be seen, the mean support (MS) is very low, and in
most cases only one sample is described by each rule. The positive region rules
are also very complex since all the condition attributes appear in each rule.

� The second block of columns belong to the results extracted by the post-
processing algorithm, using as the input the rules from the positive region cal-
culation. These results are divided into three groups:

– the rules extracted directly by the Apriori algorithm (association rules with
the decision attribute on the right-hand sides of the rules),

– the original decision rules after the post-processing algorithm; some rules
were deleted because they are described by direct a-priori rules, and the
others are filtered, removing redundant conditions and getting rules with
less complexity,

– the measures of both set of rules (direct a-priori rules and post-processed
rules).
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4.1. Evaluation of the Results

As is shown, the ruleset complexity was reduced in terms of both the number of rules
and the number of conditions per rule. Some of the rulesets were reduced to 3.68%
(from 8107 rules to 298), and the number of conditional predicates to 29.09% (from
22.00 to 6.40).

There is also another main difference betwen the original model and the final
ruleset. The rules extracted by any rough set algorithm are independent of one another
(there is no object described by more than one rule). The rules extracted by our
algorithm, and especially the rules derived directly by the Apriori algorithm, may
overlap one another, and therefore there would exist objects described by more than
one rule. On the one hand, this characteristic alters the mean support measure (MS)
in terms of the numbers of objects classified successfully by direct a-priori rules; on
the other hand, this MS is correct for evaluating the strength of the rules in terms
of how general they are.

The accuracy measures, like confusion matrices, are not included because our
post-processing algorithm does not change this feature of the ruleset. If the association
rules are extracted by the Apriori with 100% accuracy, the deletion of rules and
redundant conditions does not modify the prediction power of the model.

The Size parameter in Table 1 defines the maximum itemset size when execut-
ing the Apriori algorithm. The selected value depends on the characteristics of each
dataset. There is an important trend when different values are used: as the size of
the itemset increases, the number of direct a-priori rules goes up too and, of course,
the number of post-processed rules decreases. An example of how the number of rules
changes depending on the values if this parameter is presented in Fig. 1.

A very important element in the performance of the algorithm is the number of
the association rules extracted by the Apriori algorithm. This set of rules is scanned
by our algorithms in order to classify them according to whether the decision attribute
belongs to either the left- or the right-side of the rule or it is not present. The size of
this set of rules increases when the itemset size increases (see Fig. 2). too

5. Discussion

In this paper, a new approach in which the Apriori algorithm is used to obtain minimal
rules has been presented. The knowledge discovery by means of rough set results
in a set of rules all having the features of high confidence but very low supports.
On the other hand, all condition attributes will appear in each rule. In order to
reduce the set of condition attributes, reduct calculation and other methods have
been traditionally used. Our approach is an alternative to reducing both the number
of condition attributes and the number of rules. Besides, the average support of rules
will increase with the application of our method. In this paper, we have presented
some experimental results using datasets with more than 100 records described by
more than 8 attributes (large datasets). The results highlight the fact that in all cases
the approach enhances the output of the classification algorithm.



702 M.C. Fernández et al.

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7

N
um

be
r 

of
 r

ul
es

Itemset size

Apriori direct rules
Post-processed rules

Both rules
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Fig. 2. Number of association rules extracted by the Apriori algorithm.
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The main drawback of our approach is the complexity of the resulting algorithm.
There are two main nested loops in it: one scans the association rules extracted by
the Apriori algorithm and the other the original rules. Nevertheless, let us observe
that dealing with huge datasets the original ruleset is neither significant nor compre-
hensible. So some approach is needed to improve the quality of rules.

As the algorithm effectiveness has been proven, we are currently working on the
improvement of its efficiency. We are also working on the application of this approach
to models obtained by other classification methods.
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