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FUZZY VERSUS PROBABILISTIC BENEFIT/COST

RATIO ANALYSIS FOR PUBLIC WORK PROJECTS

Cengiz KAHRAMAN
∗

The benefit/cost (B/C) ratio method is utilized in many government and public
work projects to determine if the expected benefits provide an acceptable return
on the estimated investment and costs. Many authors have studied probabilis-
tic cash flows in recent years. They introduced some analytical methods which
determine the probability distribution function of the net present value and in-
ternal rate of return of a series of random discrete cash flows. They considered
serially correlated cash flows and the uncertainty of future capital investment
and reinvestment rates and they presented some formulae for the B/C ratio for
probabilistic cash flows. In the paper, the expected value and the variance of a
probabilistic cash flow are obtained by means of moments. Then a probabilistic
B/C ratio is given. Fuzzy set theory has the capability of representing vague
knowledge and allows mathematical operators and programming to be applied
to the fuzzy domain. The theory is primarily concerned with quantifying the
vagueness in human thoughts and perceptions. The fuzzy B/C ratios are devel-
oped for a single investment project and for multiple projects having equal or
different lives.
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1. Introduction

There are many types of public projects and many agencies involved. Four classes rea-
sonably cover the spectrum of projects entered into by a government. They include
cultural development, protection, economic services and natural resources. Govern-
ment projects have a number of interesting characteristics that set them apart from
projects in the private sector. Many government projects are huge, having first costs
of tens of millions of dollars. They tend to have extremely long lives, such as 50 years
for a bridge or a dam. Further, public sector projects are not easily evaluated, since
it can take many years before their benefits are realized. Therefore, public sector
projects should especially be evaluated under risky conditions.

A risk is defined as an exposure to injury, loss or other undesirable consequences.
Thus the risk has two dimensions: (a) exposure, and (b) the nature of undesirable
consequences. The exposure can be measured by the probability of encountering the
undesired consequences. The measurement of the second dimension depends on the
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nature of the consequences and the metric or metrics used. An economic risk enters
economic decision making when there exists a possibility of undesirable consequences
and an uncertainty about the factors which cause various decision consequences to
occur (Buck and Askin, 1986).

In recent years, several authors have studied the evaluation of the expected net
present value and the variance of the net present value of probabilistic cash flows under
random timings. Buck and Askin (1986) define partial means and related measures,
and show their relationships to several less general risk measures. Schlaifer (1961) and
Morris (1968) developed Gaussian linear loss integrals. These integrals are measures
over a partial domain of X in contrast to full domain measures given by traditional
statistical moments. Hillier (1963) introduced an analytical method which determines
the probability distribution function of the net present value and the internal rate of
return of a series of random discrete cash flows which occur at constant times. Wa-
gle (1967) introduced a method similar to Hillier’s. This method did not require the
means and variances of cash flows to be supplied by the user. These two measures are
computed from the data. Young and Contreras (1975) considered random lump-sum
cash flows occuring at random times and uniform cash flows with random starting and
cessation times. Spahr (1982) considers the uncertainty of future capital investment
and reinvestment rates. Necessary formulae for the variance of the future worth are
presented. He assumes a constant timing of cash flows. Giacotto (1984) considers seri-
ally correlated cash flows occuring at constant times. He presents necessary formulae
for the mean and variance of the net present value. Park (1984) presents necessary
formulae for the benefit/cost ratios when the cash flows are probabilistic. The formu-
lae also assume constant timings of cash flows. Zinn et al. (1977) introduced formulae
for the expected net present value, variance and semivariance of net present values
for different cash flow profiles with random time. Tufekci and Young (1987) present
the moments of the net present value of probabilistic investment alternatives. Ben-
zion and Yagil (1987) compare two discounting methods for evaluating multi-period
stochastic income streams that are identical and independent over time.

Fuzzy set theory presents an alternative to having to use exact numbers or to
have a probability distribution of the cash flow. Many papers on fuzzy B/C ratio
analysis can be found in the recent literature. The potential of many new manufac-
turing systems is being roadblocked in many cases by the wrongful use of traditional
justification methods. These new systems can offer not only financial benefits but
also longer-term strategic benefits. Thus, traditional piece-by-piece justification ap-
proaches, overemphasizing short-term savings in direct manufacturing costs, rather
than longer term company strategic benefits, need to be modified to be able to eval-
uate those benefits which are long-term and perhaps intangible. Chiadamrong (1999)
presents a further step by introducing the concept of fuzzy set theory in overcoming
the precision-based evaluation. Results from this approach present a better under-
standing of each alternative and an easier approach to decision makers for evaluation
issues which cannot be precisely defined. Momoh and Zhu (1999) develop an integrat-
ed approach for reactive power price and control. The reactive power price is divided
into fixed and variable parts. The fixed part is the operational cost of the reactive
power service. The variable part of the reactive power price is determined based on
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the capability and contributions to the improvement of the system performance, such
as security, reliability and economics. These contributions can be evaluated by com-
puting the sensitivity of the objective function with respect to the reactive power
support. The optimal power flow (OPF) approach is used to accomplish this purpose.
For VAr planning (or control) purposes, three parallel indices are first presented to
determine the sites of new VAr sources. They are the benefit-to-cost ratio index, the
voltage reactive sensitivity index, and the bus voltage security index. The analytic
hierarchical process is then used to comprehensively consider the effect of the three
indices and the network topology for each candidate VAr source site.

Boussabaine and Elhag (1999) present an alternative approach to cash flow anal-
ysis for construction projects. Construction managers are interested in the direction
of the cash flow movement at valuation periods rather than in its forecast value, and
fuzzy set theory applied to decision making might help in this process. Fuzzy models
are particularly suited to making decisions involving new technologies where uncer-
tainties inherent in the situation are complex. The problem of a healthy cash flow at
valuation periods relates to the proper estimation of cash in and out flows and project
progress. This project is based on the assumption that the cash flow at particular val-
uation stages of a project is ambiguous. The weaknesses of the existing methods for
cash flow are discussed and the need for an alternative approach is established.

Temponi et al. (1999) propose an objective model to reduce the amount of rework
due to subjective evaluation of colour reproduction. A colour quality appraisal refers
to a visual evaluation of an original colour image and an assessment of the degree
to which that image is matched in photomechanical or electronic reproduction. The
evaluation of reproduction quality is quite subjective since it relies on the individu-
al judgments of colour technicians who have different perceptions of colour and its
component qualities. In the model, a fuzzy set of quality factors is introduced and a
numerical quality value calculated. This measure is then compared with an accept-
able quality value experimentally established for particular customers and printing
processes. Finally, the installed model is tested in actual production, and compared
with the conventional evaluation method in a cost analysis. Buckley (1987), Ward
(1985), Chiu and Park (1994), Wang and Liang (1995), Kahraman et al. (1995; 2000)
are among the authors who deal with the fuzzy present worth analysis, the fuzzy
benefit/cost ratio analysis, the fuzzy future value analysis, the fuzzy payback period
analysis, and the fuzzy capitalized value analysis.

In the following, first, statistical terms related to the risk analysis and then fuzzy
set theory and fuzzy numbers are shortly explained.

1.1. The Expected Value and the Variance of a Probabilistic Cash Flow

Since the expected value of a sum of random variables equals the sum of the expected
values of the random variables, the expected present value (PV) is given by

E(PV) =

N∑

j=0

(1 + i)−jE[Aj ], (1)
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where Aj ’s are statistically independent net cash flows and N is the life of the project.
Then the variance of PV is given by

σ2[PV] = V (PV) =

N∑

j=0

(1 + i)−2jV (Aj). (2)

The central limit theorem establishes that the sum of independently distributed ran-
dom variables tends to be normally distributed as the number of terms in the sum-
mation increases. Hence, as N increases, PV tends to be normally distributed with
a mean value of E[PV] and a variance of V (PV) (Canada and White, 1980).

In the case of a set of correlated cash flows (Aj ’s are not statistically independent),
the variance calculation is modified as follows:

V [PV] =

N∑

j=0

V (Aj)(1+i)
−2j+2

N−1∑

j=0

N∑

k=j+1

Cov [Aj , Ak](1+i)
−(j+k), (3)

where Cov [Aj , Ak] is the covariance between Aj and Ak. Cov [Aj , Ak] equals
ρjkσ[Aj ]σ[Ak], where ρjk is the correlation coefficient between Aj and Ak.

If all Aj and Ak are perfectly correlated such that ρjk = +1, then

V [PV] =





N∑

j=0

σ[Aj ](1 + i)
−j





2

. (4)

In performing risk analyses involving correlated cash flows, Hillier (1963) suggests
that the net cash flow in a year be seperated into those components of the cash flow
one can reasonably expect to be independent from year to year and those that are
correlated over time.

1.2. Fuzzy Set Theory and Fuzzy Numbers

To deal with the vagueness of human thought, Zadeh (1965) first introduced fuzzy
set theory which was oriented to the rationality of uncertainty due to imprecision or
vagueness. A major contribution of fuzzy set theory is its capability of representing
vague knowledge. The theory also allows mathematical operators and programming
to be applied to the fuzzy domain. A fuzzy set is a class of objects with a continuum
of grades of membership. Such a set is characterized by a membership (characteristic)
function that assigns to each object a grade of membership ranging between zero and
one.

Quite often in finance, future cash amounts and interest rates are estimated. One
usually employs educated guesses, based on expected values or other statistical tech-
niques, to obtain future cash flows and interest rates. A statement like ‘approximately
between 10% and 15%’ must be translated into an exact amount such as ‘12.5%’. Ap-
propriate fuzzy numbers can be used to capture the vagueness of ‘approximately
between 10% and 15%’ (Buckley, 1987).
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A fuzzy number is a normal and convex fuzzy set with a membership function
µA(x) which satisfies the following conditions:

� normality:

µA(x) = 1 for at least one x ∈
�
, (5)

� convexity:

µA(x
′) ≥ µA(x1) ∧ µA(x2), ∀ x′ ∈ [x1, x2], (6)

where ∧ stands for the min operator and µA(x) ∈ [0, 1].
A tilde ‘∼’ will be placed above a symbol if the symbol represents a fuzzy set.

Therefore, P̃ , r̃ and ñ are all fuzzy sets. The membership functions for these fuzzy
sets will be denoted by µ(x | P̃ ), µ(x | r̃) and µ(x | ñ), respectively. A triangular fuzzy
number (TFN) is shown in Fig. 1. The membership function of a TFN is defined by

µ(x | M̃) =
(
m1, f1(y | M̃)/m2,m2/f2(y | M̃),m3

)
, (7)

where m1 ≺ m2 ≺ m3, f1(y | M̃) is a continuous monotone increasing function of
y for 0 ≤ y ≤ 1 with f1(0 | M̃) = m1 and f1(1 | M̃) = m2, and f2(y | M̃) is a
continuous monotone decreasing function of y for 0 ≤ y ≤ 1 with f2(1 | M̃) =
m2 and f2(0 | M̃) = m3. Here µ(x | M̃) is simply denoted by (m1/m2,m2/m3) or
(m1,m2,m3). The parameters m1, m2 and m3 respectively denote the smallest
possible value, the most promising value, and the largest possible value that describes
a fuzzy event.
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Fig. 1. A triangular fuzzy number, M̃ .

Each TFN has linear representations on its left- and right-hand sides, such that
its membership function can be defined as

µ(x | M̃) =





0, x < m1,

(x−m1)/(m2 −m1), m1 ≤ x ≤ m2,
(m3 − x)/(m3 −m2), m2 ≤ x ≤ m3,

0, x > m3.

(8)
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Inverse mappings from any given degree of membership to its corresponding x
values can be defined, one on the left-hand side of the fuzzy number, another on the
right-hand side of this number. Thus, a fuzzy number can always be given by its left
and right representations of each degree of membership:

M̃ =
(
M l(y),Mr(y)

)

=
(
m1 + (m2 −m1)y,m3 + (m2 −m3)y

)
∀ y ∈ [0, 1], (9)

where l(y) and r(y) denote the left and right-hand side representations of a fuzzy
number, respectively. The algebraic operations with triangular fuzzy numbers are
defined in the Appendix.

2. Benefit/Cost Ratio Analysis

The deterministic B/C ratio can be defined as the ratio of the equivalent value of
benefits to the equivalent value of costs. The equivalent values can correspond to
present, annual or future values. The B/C ratio (BCR) is formulated as

BCR = B/C, (10)

where B represents the equivalent value of the benefits associated with the project
and C represents the project’s net cost (Blank and Tarquin, 1989). A B/C ratio
greater than or equal to 1.0 indicates that the project evaluated is economically ad-
vantageous.

In B/C analyses, costs are not preceded by a minus sign. The objective to be
maximized behind the B/C ratio is to select an alternative with the largest net present
value or with the largest net equivalent uniform annual value, because B/C ratios are
obtained from the equations necessary to conduct an analysis on the incremental
benefits and costs. Suppose that there are two mutually exclusive alternatives. In this
case, for the incremental BCR analysis ignoring disbenefits, the following ratios must
be used:

∆B2−1
∆C2−1

=
∆PVB2−1
∆PVC2−1

(11)

or

∆B2−1
∆C2−1

=
∆EUAB2−1
∆EUAC2−1

, (12)

where ∆B2−1 is the incremental benefit of Alternative 2 relative to Alternative 1,
∆C2−1 stands for the incremental cost of Alternative 2 relative to Alternative 1,
∆PVB2−1 denotes the incremental present value of the benefits of Alternative 2 rel-
ative to Alternative 1, ∆PVC2−1 signifies the incremental present value of costs of
Alternative 2 relative to Alternative 1, ∆EUAB2−1 means the incremental equivalent
uniform annual benefit of Alternative 2 relative to Alternative 1, and ∆EUAC2−1 is
the incremental equivalent uniform annual cost of Alternative 2 relative to Alterna-
tive 2.



Fuzzy versus probabilistic benefit/cost ratio analysis. . . 711

Thus, the concept of the B/C ratio includes the advantages of both NPV and
NEUAV analyses. Because it does not require using a common multiple of the alter-
native lives (then the B/C ratio based on an equivalent uniform annual cash flow is
used) and it is a more understandable technique relative to the rate of return analysis
for many financial managers, the B/C analysis can be preferred to other techniques
such as the present value analysis, the future value analysis, and the rate of return
analysis.

2.1. Probabilistic B/C Ratio Analysis

If B and C are normally distributed random variables with means µj , variances
σ2j (j = 1 for B and j = 2 for C), and correlation coefficient ρ, the probability
distribution of RA is defined as follows (Park and Sharp-Bette, 1990): Let RA = B/C.
Consequently, the probability that RA is less than or equal to a is

P (RA ≤ a) = P (B/C ≤ a)

= P (B − aC ≤ 0 |C � 0)P (C � 0)

+ P (B − aC � 0 |C ≺ 0)P (C ≺ 0)

= L(η,−κ;λ) + L(−η, κ;λ), (13)

where

η =
µ1 − µ2a
G(a)

, (14)

κ =
µ2
σ2
, (15)

λ =
σ2a− ρσ1
G(a)

, (16)

G(a) = σ1σ2

(
a2

σ21
− 2ρa
σ1σ2

+
1

σ22

)1/2
, (17)

and L(η, κ;λ) is the standard bivariate normal integral tabulated by the National
Bureau of Standards. Note that if κ→∞, i.e. as P (C � 0)→ 1, eqn. (13) becomes

P (RA ≤ a)→ Φ(−η) (18)

or, with P (C � 0) = 1,

P (RA ≤ a) = Φ(−η), (19)

where

Φ(y) =
1√
2π

∫ y

−∞

e−u
2/2 du. (20)
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For the incremental probabilistic B/C ratio analysis, we have

P (Project 2 is preferred over Project 1)

= P (∆B −∆C ≤ 0 |∆C � 0)P (∆C � 0)

+ P (∆B −∆C ≺ 0 |∆C ≺ 0)P (∆C ≺ 0). (21)

Since we assume normal distributions for both ∆B and ∆C with means µj , variances
σ2j (j = 1 for ∆B and j = 2 for ∆C), a = 1, and correlation coefficient ρ, if any,
eqn. (21) becomes

P (Project 1 ≺ Project 2) = L(η,−κ;λ) +
[
P (∆C ≺ 0)− L(−η, κ;λ)

]

= L(η,−κ;λ) +
[
Φ(−κ)− L(−η, κ;λ)

]
. (22)

2.2. Fuzzy B/C Ratio Analysis

In the case of fuzziness, the steps of the fuzzy B/C analysis are given in the following:

Step 1. Calculate the overall fuzzy measure of the benefit to the cost ratio and
eliminate the alternatives for which we have

B̃/C̃ =




n∑
t=0
B
l(y)
t

(
1 + rr(y)

)−t

n∑
t=0
C
r(y)
t

(
1 + rl(y)

)−t ,

n∑
t=0
B
r(y)
t

(
1 + rl(y)

)−t

n∑
t=0
C
l(y)
t

(
1 + rr(y)

)−t


 ≺ 1̃, (23)

where r̃ is the fuzzy interest rate, 1̃ is (1, 1, 1), and n denotes the crisp useful life.

Step 2. Assign the alternative that has the lowest initial investment cost as the
defender and the next-to-lowest acceptable alternative as the challenger.

Step 3. Determine the incremental benefits and the incremental costs between the
challenger and the defender.

Step 4. Calculate the ∆B̃/∆C̃ ratio, assuming that the largest possible value for the
cash in year t of the alternative with the lowest initial investment cost is less than the
least possible value for the cash in year t of the alternative with the next-to-lowest
initial investment cost.

The fuzzy incremental BCR is

∆B̃/∆C̃=




n∑
t=0

(
B
l(y)
2t −B

r(y)
1t

)(
1+rr(y)

)−t

n∑
t=0

(
C
r(y)
2t −C

l(y)
1t

)(
1+rl(y)

)−t ,

n∑
t=0

(
B
r(y)
2t −B

l(y)
1t

)(
1+rl(y)

)−t

n∑
t=0

(
C
l(y)
2t −C

r(y)
1t

)(
1+rr(y)

)−t


. (24)

If ∆B̃/∆C̃ is greater than or equal to (1, 1, 1), Alternative 2 is preferred.
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In the case of a regular annuity, the fuzzy B̃/C̃ ratio of a single investment
alternative is

B̃/C̃ =

(
Al(y)γ

(
n, rr(y)

)

Cr(y)
,
Ar(y)γ

(
n, rl(y)

)

Cl(y)

)
, (25)

where C̃ is the first cost, Ã is the net annual benefit, and γ(n, r) = ((1 + r)n −
1)/(1 + r)nr).

The ∆B̃/∆C̃ ratio in the case of a regular annuity is

∆B̃/∆C̃ =




(
A
l(y)
2 −A

r(y)
1

)
γ
(
n, rr(y)

)

C
r(y)
2 −Cl(y)1

,

(
A
r(y)
2 −A

l(y)
1

)
γ
(
n, rl(y)

)

C
l(y)
2 −C

r(y)
1


. (26)

Step 5. Repeat Steps 3 and 4 until only one alternative is left. Thus the optimal
alternative is obtained.

The cash-flow set {At = A : t = 1, 2, . . . , n}, consisting of n cash flows, each
of the same amount A, at times 1, 2, . . . , n, with no cash flow at time zero, is called
the equal-payment series. An older name for it is the uniform series, and it has been
called an annuity, since one of the meanings of ‘annuity’ is a set of fixed payments
for a specified number of years. To find the fuzzy present value of a regular annuity
{Ãt = Ã : t = n}, we will use (13). The membership function µ(x | P̃n) for P̃n is
determined by

fni(y | P̃n) = fi(y | Ã)γ
(
n, f3−i(y | r̃)

)
(27)

for i = 1, 2 and γ(n, r) = (1 − (1 + r)−n)/r. Both Ã and r̃ are positive fuzzy
numbers. Here f1(·) and f2(·) stand for the left and right representations of the
fuzzy numbers, respectively.

In the case of a regular annuity, the fuzzy B̃/C̃ ratio can be calculated as follows:

the fuzzy B̃/C̃ ratio of a single investment alternative is

B̃/C̃ =

(
Al(y)γ

(
n, rr(y)

)

FCr(y)
,
Ar(y)γ

(
n, rl(y)

)

FCl(y)

)
, (28)

where FC̃ is the first cost and Ã is the net annual benefit. The ∆B̃/∆C̃ ratio in
the case of a regular annuity is

∆B̃/∆C̃ =




(
A
l(y)
2 −A

r(y)
1

)
γ
(
n, rr(y)

)

FC
r(y)
2 −FCl(y)1

,

(
A
r(y)
2 −A

l(y)
1

)
γ
(
n, rl(y)

)

FC
l(y)
2 −FC

r(y)
1


. (29)

Up to this point, we assumed that the alternatives had equal lives. When the
alternatives have useful lives different from the analysis period, a common multiple
of the alternative lives (CMALs) is calculated for the analysis period. Frequently, a
CMALs for the analysis period hardly seems realistic (e.g. CMALs is (7, 13) = 91
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years). Instead of conducting an analysis based on the present value method, it is
appropriate to compare the annual cash flows computed for the alternatives based
on their own service lives. In the case of unequal lives, the following fuzzy B̃/C̃ and

∆B̃/∆C̃ ratios will be used:

B̃/C̃ =

(
PVBl(y)β

(
n, rl(y)

)

PVCr(y)β
(
n, rr(y)

) ,
PVBr(y)β

(
n, rr(y)

)

PVCl(y)β
(
n, rl(y)

)
)
, (30)

∆B̃/∆C̃ =

(
PVB

l(y)
2 β

(
n, rl(y)

)
− PVBr(y)1 β

(
n, rr(y)

)

PVC
r(y)
2 β

(
n, rr(y)

)
− PVCl(y)1 β

(
n, rl(y)

) ,

PVB
r(y)
2 β

(
n, rr(y)

)
− PVBl(y)1 β

(
n, rl(y)

)

PVC
l(y)
2 β

(
n, rl(y)

)
− PVCr(y)1 β

(
n, rr(y)

)
)
, (31)

where PVB stands for the present value of benefits, PVC is the present value of costs
and β(n, r) = (1 + n)ni/((1 + r)n − 1).
A numeric application of the fuzzy B̃/C̃ ratio analysis to manufacturing tech-

nologies can be found in (Kahraman et al., 2000).

3. Ranking Fuzzy Numbers

The fuzzy B/C ratio method requires ranking fuzzy outcomes. There are a number of
methods that are devised to rank mutually exclusive projects such as Chang’s method
(1981), Jain’s method (1976), Dubois and Prade’s method (1983), Yager’s method
(1980), or Baas and Kwakernaak’s method (1977). However, certain shortcomings of
some of the methods were reported in (Bortolan and Degani, 1985; Chen, 1985; Kim
and Park, 1990). Because the ranking methods might give different ranking results,
they must be used together to obtain the true rank. Chiu and Park (1994) compare
some ranking methods by using a numerical example, and determine which methods
give the same or very close results to one another. In their paper, several dominance
methods are selected and discussed. Most methods are tedious in graphic manipulation
and require complex mathematical calculations. Chiu and Park’s weighting method
as well as Kaufmann and Gupta’s (1988) method are the methods giving the same
rank for the considered alternatives, are easy to calculate and require no graphical
representation. Therefore these two methods will be outlined in the following and
used in the application section.

Chiu and Park’s (1994) weighted method for ranking TFNs with parameters
(a, b, c) is formulated as

1

3
(a+ b+ c) + wb,

where w is a value determined by the nature and the magnitude of the most promising
value.
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Kaufmann and Gupta (1988) suggest three criteria for ranking TFNs with pa-
rameters (a, b, c). The dominance sequence is determined according to the priority of:

1. comparing the ordinary number (a+ 2b+ c)/4,

2. comparing the mode (the corresponding most promise value), b, of each TFN,

3. comparing the range, c–a, of each TFN.

The preference of projects is determined by the amount of their ordinary numbers.
The project with a larger ordinary number is preferred. If the ordinary numbers are
equal, the project with a larger most promising value is preferred. If projects have the
same ordinary numbers and most promising values, the project with a larger range is
preferred.

4. Conclusions

An effective probabilistic risk analysis requires substantial amounts of both internal
and external data. These data, such as estimates of the cash flow, the cost of capital,
and economic life, are obtained by updating previous forecasts or from internal histor-
ical record files. External future information in many cases has to be collected through
other, unstructured, inconsistent and less reliable channels. Without a supportive in-
formation system, it is very difficult to carry out any sophisticated or meaningful
risk analysis. As an alternative to the probabilistic B/C ratio, a fuzzy benefit/cost
ratio analysis was developed. Fuzzy sets present an alternative to having to use exact
amounts for the parameters used in the justification process. This prevents us from
making some erroneous estimates of the parameters.
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Appendix

One of the most basic concepts of fuzzy set theory which can be used to generalize
crisp mathematical concepts to fuzzy sets is the extension principle. Let X be the
Cartesian product of universes, X = X1 × · · · × Xr, and Ã1, . . . , Ãr be r fuzzy
sets in X1, . . . , Xr, respectivelty. Let f be a mapping from X to a universe Y ,
y = f(x1, . . . , xr). Then the extension principle allows us to define a fuzzy set B̃ in
Y by

B̃ =
{
(y, µ

B̃
(y)) | y = f(x1, . . . , xr), (x1, . . . , xr) ∈ X

}
, (A1)

where

µ
B̃
(y) =





sup
(x1,...,xr)∈f−1(y)

min
{
µ
Ã1
(x1), . . . , µÃr

(xr)
}
if f−1(y) 6= ∅,

0 otherwise,
(A2)

f−1 being the inverse of f .

Assume that P̃ = (a, b, c) and Q̃ = (d, e, f), where a, b, c, d, e, f are all
positive numbers. With this notation and by the extension principle, some of the
extended algebraic operations of triangular fuzzy numbers are expressed as follows:

Changing Sign:

−(a, b, c) = (−c,−b,−a) (A3)

or

−(d, e, f) = (−f,−e,−d). (A4)
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Addition:

P̃ ⊕ Q̃ = (a+ d, b+ e, c+ f) (A5)

and

k ⊕ (a, b, c) = (k + a, k + b, k + c) (A6)

or

k ⊕ (d, e, f) = (k + d, k + e, k + f) (A7)

if k is an ordinary number (a constant).

Subtraction:

P̃ − Q̃ = (a− f, b− e, c− d) (A8)

and

(a, b, c)− k = (a− k, b− k, c− k) (A9)

or

(d, e, f)− k = (d− k, e− k, f − k) (A10)

if k is an ordinary number.

Multiplication:

P̃ ⊗ Q̃ = (ad, be, cf) (A11)

and

k ⊗ (a, b, c) = (ka, kb, kc) (A12)

or

k ⊗ (d, e, f) = (kd, ke, kf) (A13)

if k is an ordinary number.

Division:

P̃ � Q̃ = (a/f, b/e, c/d). (A14)


