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COMPUTING GENERALIZED INVERSE SYSTEMS

USING MATRIX PENCIL METHODS

Andras VARGA∗

We address the numerically reliable computation of generalized inverses of ra-
tional matrices in descriptor state-space representation. We put particular em-
phasis on two classes of inverses: the weak generalized inverse and the Moore-
Penrose pseudoinverse. By combining the underlying computational techniques,
other types of inverses of rational matrices can be computed as well. The main
computational ingredient to determine generalized inverses is the orthogonal
reduction of the system matrix pencil to appropriate Kronecker-like forms.
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1. Introduction

Inverse systems have many important applications in areas such as control theory,
filtering and coding theory. The computation of the so-called zero initial state system
inverses for linear time-invariant state-space systems is essentially equivalent to de-
terming generalized inverses of the associated transfer-function matrices. For square
and invertible systems, the computation of inverses can be performed by explicit for-
mulas either in the standard state-space or in a descriptor system formulation. For
non-square systems, explicit formulas can be employed only in the full-rank case to
determine left or right inverses, provided that the system feedthrough matrix has full
rank too. However, these direct formulas do not allow to arbitrarily choose the spuri-
ous poles which appear in the computed left or right inverses. In the more general case
of systems with transfer-function matrices of arbitrary ranks, no explicit formulas can
be used.

In this paper we address the numerically reliable computation of generalized in-
verses of rational matrices by using orthogonal matrix pencil reduction techniques.
We put particular emphasis on the computation of two classes of inverses: the weak
generalized inverse, also known as the (1,2)-inverse, and the Moore-Penrose pseudoin-
verse. The (1,2)-inverses can be computed using a numerically reliable approach based
on the reduction of the system matrix pencil to a particular Kronecker-like form. The
computation of the Moore-Penrose pseudoinverse is performed by employing full-rank
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factorizations resulting from appropriate column/row compressions with all-pass fac-
tors. By combining the underlying computational techniques, other types of inverses
of rational matrices can be computed as well. We present some numerical examples to
illustrate our methods, and report on recently developed MATLAB software devised
by the author to compute some generalized inverses.

2. Generalized Inverses

Consider a p×m rational matrix G(λ) with real coefficients. Throughout the paper
we assume that rankG(λ) = r over rationals (i.e., G(λ) has rank r for almost
all values of λ). The zeros of G(λ) are those values of λ (finite or infinite) where
G(λ) loses its maximal rank r. The poles of G(λ) are those values of λ (finite or
infinite) where the elements of G(λ) become infinite. We call G(λ) proper if it has
only finite zeros (i.e., G(∞) is finite). In a system theoretical setting, G(λ) can be
interpreted as the transfer-function matrix either of a continuous-time system, if λ
is the complex variable s appearing in the Laplace transform, or of a discrete-time
system, if λ is the complex variable z appearing in the Z-transform. Accordingly,
we call G(λ) stable if all its poles lie in the appropriate stability domain (i.e., the
open left half complex plane for a continuous-time system or the interior of the unit
circle for a discrete-time system). Depending on the type of the system, the conjugate
of G(λ) is the matrix G∼(λ) defined as G∼(s) = GT (−s) for a continuous-time
system or G∼(z) = GT (1/z) for a discrete-time system. We say that G(λ) is all-pass
if G∼(λ)G(λ) = Im. A stable all-pass matrix is called an inner matrix.

Let X(λ) be an m×p real rational matrix. Consider the following Moore-Penrose
relations (see, e.g., (Ben Israel and Greville, 1976)):

1) G(λ)X(λ)G(λ) = G(λ),

2) X(λ)G(λ)X(λ) = X(λ),

3) G(λ)X(λ) = (G(λ)X(λ))∼,

4) X(λ)G(λ) = (X(λ)G(λ))∼.

The well-known Moore-Penrose pseudoinverse X(λ) = G#(λ) is unique and satisfies
all the four Moore-Penrose relations. Depending on the interpretation of λ, for the
same rational matrix G(λ) we have two different pseudoinverses G#(s) and G#(z)
for a continuous-time and a discrete-time system, respectively.

In solving practical problems, the uniqueness of the Moore-Penrose pseudoinverse
is rather a disadvantage, since no flexibility is provided, for example, in assigning the
poles of the corresponding inverse system to desired locations. Therefore, often other
types of generalized inverses are preferred. The weak generalized inverse X(λ) =
G+(λ) satisfies only the first two Moore-Penrose conditions and is therefore called a
(1,2)-inverse. Weak generalized inverses are useful in solving rational matrix equations
or in computing inner-outer factorizations (Varga, 1998).

In what follows we will use the notation G+(λ) for all types of inverses satisfying
one or more Moore-Penrose conditions. Of particular importance for applications are
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(Ben Israel and Greville, 1976; Campbell and Meyer, 1991): the (1)-inverse to solve
systems of equations with rational matrices, the (1,3)-inverse to compute least-squares
solutions of rational matrix equations, the (1,4)-inverse, also known as the minimum
norm inverse, to compute minimum norm solutions of matrix equations. With this
nomenclature, the Moore-Penrose pseudoinverse is an (1,2,3,4)-inverse. The left and
right inverses, frequently used in the control literature, are particular (1,2)-inverses
of full column rank or full row rank matrices, respectively.
Note. Our approach to determine generalized inverses relies on the standard system
inversion concepts widely used in the control literature. Therefore, to define the gen-
eralized inverses using the Moore-Penrose conditions, we will not assume that G(λ)
has constant rank for all λ (as is done elsewhere (Sontag, 1980)). It follows that the
generalized inverses computed by our methods satisfy pointwise conditions 1–4 (or
part of them) for almost all values of λ, except a finite set of points, which includes
certainly the poles and zeros of G(λ).

3. Computation of Weak Inverses

Weak or (1,2)-inverses of proper rational matrices appear frequently in control, filter-
ing and coding applications. An important class of (1,2)-inverses consists of the left
and right inverses. Their computations and properties drew considerable attention in
the control literature (see, e.g., (Wang and Davison, 1973) and the references cited
therein). The properties of more general weak inverses were studied in (Rakowski,
1991) (for an application of these concepts to solving differential-algebraic equations
see also (Campbell and Rakowski, 1994)).

In this section we consider the most general case of computing the (1,2)-inverse of
an arbitrary rank rational matrix G(λ), without the restriction that G(λ) is proper.
Thus, the proposed approach is applicable to a general improper G(λ) and, in partic-
ular, to polynomial matrices. Important associated problems are the computation of
stable (1,2)-inverses (whenever they exist) or of least McMillan degree (1,2)-inverses.
A problem yet to be solved is the computation of stable (1,2)-inverses with the least
McMillan degree.

Let G(λ) be a real rational matrix of rank r, having an n-th order regular
descriptor representation G, denoted by G := (A− λE,B,C,D), which satisfies

G(λ) = C(λE −A)−1B +D.

We assume that the descriptor representation of G(λ) is minimal, so that n is the
least integer for which the above relation holds. Let S(λ) be the system pencil matrix
associated with the descriptor system G = (A − λE,B,C,D),

S(λ) =

[
A− λE B

C D

]
.

From the straightforward formula


A− λE 0

0 G(λ)


=




In 0

−C(A− λE)−1 Ip


S(λ)



In −(A− λE)

−1B

0 Im



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it follows that S(λ) has rank n + r over rationals. Further, the computation of
(1,2)-inverses of G(λ) can be performed as

G+(λ) =
[
0 Im

]
S+(λ)

[
0

Ip

]
, (1)

where S+(λ) is an (1,2)-inverse of S(λ). By using this formula, the computation of
the (1,2)-inverse of any rational matrix can be accomplished by determining the (1,2)-
inverse of the associated system pencil. Note that if m = p = r, then the (1,2)-inverse
of S(λ) is the ordinary inverse of this matrix, and thus (1) represents the descriptor
inverse of an invertible rational matrix. Further, if D is invertible, then the inverse
system can be alternatively expressed as

G
−1 := (A−BD−1C − λE, −BD−1, D−1C, D−1).

In the general case, we will use the following result to compute (1,2)-inverses (Ben
Israel and Greville, 1976):

Lemma 1. Let S(λ) be a rational matrix of rank k and let Pl and Pr, permutation
matrices such that

PlS(λ)Pr =



S11(λ) S21(λ)

S21(λ) S22(λ)


 ,

where rankS11(λ) = k. Then an (1,2)-inverse of S(λ) is

S+(λ) = Pr



S−111 (λ) 0

0 0


Pl.

The computation of S+(λ) can be performed by reducing S(λ) to an appropriate
Kronecker-like form from which a regular sub-pencil of maximum rank k = n + r
can easily be separated. Let Q and Z be orthogonal matrices to reduce S(λ) to the
Kronecker-like form

S(λ) := QS(λ)Z=

[
S11 S12(λ)

0 S22

]

=




BrAr − λErAr,reg − λEr,reg Ar,l − λEr,l

0 0 Areg − λEreg Areg,l − λEreg,l

0 0 0 Al − λEl

0 0 0 Cl


 ,

where the regular part Areg−λEreg contains the finite and infinite system zeros, the
pair (Ar−λEr, Br) is controllable with Er nonsingular, and the pair (Cl, Al−λEl) is
observable with El nonsingular (see (Varga, 1996) for how to obtain such a Kronecker-
like form). The controllability of the pair (Ar − λEr, Br) and the observability of



Computing generalized inverse systems using matrix pencil methods 1059

the pair (Cl, Al − λEl) are the consequences of full row rank and full column rank
conditions involving these pairs.

Since

rankS(λ) = rankS12(λ),

by applying Lemma 1 with an obvious choice of the permutation matrices, we obtain
an (1,2)-inverse of G(λ) defined by the descriptor system

G
+ := (A12 − λE12, B1, C2, 0),

where

A12 − λE12 :=S12(λ),

[
B1

B2

]
:=Q

[
0

Ip

]
, [C1 C2] :=[0 − Im]Z.

The eigenvalues of the inverse are

Λ(A12, E12) = Λfixed ∪ Λspurious,

where Λfixed = Λ(Areg, Ereg) are the eigenvalues of the regular part thus containing
the system zeros, and Λspurious = Λ(Ar, Er)∪Λ(Al, El) are the finite “spurious” poles
originating from the column/row singularities of G(λ).

While the system zeros are always among the poles of the inverse, the spurious
poles can be chosen arbitrarily. To show this, consider two transformation matrices
U and V of the form

U =




I 0 0 K1

0 I 0 K2

0 0 I K3

0 0 0 I


 :=

[
I K

0 I

]
,

V =




I F1 F2 F3

0 I 0 0

0 0 I 0

0 0 0 I


 :=

[
I F

0 I

]
.

Then the transformed system pencil is given by

Ŝ(λ) := US(λ)V =

[
S11 Ŝ12(λ)

0 S22

]

=




Br Ar +BrF1 − λEr Ar,reg +BrF2 − λEr,reg Ar,l +BrF3 +K1Cl − λEr,l

0 0 Areg − λEreg Areg,l +K2Cl − λEreg,l

0 0 0 Al +K3Cl − λEl

0 0 0 Cl


 , (2)
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where Ŝ12(λ) = S12(λ) + S11F +KS22. The inverse is defined by

G
+ := (Â12 − λÊ12, B̂1, Ĉ2, 0),

where

Â12 − λÊ12 := A12 + S11F +KS22 − λE12,

[
B̂1

B̂2

]
:= UQ

[
0

Ip

]
=

[
B1 +KB2

B2

]
,

[ Ĉ1 Ĉ2 ] := [ 0 − Im ]ZV = [ C1 C2 + C1F ].

(3)

An important aspect in some applications is to obtain inverses with the spurious
poles lying in a “good” domain

�
g of the complex plane (e.g., stable or antistable

domain). For the transformed pencil Ŝ(λ), the spurious poles of the inverse are

Λspurious = Λ(Ar +BrF1, Er) ∪ Λ(Al +K3Cl, El).

Thus, with F2 = 0, F3 = 0, K1 = 0, K2 = 0 and by choosing F1 such that
Λ(Ar + BrF1, Er) ⊂

�
g and K3 such that Λ(Al + K3Cl, El) ⊂

�
g , all spurious

poles can be moved to
�
g . This is always possible because the pair (Ar−λEr, Br) is

controllable and the pair (Cl, Al−λEl) is observable. Thus our approach provides, in
the most general setting, a complete solution to the stable left/right inverse problems
solved in (Antsaklis, 1978).

Another interesting aspect is the computation of inverses with the least McMil-
lan degree. This aspect can be addressed by our approach in the following way. We
can choose F and/or K to make some of spurious poles of G+(λ) unobservable or
uncontrollable. For example, for a fixed K, choosing F such that all spurious poles
corresponding to the pair (Ar + BrF1, Er) become unobservable is the disturbance
rejection (or output-nulling) problem (DRP) (Wonham, 1979). Similarly, cancelling
the spurious poles of the pair (Al +K3Cl, El) is the dual of a DRP (unknown-input
problem). The cancellation of all spurious poles is usually not possible, but to find
the (1,2)-inverse with the least McMillan degree, we can always cancel a maximum
number of poles by an appropriate choice of F and K. The computational problem
is essentially that of finding an (A,B)-invariant subspace of least dimension which
contains a given subspace (Morse, 1976) and for whose solution reliable algorithms
can be devised. A much more difficult problem is to compute the least McMillan
degree inverses with the additional constraint that the spurious poles lie in a given
domain

�
g . As far as we know, there is no complete solution to this problem, this

being equivalent to the difficult question of stabilizing a linear system via constant
gain output feedback (see also (Wolovich et al., 1977)).

An important advantage of our computational approach to determine the (1,2)-
inverse is that a descriptor representation of the inverse is determined without explic-
itly inverting the system matrix S(λ). The reduction to the Kronecker-like form can
be performed by using a structure preserving numerically stable reduction algorithm
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similar to that proposed in (Misra et al., 1994) (see also (Varga, 1996)). The eigen-
value placement problems can be solved by using stabilization or pole assignment
techniques for descriptor systems as those proposed in (Varga, 1995). Note that this
computation must be performed only if the spurious eigenvalues must lie in a specific
region

�
g of the complex plane, as, for instance, in the stability domain as necessary

in computing certain inner-outer factorizations (Varga, 1998; Varga and Katayama,
1998).

4. Computation of Pseudoinverses

The numerical computation of Moore-Penrose pseudoinverses was only recently ad-
dressed in the control literature (Oară and Varga, 2000). A numerically reliable
approach to compute pseudoinverses of rational matrices can be devised along the
lines of the recently developed general methods to compress rational matrices to
full row/column-rank matrices by using left/right multiplication with inner factors.
This computation is the main part of the recently developed algorithms to compute
inner-outer factorizations of rational matrices (Oară and Varga, 1999; 2000). By us-
ing “orthogonal” compression techniques with inner factors, the computation of the
Moore-Penrose pseudoinverse of a given G(λ) can be performed as follows:

1. Compute the full row-rank factorization

G(λ) = U(λ)



G1(λ)

O


 ,

where G1(λ) has full row-rank and U(λ) is square inner (U
∼(λ)U(λ) = Ip).

2. Compute the full row-rank factorization

GT1 (λ) = V
T (λ)



GT2 (λ)

O


 ,

where G2(λ) is invertible and V (λ) is square inner (V
∼(λ)V (λ) = Im).

Note. We have now the overall “orthogonal” decomposition of G(λ) as

G(λ) = U(λ)



G2(λ) O

O O


V (λ). (4)

3. Compute

G#(λ) := V ∼(λ)



G−12 (λ) O

O O


U∼(λ). (5)
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This computational approach employing the recent compression techniques developed
in (Oară and Varga, 1999; 2000) is applicable to an arbitrary rank rational matrix
G(λ) regardless of whether it is polynomial, proper or improper. Furthermore, G(λ)
can have stable or unstable poles and zeros, and even poles and zeros on the imaginary
axis or on the unit circle.

The main computations in this approach are the row compressions performed in
Steps 1 and 2. The methods proposed in (Oară and Varga, 1999; 2000) to perform this
compression are based on reducing the system pencil S(λ) to a particular Kronecker-
like form which isolates the left singular structure of G(λ). Then the compression is
achieved by solving for the stabilizing solution a standard algebraic Riccati equation
of order n`, where n` is the sum of the left minimal indices of G(λ). Note that n` is
usually much smaller than the order n of a minimal descriptor realization of G(λ).

5. Computation of Other Type of Inverses

In this section we show how we can compute (1,2,3)- and (1,2,4)-inverses by combining
the underlying techniques to determine (1,2)- and (1,2,3,4)-inverses. We also discuss
shortly a general approach to determining inverses using row/column compression
techniques. For notational convenience, in this section we will denote by G simply a
rational matrix G(λ).

In the previous section we discussed compression techniques of rational matrices
by premultiplying them with all-pass factors. The following procedure can be used
to compute a (1,2,3)-inverse of a given G by combining row compression with inner
factors and (1,2)-inverse computation:

1. Compute the full row-rank factorization

G = U



R

O


 ,

where R has full row-rank and U is square inner.

2. Compute R+, a (1,2)-inverse (right inverse) of R, using the approach of Sec-
tion 3.

3. Compute

G+ :=
[
R+ O

]
U∼.

It is easy to check that G+ is a (1,2,3)-inverse. Indeed,

GG+ = U



R

O



[
R+ O

]
U∼ = U



I O

O O


U∼
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and the first three Moore-Penrose relations are satisfied. To compute a (1,2,4)-inverse,
the above procedure can be applied to the transposed matrix GT .

An alternative approach to calculation of generalized inverses can be devised us-
ing exclusively row/column compression techniques. With a row compression followed
by a column compression, we can determine a full rank factorization of G in the form

G = L



R 0

0 0


T (6)

with L, T and R being invertible rational matrices. This decomposition of G allows
us to determine several inverses with a specific choice of the transformation matrices
L and T . In general, a (1,2)-inverse of G can simply be computed as

G+ = T−1



R−1 0

0 0


L−1.

If we use an inner matrix L for the row compression and a general matrix T for
column compression, then the corresponding inverse G+ is a (1,2,3)-inverse, while
for general L and inner T the corresponding inverse is a (1,2,4)-inverse. If L and
T are inner, then the inverse G+ is the Moore-Penrose pseudoinverse.

Compression techniques with inner matrices were recently developed in (Oară
and Varga, 1999; 2000). For compression with general matrices, methods proposed in
(Oară, 2000) can be employed. These methods rely also on pencil algorithms using the
equivalent descriptor representation of the rational matrix G. A particular advantage
of this approach is the flexibility in choosing the poles and zeros of the compressing
factor.

6. Numerical Issues

All presented computational methods to determine a generalized inverse of a rational
matrix G(λ) have overall computational complexity O(n3), where n is the order
of the underlying descriptor representation G. The main advantage of using pencil
techniques to solve computational problems involving rational matrices is that the
whole arsenal of well-developed linear algebra techniques to manipulate matrix pencils
can be employed to devise numerically reliable algorithms for these rather complex
problems. In contrast, rational matrix manipulations using polynomial techniques are
generally considered to be numerically less robust than methods based on state-space
representations. It is to be expected that all presented techniques can be extended
to more general systems, as, for instance, periodic time-varying and even general
time-varying systems.
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For the computation of weak generalized inverses with arbitrarily assigned spu-
rious poles and for the computation of Moore-Penrose pseudoinverses,Matlab func-
tions are available in a recently developed Descriptor Systems toolbox (Varga,
2000). The main functions rely on a collection of mex-functions providing easy-to-use
gateways to highly optimized Fortran codes from the SLICOT library (Benner et al.,
1999) developed within the NICONET project.1 The computational layer of basic
mex-functions provides efficient and numerically robust computational tools to per-
form reductions to Kronecker-like forms, reordering of generalized real Schur forms,
balancing of descriptor systems, minimal realization of rational matrices, and other
computations.

7. Example

Consider the rational matrix from (Wang and Davison, 1973),

G(s) =




1

s+ 2

1

s+ 1

s+ 3

s2 + 3s+ 2

s

s+ 1

s2 + 3s

s2 + 3s+ 2
0




.

This matrix has full column rank and no zeros. A state space realization for G(s) is
given by

A =




−3 −2 0

1 0 0

0 0 −1


 , B =




1 0

0 0

0 1


 ,

C =




1 1 1

1 3 −1

0 −2 0


 , D =




0 0

0 1

1 0


 .

For G(s) above, we compute three left-inverses with particular properties and the
unique Moore-Penrose pseudoinverse.

We determine the left-inverses using the approach to compute (1,2)-inverses of
Section 3. For notation, we also refer to this section. To allow for an easy reproducibil-
ity of the results, we illustrate our method by using non-orthogonal transformation

1 see http://www.win.tue.nl/niconet/niconet.html
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matrices Q and Z to obtain the Kronecker-like form of the system pencil S(λ) with
“nice” numbers. For the transformation matrices

U =

[
I5 K

O 1

]
, Q =




0 0 0 0 0 1

0 0 0 0 1 0

1 0 0 0 0 −1

1 1 0 0 0 −1

1 1 1 0 −1 −1

0 0 0 1 0 0




,

Z =




0 0 1 0 0

0 0 −1 1 0

0 0 0 −1 1

1 0 0 0 0

0 1 0 0 0




, V = I,

where

K =

[
K2

K3

]
:=




k1

k2

k3

k4

k5



,

we obtain the reduced pencil Ŝ(λ) = UQS(λ)ZV in (2) such that

Ŝ(λ)=




Areg Areg,l +K2Cl

O Al +K3Cl − λI

O Cl


=




1 0 2 −2 k1

0 1 −2 4 k2 − 1

0 0 −3− λ 0 k3

0 0 −2 −λ k4

0 0 0 −3 −λ+ k5

0 0 0 0 1




.
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From (3) we obtain



B̂1

B̂2


 =




k1 0 1

k2 1 0

k3 0 −1

k4 0 −1

k5 −1 −1

1 0 0




, Ĉ2 =

[
−1 0 0 0 0

0 −1 0 0 0

]
.

The (1,2)-inverse corresponding to Ŝ(λ) has a standard state-space realization
(Ainv, Binv, Cinv, Dinv) of order 3, with

Ainv =




−3 0 k3

−2 0 k4

0 −3 k5


 , Binv =




k3 0 −1

k4 0 −1

k5 −1 −1


,

Cinv =

[
2 −2 k1

−2 4 k2 − 1

]
, Dinv =

[
k1 0 1

k2 1 0

]
.

This realization can be easily retrieved from the particular forms of Ŝ(λ), B̂1 and Ĉ2.

With K = 0, the corresponding (1,2)-inverse is

G+(s) =




0 0
s2 + 3s+ 2

s(s+ 3)

0
s+ 1

s
−
s+ 1

s2




and has McMillan degree 3. This inverse is not stable, having poles in the origin.

With

K =
[
0 0 0 2 −5

]T

we can assign the spurious poles of the inverse to {−2,−3,−3}. The corresponding
stable (1,2)-inverse

G+(s) =




−4s

(s+ 2)(s+ 3)

4

(s+ 2)(s+ 3)

s3 + 8s2 + 27s+ 28

(s+ 2)(s+ 3)2

13s+ 6

(s+ 2)(s+ 3)

s2 + 6s− 2

(s+ 2)(s+ 3)
−
s2 + 22s+ 35

(s+ 2)(s+ 3)2




has McMillan degree 3.
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A stable left inverse of the least McMillan order can be obtained by choosing

K =

[
−
2

3
1
4

3
1 0

]T
.

The corresponding inverse is

G+(s) =




−
2

3

s

s+ 1

2

3

1

s+ 1

1

3

3 s+ 5

s+ 1

1

3

10 s+ 3 s2 + 3

s2 + 2 s+ 1

1

3

3 s2 + 6 s− 1

s2 + 2 s+ 1
−
2

3

3 s+ 5

s2 + 2 s+ 1




and has McMillan degree 2. This is the same inverse as that of (Wang and Davison,
1973, p.224), corresponding to the free parameters set to b01 = 0 and b02 = 1.
We also computed the unique Moore-Penrose pseudoinverse of G(s)

G#(s)=




−s5−3s4+s3+9s2+6s

p(s)

s4+3s3−s2−9s−6

p(s)

s3+8s2+27s+28

p(s)

s6+s5−10s4−11s3+2s2+6s+3

p(s)

−s5+13s3+9s2−12s−9

p(s)
−

−s5+8s3+4s2−3s

p(s)


,

where p(s) = s6 − 11s4 + 15s2 − 9. G#(s) has McMillan degree 6 and is unstable.

8. Conclusions

We have proposed numerically reliable methods to compute two classes of general-
ized inverses of rational matrices: the (1,2)- or weak inverses and the Moore-Penrose
pseudoinverses. The proposed methods are completely general, being applicable to ra-
tional matrices of arbitrary ranks regardless of whether they are polynomial, proper
or improper. Particular emphasis has been put on reliably computing (1,2)-inverses,
because of their relevance to many practical applications. The proposed approach pro-
vides flexibility to cope with various conditions on the spurious poles of the computed
(1,2)-inverses. For instance, a stable (1,2)-inverse can easily be computed whenev-
er exists. The computation of other types of inverses has been also addressed, by
combining “orthogonal” compression techniques using inner factors with left/right
inverse computation. For the proposed methods, robust numerical software has been
implemented.

Interesting open computational problems in the context of determining various
types of inverses are posed by the exploitation of intrinsic parametric freedom. Two
aspects could be relevant for control applications: (1) determining particular inverses
with special properties (e.g., a minimal Mc-Millan degree or stable with minimal
Mc-Millan degree), and (2) generating the whole class of inverses by exploiting the
parametrizations of inverses (see, e.g., (Campbell and Meyer, 1991)). In this paper we
partially addressed only the first aspect. However, a detailed elaboration of algorithms
to compute least order inverses is still necessary.
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