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EFFICIENT NUMERICAL ALGORITHMS FOR

BALANCED STOCHASTIC TRUNCATION†

Peter BENNER∗, Enrique S. QUINTANA-ORTÍ∗∗

Gregorio QUINTANA-ORTÍ∗∗

We propose an efficient numerical algorithm for relative error model reduction
based on balanced stochastic truncation. The method uses full-rank factors of
the Gramians to be balanced versus each other and exploits the fact that for
large-scale systems these Gramians are often of low numerical rank. We use
the easy-to-parallelize sign function method as the major computational tool
in determining these full-rank factors and demonstrate the numerical perfor-
mance of the suggested implementation of balanced stochastic truncation model
reduction.
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1. Introduction

Consider the Transfer Function Matrix (TFM) G(s) = C(sI − A)−1B +D and the
associated stable but not necessarily minimal realization of a linear time-invariant
(LTI) system,

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) +Du(t), t ≥ 0
(1)

with A ∈ � n×n , B ∈ � n×m , C ∈ � p×n , and D ∈ � p×m . We assume that A is
stable, i.e., the spectrum of A, denoted by Λ(A), is contained in the open left half
plane. This implies that the system (1) is stable, that is, all the poles of G(s) have
strictly negative real parts. The number of state variables, n, is said to be the order
of the system. Moreover, for the method considered in this paper we need to assume
that 0 < p ≤ m and rank (D) = p, which implies that G(s) must not be strictly
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proper. For strictly proper systems, the method can be applied by introducing an

ε-regularization by adding an artificial matrix D =
[

εIp 0
]

(Glover, 1986).

Here we are interested in finding a reduced-order LTI system,

ẋr(t) = Arxr(t) +Brur(t), t > 0, xr(0) = x
0
r ,

yr(t) = Crxr(t) +Drur(t), t ≥ 0
(2)

of order r, r � n such that the TFM Gr(s) = Cr(sIr − Ar)−1Br + Dr approxi-
mates G(s).

One way to distinguish between different model reduction techniques is to specify
in which way the reduced-order model approximates the original system. Absolute
error methods try to minimize ‖∆a‖ := ‖G−Gr‖ for some system norm. The most
popular methods in this area are related to balanced realizations (Moore, 1981). These
methods yield a priori bounds on the H∞-norm of ∆a which is defined as

‖H‖∞ = ess sup
ω∈ �

σmax
(

H(ω)
)

, (3)

where H is a stable, rational matrix function,  :=
√
−1, and σmax(M) is the largest

singular value of the matrix M . That is, basically, ‖H‖∞ is the “maximum” of the
spectral norms of the matrices H(ω) evaluated at each frequency ω. Hence, ‖∆a‖∞
only gives the worst-case deviation of the reduced-order model from the original sys-
tem. There is no information on where this maximum deviation occurs available. For
example, balanced truncation (Moore, 1981; Tombs and Postlethwaite, 1987) tends
to approximate high frequencies very well (limω→∞∆a(ω) = 0), while singular per-
turbation approximation (Liu and Anderson, 1986) has zero steady state error, i.e.,
G(0) = Gr(0), and good approximation properties at low frequencies.

It is often desirable that the reduced-order systems have uniform approximation
properties over the whole frequency range 0 ≤ ω ≤ ∞ or give a particularly good
approximation at prescribed frequencies. For example, this is the case if the LTI sys-
tem describes a high-order controller that should perform well at practically relevant
frequencies. This requirement can be satisfied by frequency-weighted model reduction
methods and, as a special case, by relative error methods. Relative error methods
attempt to minimize the relative error ‖∆r‖∞, defined implicitly by G−Gr = G∆r.
Among these, the balanced stochastic truncation (BST) methods (Desai and Pal,
1984; Green, 1988a; Varga and Fasol, 1993) and their relatives are particularly pop-
ular. Due to their computational cost and the involved calculations, these methods
have been used so far only for systems of modest size, i.e., models of state-space di-
mension up to order n = 100. With the recently proposed Fortran 77 implementation
in the Subroutine Library in Control Theory – SLICOT1 (Varga, 1999), systems with
a couple of hundreds of state-space variables may be treated on modern desktop com-
puters. Here we focus on a numerically reliable and efficient implementation of BST
which can be applied to systems with up to a couple of thousands of states using
high-performance computing. It should be noted, though, that this method can also

1Available from http://www.win.tue.nl/niconet/NIC2/slicot.html
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be applied to and is very efficient for problems of smaller size. Note that the state
transition matrix A is considered to be a dense matrix; an algorithm that exploits
sparsity for a BST method is currently under development.

BST is a model reduction method based on truncating a balanced stochastic
realization. Such a realization is obtained as follows. Define Φ(s) = G(s)GT (−s),
and let W be a square minimum phase right spectral factor of Φ, satisfying Φ(s) =
W T (−s)W (s). As D has full row rank, E := DDT is positive definite and a mini-
mal state-space realization (AW , BW , CW , DW ) of W is given by (Anderson, 1967a;
1967b)

AW = A, BW = BD
T + PGC

T , CW = E
− 1
2 (C −BTWXW ), DW = E

1
2 .

Here PG is the controllability Gramian of G(s) given by the solution of the Lyapunov
equation

AP + PAT +BBT = 0, (4)

while XW is the observability Gramian of W (s) obtained as the stabilizing solution
of the algebraic Riccati equation (ARE)

(A−BWE−1C)TX +X(A−BWE−1C)+XBWE−1BTWX +CTE−1C = 0.(5)
That is, for this particular solution,

Â := A−BWE−1C +BWE−1BTWXW (6)

is stable. The Gramians PG, XW are symmetric positive (semi-)definite and ad-
mit decompositions PG = S

TS and XW = R
TR, which are usually referred to as

Cholesky decompositions (which they are in a strict sense only if PG and XW are
nonsingular; see (Golub and Van Loan, 1996)). As in the computation of balanced
realizations in (Moore, 1981; Tombs and Postlethwaite, 1987), a state-space trans-
formation T can be obtained either from the dominant left and right invariant sub-
spaces of PGXW or the dominant left and right singular subspaces of SR

T such that
the transformed system (Ã, B̃, C̃, D̃) = (T−1AT, T−1B,CT,D) has a controllability
Gramian P̃G satisfying

P̃G := T
−1PGT

−T = diag (σ1, . . . , σn) = T
TXWT =: X̃W , (7)

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. That is, the observability Gramian X̃W of the
transformed realization of the right spectral factor of Φ(s) equals the controllability
Gramian of the transformed realization of G(s). Such a realization of G(s) is called
a balanced stochastic realization (BSR). A model reduction based on BSR is then
obtained by truncating the realization (Ã, B̃, C̃, D̃) to order r where σr � σr+1. The
properties of balanced stochastic truncation (BST) are summarized in the following
theorem, which collects results from (Desai and Pal, 1984; Green, 1988a; 1988b).

Theorem 1. If G(s) = C(sIn − A)−1B + D with A stable and D nonsingular is
the TFM of a square LTI system, and

(T−1AT, T−1B,CT,D) :=

([

A11 A12

A21 A22

]

,

[

B1

B2

]

,
[

C1 C2

]

, D

)
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is a BSR such that (7) holds, then

(Ar, Br, Cr, Dr) := (A11, B1, C1, D)

is a stable, minimal BSR with the following properties:

(i) Gr(s) := Cr(sIr −Ar)−1Br +Dr satisfies the relative error bound

‖∆r‖∞ = ‖G−1(G−Gr)‖∞ ≤
n
∏

j=r+1

1 + σj
1− σj

− 1. (8)

(ii) If G(s) is minimum-phase, i.e., G has no zeros in
� + , then Gr(s) is

minimum-phase.

BST methods differ in the way the reduced-order model is actually computed.
Here we focus on square-root methods, that is, SRT is used rather than PGXW . This
has the advantage of not squaring the condition number of the matrix. In (Safonov and
Chiang, 1988), two implementations of BST are proposed based on (7). The first one
is not a square-root method but it uses PGXW . The reduced-order model obtained
with this approach is not balanced, but it satisfies the same error bound (8). It has the
advantage of avoiding the computation of the possibly ill-conditioned transformation
T for highly stochastically unbalanced realizations. The second approach is a square-
root method yielding a stochastically balanced reduced-order model. Both ideas can
be combined to yield a balancing-free square-root BST method, see (Varga and Fasol,
1993). Often, this yields transformations that are much better conditioned than for
the square-root approach in (Safonov and Chiang, 1988), and working with PGXW
is avoided. Here we will consider both square-root methods where the stochastical-
ly balancing square-root approach should only be used if a stochastically balanced
reduced-order model is explicitly required.

Our algorithms differ in several ways from the ones considered in (Safonov and
Chiang, 1988; Varga and Fasol, 1993), though they are mathematically equivalent. In
particular, we focus on the implementation on modern computer architectures such as
distributed memory parallel computers. We combine the results obtained in (Benner
and Byers, 1998; Benner and Quintana-Ort́ı, 1999; Benner et al., 1999; Benner et
al., 2000a; 2000b) in order to derive new algorithms for BST model reduction in
the following way. The Lyapunov equation (4) is solved using a sign function-based
method (Benner and Quintana-Ort́ı, 1999; Roberts, 1980), from which we obtain a
full-rank factorization PG = S

TS, i.e., S ∈ � nc×n where nc = rank (S) = rank (PG).
This is usually faster and more reliable than computing the Cholesky factor using
Hammarling’s method (Hammarling, 1982), see (Benner et al., 2000b) for details.
The parallelization of this algorithm on distributed-memory parallel computers is
described in (Benner et al., 1999). The same approach is used to compute a full-rank
factor R of XW from a stabilizing approximation X̃W to XW as follows. This
technique is also used in (Varga, 1999). Let D = [ D̂T 0 ]U be an LQ decomposition
(Golub and Van Loan, 1996) of D. Note that D̂ ∈ � p×p is a square, nonsingular
matrix as D has full row rank. Now set

HW := D̂
−TC, B̂W := BW D̂

−1, Ĉ := (HW − B̂TWX).
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Then the ARE (5) is equivalent to

0 = ATX +XA+ ĈT Ĉ.

Using a computed approximation X̃W of XW to form Ĉ , the Cholesky or full-
rank factor R of XW can be computed directly from the Lyapunov equation

AT (RTR) + (RTR)A+ ĈT Ĉ = 0 (9)

using the method from (Benner et al., 2000b) as in the case of eqn. (4). The approxima-
tion X̃W is obtained by solving (5) using Newton’s method with exact line search as
described in (Benner, 1997; Benner and Byers, 1998). The Lyapunov equations in each
iteration step of Newton’s method are again solved via a sign function-based method
as described in (Benner et al., 2000a). This allows an efficient implementation on mod-
ern serial and parallel computers and, as a stabilizing initial guess is readily available
starting from zero, this algorithm usually outperforms the Schur vector method in
both computing time and accuracy. (See (Benner et al., 2000a) for details.) Here, the
main goal is to show how parallel computing can be used to compute reduced-order
models that can easily be handled, in a second stage, on a single-processor machine
in a computer-aided control systems design (CACSD) environment.

The outline of the paper is as follows. In Section 2 we show how a BST reduced-
order model can be computed from full-rank factors of the Gramians PG and XW .
Next, in Section 3 we describe efficient and parallelizable numerical algorithms that
are used to obtain the full-rank factors of the Gramians. The implementation of the
suggested method on a Beowulf cluster and its numerical performance are explained
in Section 4. Conclusions are given in Section 5.

2. Balanced Stochastic Truncation Using Full-Rank Factors

of the Gramians

In this section we review the techniques that can be used to compute the projection
matrices which determine the reduced-order model. We suggest a modification of two
of the algorithms by replacing the Cholesky factors of the Gramians by full-rank
factors, resulting in a smaller arithmetic cost and workspace requirements in the case
of (numerically) rank-deficient Gramians.

We have noted so far that the Gramians to be balanced versus each other are
obtained as the solution of the stable, nonnegative Lyapunov equation (4) and the
stabilizing, positive semidefinite solution of the ARE (5). Hence, both Gramians are
positive semidefinite and can be decomposed as PG = S

TS and XW = R
TR. The

factors S,R ∈ � n×n can be chosen triangular and are called the Cholesky factors of
the Gramians.

The transformation matrix T that achieves the balancing in (7) can be obtained
from S and R following the ideas of balanced truncation as demonstrated in (Laub
et al., 1987; Tombs and Postlethwaite, 1987). That is, BST model reduction can be
achieved using SRT instead of the product of the Gramians themselves. The result-
ing square-root (SR) algorithm avoids dealing with the Gramians as their condition
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number can be up to the square of the condition number of the Cholesky factors.
In these algorithms, eqns. (4) and (5) are initially solved for the Cholesky factors
without ever forming the Gramians explicitly. This can be achieved, e.g., by the al-
gorithms described in (Benner and Quintana-Ort́ı, 1999; Hammarling, 1982) applied
to (4) and (9). Then the SVD of the product

SRT = [U1 U2]

[

Σ1 0

0 Σ2

]





V T1

V T2



 (10)

is computed. Here the matrices are partitioned at a given dimension r, with Σ1 =
diag (σ1, . . . , σr) and Σ2 = diag (σr+1, . . . , σn) such that

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 ≥ σr+2 ≥ · · · ≥ σn ≥ 0. (11)

Note that the σk’s are the Hankel singular values of the so-called phase matrix
(W (−s)T )−1G(s). To achieve a good reduced-order model, r should be chosen in
order to give a natural separation of the states, i.e., one should look for a large gap
in the singular values, σr � σr+1 (Tombs and Postlethwaite, 1987).
Notice that the SVD in (10) can be obtained without explicitly forming the

product of the Cholesky factors using the techniques in (Fernando and Hammarling,
1988; Heath et al., 1987). Finally, defining

Tleft = Σ
−1/2
1 V T1 R, Tright = S

TU1Σ
−1/2
1 , (12)

the reduced-order system is given by

Ar = TleftATright, Br = TleftB, Cr = CTright, D = Dr. (13)

As has been shown in Theorem 1, the reduced-order model is a stable balanced
stochastic realization satisfying the error bound (8).

As the reduced-order model in (13) is stochastically balanced, the projection
matrices in (12) tend to be ill-conditioned if the original system is highly unbalanced,
resulting in inaccurate reduced-order models. An alternative here are the balancing-
free (BF) algorithms (Safonov and Chiang, 1988). Here, the reduced-order model is
not balanced. In these algorithms, after solving (4) and (5), (9) for the Gramians, an
orthogonal matrix Q ∈ � n×n is computed such that

QPGXWQ
T (14)

is in upper real Schur form. Using an eigenvalue reordering procedure as described,
e.g., in (Golub and Van Loan, 1996), a pair of orthogonal matrices Qa, Qd ∈

� n×n
is computed such that the diagonal blocks in QTa PGXWQa and Q

T
d PGXWQd are

ordered, respectively, in ascending and descending order of the absolute magnitude of
the eigenvalues. Let Qa = [Qa1 , Qa2 ] and Qd = [Qd1 , Qd2 ], with Qa2 , Qd1 ∈

� n×r .
Then the SVD

QTa2Qd1 = [U1 U2]

[

Σ1 0

0 Σ2

]





V T1

V T2



 (15)
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provides the orthonormal matrices that allow the construction of the reduced-order
system as in (12) and (13). The method can also be adapted to work on the Cholesky
factors thus providing a square-root algorithm.

The Balancing-free square-root (BFSR) algorithms for BST combine the best
characteristics of the SR and BF approaches (Varga and Fasol, 1993). BFSR algo-
rithms share the first two steps (solving (4) and (5) for the Cholesky factors and
computing the SVD in (10)) with the SR algorithms. Then orthogonal bases for the
ranges of STU1 and R

TV1 are computed via the two QR factorizations

STU1 = [P1 P2]

[

S̃

0

]

, RTV1 = [Q1 Q2]

[

R̃

0

]

, (16)

where P1, Q1 ∈
� n×r have orthonormal columns and S̃, R̃ ∈ � r×r are upper

triangular. Note that P2, Q2 are not needed; it is sufficient to compute the “skinny”
QR decompositions STU1 = P1S̃ and R

TV1 = Q1R̃.

The reduced-order system is then given by (13), where the projection matrices
are given by the formulae

Tleft = (Q
T
1 P1)

−1QT1 , Tright = P1,

which take into account that TleftTright = Ir is needed.

For the implementations reported in this paper we chose the SR and BFSR
algorithms as the BF algorithm usually shows no advantage over BFSR algorithms
with respect to model reduction abilities. Moreover, the BF approach is potentially
numerically unstable. For one, it uses the product PGXW rather than SR

T , leading
to a squaring of the condition number of the matrix product. Second, the projection
matrices Tleft and Tright computed by the BFSR approach are often significantly
better conditioned than those computed by the BF approach (Varga and Fasol, 1993).
Furthermore, both SR and BFSR algorithms can be implemented efficiently on parallel
computers. On the other hand, the BF method needs a parallel implementation of the
QR algorithm (see eqn. (14)) and re-ordering of eigenvalues. Both stages present severe
difficulties regarding their parallel implementation; for a more detailed discussion and
references, see (Benner et al., 2000b). For these reasons, we avoid the implementation
of the BF algorithm.

So far we have assumed that the Cholesky factors S and R of the Gramians
are square n× n matrices. For non-minimal systems, we have rank (S) < n and/or
rank (R) < n. Even in the case when, theoretically, both Gramians are nonsingular,
they are often numerically rank-deficient (Penzl, 2000). This can be exploited by
computing rectangular factors S̃, R̃ of the Gramians such that ‖PG− ŜT Ŝ‖F ≤ γSε
and ‖XW − R̂T R̂‖F ≤ γRε, where ε is the machine precision and γS , γR are small
constants.

Hence, rather than working with the Cholesky factors, we may use full-rank
factors of PG, XW . As PG and XW are positive semidefinite, there exist matrices
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Ŝ ∈ � nc×n, R̂ ∈ � no×n such that PG = ŜT Ŝ, XW = R̂T R̂, and

nc := rank
(

Ŝ
)

= rank (S) = rank (PG) ,

no := rank
(

R̂
)

= rank (R) = rank (XW ) .

Here, by abuse of notation, we employ rank (M) to denote the numerical rank (Golub
and Van Loan, 1996) of a matrix M . The full-rank factors Ŝ, R̂ can be obtained from
S and R by omitting the trailing rows of the factors that are numerically zero due to
the triangular form of S and R. (For non-triangular factorizations, it is sufficient to
compute QR factorizations of S and R.) A more efficient way is to compute Ŝ and
R̂ directly, e.g., with the algorithm described in Section 3.1 applied to (4) and (9),

respectively. In the latter case, S and R can be defined by S :=
[

Ŝ
0

]

, R :=
[

R̂
0

]

.

The SVD in (10) can then be obtained from that of ŜR̂T as follows. Here we assume
that nc ≥ no. The case nc < no can be treated analogously. Then we can compute
the SVD

ŜR̂T = Û

[

Σ̂

0

]

V̂ T , Σ̂ = diag (σ1, . . . , σno) , (17)

where Û ∈ � nc×nc , V̂ ∈ � no×no . Partitioning Û =
[

Û1 Û2

]

such that Û1 ∈
� nc×no , the SVD of SRT is given by

SRT =

[

Û1 Û2 0

0 0 In−nc

][

Σ̂1 0

0 0

][

V̂ T 0

0 In−no

]

. (18)

Then the decision on the index r yielding the size of the reduced-order model can

be based on the singular values of Σ̂1. If we use r to partition Û1 =
[

Û11 Û12

]

,

V̂ =
[

V̂1 V̂2

]

, and Σ̂1 =
[

Σ̂11 0

0 Σ̂12

]

with Û11 ∈
� nc×r, V̂1 ∈

� no×r, and Σ̂12 ∈
� r×r , then the subsequent computations can be performed working with Û11, Σ̂11,
and V̂1 rather than using the data from the full-size SVD in (18). This can easily
be seen by replacing S,R with Ŝ, R̂ and U1, V1 with Û11, V̂1 in (12) and (16).
This leads to significant savings of workspace and computational cost. For example,
using the Golub–Reinsch SVD (Golub and Van Loan, 1996), (10) requires 22n3 flops
(floating–point arithmetic operations) and workspace for 2n2 real numbers (note
that we need to form U , V explicitly), while (17) requires only 14ncn

2
o + 8n

3
o flops

and workspace for n2c + n
2
o real numbers. In particular, for large-scale dynamical

systems, the numerical rank of PG, XW and Ŝ, R̂ is often much smaller than n,
see (Penzl, 1999; 2000). Suppose that (numerically) nc = no = n/10 (which can
quite frequently be observed when the system comes from the semi-discretization of
parabolic or hyperbolic partial differential equations). Then the computation of (17) is
1000 times less expensive than that of (10), and only 1% of the workspace is required
for (17) as compared to (10). Some more savings are obtained from the cheaper
computation of the projection matrices yielding the reduced-order models.
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In the next section we show how the full-rank factors Ŝ and R̂ can be computed
directly without having to compute S, R or even PG, XW first.

3. Computing the Gramians

The following key idea will be used here: if the controllability Gramian PG of G(s)
and the observability Gramian XW of W (s) are (numerically) rank-deficient, positive
semidefinite matrices, we can find rectangular matrices Ŝ ∈ � nc×n, R̂ ∈ � no×n such
that ŜT Ŝ and R̂T R̂ equal (up to numerical accuracy) PG and XW , respectively.
Therefore, we need an algorithm that solves the stable, nonnegative Lyapunov equa-
tions (4) and (9) for a full-rank factor of the solution directly. Furthermore, we need
an algorithm for solving the ARE (5). As our focus is on high-performance comput-
ing and particularly on parallel algorithms for distributed-memory architectures, our
methods for solving Lyapunov equations will be based on the sign function method
which is known to be easily and efficiently parallelizable (Bai and Demmel, 1993; Bai
et al., 1997; Benner et al., 1999; Gardiner and Laub, 1991).

A sign function-based Lyapunov solver is then also used in the inner loop of
Newton’s method for solving AREs; we use the same procedure to solve (5).

3.1. Solving Stable Lyapunov Equations with the Sign Function Method

In this section we describe Lyapunov equation solvers based on the matrix sign func-
tion. These are specially appropriate for parallel distributed memory computers. De-
tails of the algorithms can be found in (Benner and Quintana-Ort́ı, 1999). Some minor
modifications of the algorithms in order to address some properties of the Lyapunov
equations corresponding to model reduction are described here on the analogy of
(Benner et al., 2000b).

Consider a matrix Z ∈ � n×n with no eigenvalues on the imaginary axis and
Jordan decomposition Z = S

[

J− 0
0 J+

]

S−1. Here, the Jordan blocks in J− ∈ � k×k

and J+ ∈ � (n−k)×(n−k) contain, respectively, the eigenvalues of Z in the open left
and right half planes. The matrix sign function of Z is then defined as sign(Z) :=

S
[

−Ik 0
0 In−k

]

S−1, where Ik denotes the identity matrix of order k. Note that sign(Z)

is unique and independent of the order of the eigenvalues in the Jordan decomposition
of Z; see, e.g., (Lancaster and Rodman, 1995). Many other definitions of the sign
function can be given; see (Kenney and Laub, 1995) for an overview.

The matrix sign function was shown to be useful in many problems involving
spectral decomposition as (In − sign(Z))/2 defines the skew projector onto the sta-
ble Z-invariant subspace parallel to the unstable subspace. (By the stable invariant
subspace of Z we denote the Z-invariant subspace corresponding to the eigenvalues
of Z in the open left half plane.)

Applying Newton’s root-finding iteration to Z2 = In, where the starting point
is chosen as Z, we obtain the Newton iteration for the matrix sign function:

Z0 ← Z, Zk+1 ←
1

2
(Zk + Z

−1
k ), k = 0, 1, 2, . . . . (19)
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Under the given assumptions for the spectrum of Z, the sequence {Zk}∞k=0 converges
to sign(Z) (Roberts, 1980).

Although the convergence of the Newton iteration is globally quadratic, the initial
convergence may be slow. Acceleration is possible, e.g., via determinantal scaling
(Byers, 1987),

Zk ← ckZk, ck = | det (Zk)|−
1
n ,

where det (Zk) denotes the determinant of Zk. Other acceleration schemes can be
employed; see (Bai and Demmel, 1993) for a comparison of these schemes.

Roberts (1980) was the first to use the matrix sign function for solving Lyapunov
(and Riccati) equations. In the proposed method, the solution of the stable Lyapunov
equation

F TX +XF +Q = 0 (20)

is computed by applying the Newton iteration (19) to the Hamiltonian matrix H =
[

F 0
Q −FT

]

associated with (20). The solution matrix X∗ can then be determined

from the stable Z–invariant subspace given by the range of the projector (In −
sign(H))/2. Roberts also shows that, when applied to H , the Newton iteration (19)
can be simplified to

F0 ← F, Fk+1 ←
1

2

(

Fk + F
−1
k

)

,

Q0 ← Q, Qk+1 ←
1

2

(

Qk + F
−T
k QkF

−1
k

)

,

k = 0, 1, 2, . . . (21)

and X∗ =
1
2 limk→∞Qk. The sequences for Fk and Qk require 6n

3 flops per iteration
so that 5–6 iterations are as expensive as the Bartels–Stewart method (Bartels and
Stewart, 1972).

Iteration (21) can be applied to (4) by setting F = AT and Q0 := BB
T in order

to obtain the controllability Gramian as PG = Q∞/2. At convergence, PG = Q∞/2.

As F is a stable matrix, F∞ = limk→∞ Fk = −In, and a suitable convergence
criterion for the iterations is to stop when the relative error in the sequence of Fk
drops below a tolerance threshold, i.e., if

‖Fk + In‖∞ ≤ τ‖Fk‖∞,
for a user-defined tolerance τ . In our implementations we employ τ = n

√
ε and

perform two additional iterations once the convergence criterion is satisfied. Due to
the quadratic convergence of the Newton iteration, this is usually enough to reach the
attainable accuracy.

In (Benner and Quintana-Ort́ı, 1999; Larin and Aliev, 1993), iteration (21) was
modified to obtain the Cholesky factors rather than the solutions themselves. The
basic idea is that if we can factor Q = BBT and set B0 = B, the iterations for the
symmetric matrices Qk can be written in a factored form as

Qk+1 = Bk+1B
T
k+1 =

1

2ck

[

Bk ckF
−T
k Bk

]

[

BTk

ckB
T
k F
−1
k

]

,
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yielding an iteration of the form

Bk+1 ←
1√
2ck

[

Bk ckF
−T
k Bk

]

. (22)

Using (22), the workspace required to store the sequence of Bk is doubled in each
iteration step. This can be avoided by computing in each iteration step an LQ factor-
ization of Bk+1B

T
k+1 such that

Bk+1 =
[

Sk+1 0
]

Uk+1.

As

BkB
T
k = SkS

T
k ,

it is sufficient to store the triangular factors in Bk. The orthogonal factors need
not be accumulated, but still the amount of work required in each iteration step is
increased by these factorizations. Therefore, in (Benner and Quintana-Ort́ı, 1999), a
compromise is proposed: first, fix the available workspace for the sequence of Bk. A
reasonable amount is an n× 2n array as the rank of the required Cholesky factor S
cannot exceed n. Therefore, we may use (22) as long as Bk ∈

� n×mk , with mk ≤ n,
and then use the triangular factors obtained by the LQ factorizations. Hence, we
perform k ≤ log2 nm iterations with (22) before starting to compute factorizations in
each step and only use the triangular factors. If convergence is achieved before the
switch, we have to compute a final LQ factorization to obtain the Cholesky factor.

Here we propose a slightly different strategy taking into account that for large-
scale systems the Cholesky factors are often of low numerical rank and therefore
we can save some workspace and arithmetic work by not allowing the iterates for
the Cholesky factors to become rank-deficient. That is, in each step we compute a
rank-revealing LQ decomposition of the matrix in (22), using an LQ decomposition
with row pivoting (Golub and Van Loan, 1996). The rank of the iterates is then
determined using an incremental condition estimator (Bischof, 1990) resulting in the
following decomposition:

1√
2ck

[

Bk ckF
−1
k Bk

]

= ΠBk+1

[

(Sk+1)11 0

(Sk+1)21 (Sk+1)22

]

Uk+1.

Here Uk+1 is orthogonal, Π
B
k+1 is a permutation matrix, (Sk+1)11 ∈

� sk+1×sk+1 is
lower triangular with sk+1 being the estimated rank of the iterate, and (Sk+1)22 ≈ 0.
Setting (Sk+1)22 = 0, we can proceed with the new iterate

Bk+1 ← ΠBk+1

[

(Sk+1)11

(Sk+1)21

]

∈ � n×sk+1 .

If X = Ŷ Ŷ T is a full-rank factorization of the solution X of (20), then it follows
that

1√
2
lim
k→∞
Bk = Ŷ .
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If applied to (4) with B0 = B and F0 = A
T , it follows that the sequence { 1√

2
Bk}∞k=0

converges to the full-rank factor ŜT of the controllability Gramian. In our experi-
ments reported in Section 4 we base our rank decisions on a relative tolerance thresh-
old 10nε, where n is the size of the matrix.

As in most applications m � n and the numerical rank (see, e.g., (Golub and
Van Loan, 1996)) of the Cholesky factor S of the controllability Gramian is also
usually much smaller than n, this technique quite often saves a large amount of
workspace and computational cost compared to using the technique described above
where the workspace for the iterates is increased up to size n × n. As outlined in
Section 2, the product ŜR̂T is a small size, in general rectangular matrix for which the
subsequent computations needed for model reduction are much cheaper than for the
full or triangular n×n Cholesky factors as obtained by Hammarling’s method, used
in the implementation of the BST model reduction algorithms described in (Varga,
1999; Varga and Fasol, 1993).

The Lyapunov solvers described above are iterative procedures composed of LU
and QR factorizations, triangular linear systems, and matrix inversions. These matrix
operations are of wide appeal for computer architectures that can take advantage
of block-partitioned algorithms, and specially for parallel distributed architectures
(Blackford et al., 1997; Dongarra et al., 1986).

Remark 1. By allowing ‖(Sk+1)22‖ to become larger or by fixing the largest number
of allowed columns in Sk, the above procedure can also be used to obtain low-rank
approximations of the Cholesky or full-rank factors. In particular, for LTI systems
having Gramians with fast decaying eigenvalues such low-rank approximations often
yield all relevant information needed for model reduction. This is also used in (Penzl,
1999) for the model reduction algorithms developed there for LTI systems with a
sparse coefficient matrix A.

3.2. Solving Algebraic Riccati Equations with an Exact Line Search

Method

Kleinman showed (1968) that under suitable conditions Newton’s method applied to
the standard ARE converges to the desired stabilizing solution of the ARE. Variants
of Newton’s method for solving ARE are presented in (Benner and Byers, 1998; Lan-
caster and Rodman, 1995).

Usually, Newton’s method for AREs is formulated for the ARE arising in linear-
quadratic optimal control, i.e.,

0 = Q+ F TX +XF −XGX, (23)

where G,Q ∈ � n×n are symmetric positive semidefinite. In the case of the ARE (5)
to be considered here, G is negative semidefinite. It is not difficult to see that all the
convergence results for Newton’s method applied to (23) can be derived in a similar
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way for the case considered here; see (Benner, 1997; Varga, 1995). We use these results
here to formulate Newton’s method for

0 = Q+ F TX +XF +XGX =: R (X) (24)

with G positive semidefinite. This can then be applied to (5) with

F := A−BWE−1C, G := BWE−1BTW , Q := CTE−1C. (25)

Although Newton’s method for AREs converges ultimately quadratically from any
starting guess X0 such that A+GX0 is stable (see Theorem 2), initial convergence
may be slow. Even worse, sometimes the first step is an enormous leap away from
X0 and X∗ and only returns slowly afterwards. Therefore, we use modified Newton’s
method employing an exact line search technique in order to accelerate convergence
in early stages of the iteration. This technique was proposed for (23) in (Benner and
Byers, 1998) and for (24) in (Benner, 1997).

The modified Newton iteration for (24) can be formulated as follows.

Algorithm 1. (Modified Newton’s method for the ARE).

Input: F,G,Q ∈ � n×n , G = GT , Q = QT , X0 = XT0 — an initial guess.
Output: Approximate solution Xj+1 ∈

� n×n of (24).

FOR j = 0, 1, 2, . . . “until convergence”

1. Fj = F +GXj .

2. Solve the Lyapunov equation

0 = R (Xj) + F Tj Nj +NjFj

for Nj .

3. Compute the line search parameter tj .

4. Xj+1 = Xj + tjNj .

END FOR

Standard Newton’s method for the ARE is recovered from the above algorithm
by setting tj = 1 for all j.

In our implementation, we employ the sign function-based method (21) to solve
the Lyapunov equations in each iteration step in order to determine the Newton step
Nj . As this is the major computational step in Newton’s method for solving (5), this
algorithm can be efficiently implemented on parallel computers; see the discussion at
the end of Subsection 3.1 and (Benner et al., 2000a).

Possible stopping criteria for this algorithm are discussed in (Benner et al.,
2000a). Roughly speaking, the iteration can be stopped once ‖R (Xj) ‖ ≤ τ‖Xj‖
or ‖Nj‖ ≤ τ‖Xj‖ for some user-defined tolerance threshold τ .
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The line search parameter tj is determined as a local minimizer of the one-
dimensional optimization problem to minimize the residual of the next step with
respect to tj , i.e., to find a local minimum of

fj(t) = ‖R (Xj+1) ‖2F = trace
(

R (Xj + tNj)2
)

= trace
(

R (Xj)2
)

(1− t)2 − 2 trace (R (Xj)Vj) (1− t)t2

+ trace
(

V 2j
)

t4, (26)

where Vj = NjGNj . In (Benner, 1997) it is proved that such a minimizing tj exists
in [0, 2] such that

‖R (Xj + tjNj) ‖F ≤ ‖R (Xj +Nj) ‖F .

The restriction to the interval [0, 2] is necessary in order to ensure that the Xj
remain stabilizing; see (Benner, 1997; Benner and Byers, 1998). Although the line
search increases the cost of Newton’s method (mainly because of the computation of
Vj), in practice, this overhead is largely compensated by a reduction in the number
of iterations of Newton’s method and therefore in the overall cost of the solver.

Moreover, in large-scale applications as considered here the additional cost caused
by the line search procedure is negligible if the factorization of G into low-rank
matrices (i.e., G = BWE

−1BTW with BW ∈
� n×p , p� n) is exploited; see (Benner

et al., 2000a) for details.

The following theorem summarizes the convergence properties of Algorithm 1.
Here we need the notion of a stabilizable pair of matrices: (F,G) ∈ � n×n × � n×m is
stabilizable if there exists Z ∈ � m×n such that F +GZ is stable.

Theorem 2. If G ≥ 0, (F,G) is stabilizable, a unique stabilizing solution X∗ of (24)
exists, X0 is stabilizing, and on the assumption that the local minimizer tj ∈ [0, 2] of
fj in (26) satisfies tj ≥ tL > 0 for all j ∈ � 0 , where tL > 0 is a constant tolerance
threshold, the sequence of approximate solutions Xj produced by Algorithm 1 has the
following properties:

(i) Xj is stabilizing for all j ∈ � 0 .

(ii) ‖R (Xj+1) ‖F ≤ ‖R (Xj) ‖F and equality holds if and only if R (Xj) = 0.

(iii) limj→∞R (Xj) = 0.

(iv) limj→∞Xj = X∗.

(v) In a neighborhood of X∗, the convergence is quadratic.

(vi) limj→∞ tj = 1.
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For Newton’s method, i.e., tj ≡ 1, this theorem is proved in (Lancaster and
Rodman, 1995). A proof of the above theorem using the stronger assumption of con-
trollability can be found in (Benner and Byers, 1998) for (23), and (Benner, 1997)
in (24). The controllability assumption was then weakened to stabilizability for (23)
in (Guo and Laub, 2000). The argument used there extends immediately to the case
of the ARE (24).

Bounding the step size tj from below by a constant tL is a common feature of line
search procedures. This can be motivated based on the Armijo rule; see, e.g., (Dennis
and Schnabel, 1983, Ch.6). We will elaborate on this, following the presentation used
in (Dennis and Schnabel, 1983, Ch.6), as this aspect is important for a successful
implementation of the method. Let f :

� ` → �
be twice continuously differentiable.

If xj ∈
� ` is an approximation to a local minimizer of f(x) and pj is a search

direction for f from xj , then a step size parameter tj is accepted if it satisfies the
sufficient decrease criterion given by the Armijo rule

f(xj + tjpj) ≤ f(xj) + αtj
(

∇f(xj)
)T
pj , (27)

where α ∈ (0, 1). In order to translate (27) to the situation here, we use the usual
embedding of

� n×n into � n2 given by the map vec : � n×n −→ � n2 ,

vec (X) := [x11, x21, . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn]
T ,

which is obtained by consecutively stacking the columns of a matrix into a vector
(see, e.g., (Lancaster and Tismenetsky, 1985, Ch.12)). Setting x := vec (X), r(x) :=
vec (R (X)) and

f(x) =
1

2
r(x)T r(x) =

1

2
trace

(

R (X)T R (X)
)

=
1

2
‖R (X) ‖2F ,

it can be shown that ∇f(vec (Xj)) = ΓTj vec (R (Xj)). Here Γj = (F + GXj)T ⊗
In + In ⊗ (F +GXj)T denotes the matrix representation of the Lyapunov operator,
mapping a symmetric matrix Z ∈ � n×n to (F + GXj)TZ + Z(F + GXj). As all
Xj are stabilizing, it follows that all Γj are nonsingular (see, e.g., (Lancaster and
Tismenetsky, 1985, Ch.13)). Hence

pj := vec (Nj) = −Γ−1j vec (R (Xj)) = −Γ−1j r(xj)

is well defined and we obtain

(

∇f(xj)
)T
pj = −r(xj)TΓjΓ−1j r(xj ) = −‖R (Xj) ‖2F < 0. (28)

From (28) it can be deduced (Dennis and Schnabel, 1983) that the Newton direction
provides a descent direction for f(vec (X)) from Xj . Moreover, the Armijo rule (27)
translates to

‖R (Xj + tjNj) ‖F ≤
√

1− 2αtj ‖R (Xj) ‖F . (29)
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If we choose a constant α ∈ (0, 1/4) and if the step sizes tj are chosen from [ tL, 2 ]
for a given (small) constant tL > 0, then

0 < 1− 2αtj ≤ 1− 2αtL := γ2 < 1, (30)

for all j = 0, 1, 2, . . . . Hence,

‖R (Xj) ‖F ≤ γj‖R (X0) ‖F . (31)

As γ < 1, limj→∞ ‖R (Xj) ‖F = 0. Therefore, we obtain global convergence of
R (Xj) to zero without using the control-theoretic assumptions of Theorem 2. But
note that this does not necessarily imply Xj → X∗. This is where the additional as-
sumptions are needed in the convergence proofs in (Benner, 1997; Benner and Byers,
1998; Guo and Laub, 2000).

Besides ensuring theoretical convergence, requiring (29) is also reasonable as
otherwise a stagnation of the line search method is possible. The same arguments can
be used to explain why the assumption tj ≥ tL is not only a technical assumption
but should be a requirement: choosing tj too small will result in almost no progress
towards the attractor of the iteration.

The assumptions of Theorem 2 and (29) are ensured by employing the following
considerations:

� Set a lower bound tL for the step size parameters tj . (Numerical experiments
indicate that tL = 10

−4 is a reasonable choice.) Select the parameter α ∈
( 0, 1/4 ) for the Armijo rule. In concurrent optimization literature (Dennis and
Schnabel, 1983), α = 10−4 is proposed. Together with tL as above, γ

2 in (30)
is ≈ 1 − 10−8, which may yield very slow convergence—something we try to
avoid by using line searches. Therefore we propose here a much larger value for
α. In our experiments, α = 0.2 worked very well.

� In each step, we compute the local minimizer tj ∈ [ 0, 2 ] and then set tj =
max{tj , tL} unless tj = 0. (If tj = 0, Xj is a solution of (24) and we can stop
the iteration.)

� The condition (29) can be checked by evaluating fj(t) using (26) rather than
by forming the residual matrix explicitly. If (29) is not satisfied in some step,
there are several options:

– Find another line search parameter tj by a backtracking strategy as de-
scribed in (Dennis and Schnabel, 1983);

– decrease α or tL;

– perform a standard Newton step with tj = 1.

The second option usually results in a stagnation of the iteration as no signifi-
cant progress will be achieved. The third option can be considered as restarting
the Newton iteration from a new initial guess. Note that the convergence theory
given in Theorems 2 ensures that the new “starting guess” is again stabilizing.
One should limit the number of allowed restarts and run the Newton iteration
without line search if this number is exceeded. This guarantees global conver-
gence for the overall process.
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In addition to the above, we also employ a criterion to overcome possible stagnation.
This criterion is defined as follows:

‖R (Xj + tjNj) ‖F < tolS‖R (Xj−jS ) ‖F . (32)

For this, we only need to keep the norms of the last jS residuals in memory. In case
of stagnation we again “restart” the method using a Newton step. From numerical
experience, we suggest to use jS = 2, tolS = 0.9.

Here we apply the suggested modified Newton’s method to (5) using (25). It can
be proved that A−BWE−1C is stable (Anderson, 1967a; 1967b; Green, 1988a; Varga
and Fasol, 1993) and hence F0 is stable. Therefore, we can start the Newton iteration
with X0 = 0 such that the usually difficult problem of finding a stabilizing starting
guess is circumvented.

4. Parallel Implementation and Numerical Examples

4.1. Implementation Details

The numerical algorithms that we have described in the previous two sections are
all composed of basic matrix computations such as linear systems, matrix products,
QR factorizations (with column pivoting), etc. All these operations can be efficiently
implemented on modern serial and parallel computers. Although one could develop
his/her own parallel routines for this purpose, nowadays there exist libraries of parallel
kernels for distributed memory computers (Blackford et al., 1997). The use of these
libraries enhances the reliability and improves the portability of the model reduction
routines. The performance will depend on the efficiency of the underlying serial and
parallel libraries and the communication routines.

Here we will employ the ScaLAPACK parallel library (Blackford et al., 1997).
This is a public domain library that implements parallel versions of many of the
kernels in LAPACK (Anderson et al., 1995), using the message-passing paradigm.
The ScaLAPACK is based on PB-BLAS (the parallel version of the serial BLAS)
for computation and BLACS for communication. The BLACS can be ported to any
(serial and) parallel architecture with an implementation of the MPI (our case) or the
PVM communication libraries (Geist et al., 1994; Gropp et al., 1994).

In ScaLAPACK the computations are performed on a logical grid of np = pr×pc
processes. The processes are mapped onto the physical processors, depending on the
available number of these. All data (matrices) have to be distributed among the pro-
cess grid prior to the invocation of a ScaLAPACK routine. It is the user’s responsibility
to perform this data distribution. Specifically, in ScaLAPACK the matrices are parti-
tioned into nb×nb square blocks and these blocks are distributed (and stored) among
the processes in column-major order. See (Blackford et al., 1997) for details.
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Employing ScaLAPACK, we have implemented the following BST model reduc-
tion algorithms for LTI systems as Fortran 77 subroutines:

– PDGESTSR: the BST SR method for model reduction;

– PDGESTBF: the BST BFSR method for model reduction.

We compare these parallel routines with the analogous serial algorithms in SLICOT2.
This library includes the following Fortran 77 routine:

– AB09HD: the BST SR or BFSR method;

All the experimental results described in the following two subsections were ob-
tained on a Beowulf cluster. Each node consists of an Intel Pentium-II processor at
300 MHz and 128 MBytes of RAM. All computations are performed in ieee double-
precision floating-point arithmetic (i.e., the machine epsilon was ε ≈ 2.2204×10−16).
We employ a BLAS library, specially tuned for the Pentium-II processor, which
achieves around 180 Mflops (millions of flops per second) for the matrix product
(routine DGEMM). The nodes are connected by a Myrinet switch, and the communi-
cation library BLACS employs a tuned implementation of MPI. The performance of
the interconnection network for MPI was measured by a simple loopback message
transfer and offered a latency of 33 µsec and a bandwidth around 200 Mbit/sec. We
made extensive use of the LAPACK, PB-BLAS, and ScaLAPACK libraries.

4.2. Numerical Accuracy

In order to demonstrate the model reduction performance of our parallel implemen-
tation of the BST method based on the Lyapunov and ARE solvers suggested in
Section 3, we apply the algorithm to an example from (Penzl, 1999).

The LTI system comes from a mathematical model for optimal cooling of steel
profiles. The process is modeled by a boundary control problem for a linearized
2-dimensional heat equation. A finite element discretization of the spatial variables
results in a square system with 6 inputs and outputs. The state-space dimension
is n = 821 for a coarse mesh and n = 3113 for an adaptively refined mesh. As
D = 0 in this example, we use an ε-regularization and set D = 10−1I6. We com-
pute a reduced-order model of size r = 40. Fig. 1(a) shows the convergence behavior
of the factored Lyapunov solver proposed in Section 3.1 applied to (4) in terms of
‖Ak + In‖. Fig. 1(b) displays the normalized residuals during the Newton iteration
when solving (5). For all Lyapunov equations involved, i.e., (4), (9), and the Lyapunov
equations to be solved in each Newton iteration, the sign function-based solvers with
determinantal scaling needed between 12 and 17 iterations to converge.

Our parallel routines computed full-rank factors Ŝ and R̂ of the Gramians of
rank 163 and 199, respectively. The resulting values σj from (17) are plotted in
Fig. 2. The plot shows a fast decay of the singular values, in particular taking into

2Available via anonymous ftp at ftp://www.esat.kuleuven.ac.be/pub/WGS/SLICOT
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Fig. 1. Convergence of iterative methods when solving (4) (a) and (5) (b).
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account the fact that 658 numerically zero singular values are not shown. The error
bound (8) yields

‖G−G40‖∞ ≤ 3.1495 · 10−4 · ‖G‖∞. (33)

Note that G − G40 is equal for the original system or the ε-regularized system as
D = D40. In order for the above bound to hold, we need to use the ε-regularized
system in the right-hand side expression as the bound (8) only holds for full-rank D.
Figure 3 shows the Bode (magnitude) plots for four of the 36 input-output channels,
comparing the input-output mapping (frequency response) of the original model and
the reduced-order model computed with PDGESTSR. The differences in the performance
of the original system and the reduced-order model are only visible for the very small
magnitudes at high frequencies, i.e., at the noise level. This demonstrates that the
reduced-order model satisfactorily approximates the original system.
This statement is even more supported by checking the singular values of the

error system H := G − G40. In Fig. 4, the maximum singular values of the error
system are plotted. That is, the figure shows the absolute error

‖G(ω)−G40(ω)‖2 = σmax
(

H(ω)
)

for the reduced-order models computed by our routine PDGESTSR and the SLICOT
routine AB09HD (using the SR version). From the figure it is obvious that both reduced-
order models satisfy the theoretical absolute error bound (33). For small frequencies,
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Fig.3. Bode magnitude plots for original and reduced-order models.



1144 P. Benner et al.

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency ω (rad./sec.)

G
ai

n 
(m

ag
ni

tu
de

)

From u
5
 to y

4

original system
PDGESTSR
AB09HD/SR

(c)

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency ω (rad./sec.)

G
ai

n 
(m

ag
ni

tu
de

)

From u
6
 to y

6

original system
PDGESTSR
AB09HD/SR

(d)

Fig. 3. Bode magnitude plots for original and reduced-order models (continued).
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SLICOT produces a very small error while for increasing frequencies, the model com-
puted by PDGESTSR appears to approximate the system slightly better.

For this example, we need to run our algorithm on four processors to beat the
execution time of the SLICOT routine AB09HD. Roughly speaking, the timings are
1950 seconds for AB09HD, and 2450 and 1630 seconds for PDGESTSR on two and four
processors, respectively. This is due to the fact that we needed 10 Newton iterations
to solve the ARE (5). In flops, this is roughly equivalent to twice the time needed
to solve an ARE using the Schur vector method employed in AB09HD. But note that
using the full-rank factors of the Gramians as in our approach, the SVD (17) needs
less than 1 second using 2 or 4 processors, while computing the SVD (10) employing
the full Cholesky factors takes 54 seconds on one processor.

The situation becomes a bit different for the model of order n = 3113 resulting
from a finer discretization. For this system we are able to compute a reduced-order
model of size r = 137 on 16 processors in 6 hours and 32 minutes. The iteration num-
bers for Newton’s method to solve the ARE and for solving the Lyapunov equations
involved are similar to those for n = 821, i.e., 10 Newton iterations and 14–19 sign
function iterations for solving the Lyapunov equations.

Note that for this problem size there is no sufficient memory on one processor
to compute a reduced-order model using AB09HD. The ranks of the full-rank factors
computed with PDGESTSR are 179 and 204—approximately the same as for the case
of n = 821. Hence the execution time for the SVD (17) is approximately the same
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as for n = 821. But extrapolating the execution time for the SVD (10) from 821 to
3113 results in approximately 50 minutes while the total extrapolated execution time
for AB09HD would be around 29.5 hours. Though this still shows no perfect speed-up
(only a factor 4.5 using 16 processors), parallel computing enabled us to solve this
problem, which was not possible using just one processor.

4.3. Parallel Performance

In this subsection we analyze the performance of the algorithms on a parallel dis-
tributed Beowulf cluster as described in Subsection 4.1. For the parallel numerical
experiments used to measure the performance, we generate square LTI systems with
prescribed poles, i.e., the eigenvalues of A were fixed in an interval [−1000, −1 ]. This
resembles the eigenvalue distribution of a (scaled) discrete one-dimensional Laplace
operator. B and C were chosen randomly with m = p = 10 and we set D = I10.

Our first experiment evaluates the reduction in the execution time achieved by
the parallel BST algorithms. For this purpose we compare the execution time of the
SLICOT routine AB09HD/SR (Varga, 1999) with that of our parallel routine PDGESTSR.
(The results for the BFSR algorithms showed no significant difference with respect
to those reported here.) In the experiment, n is set to 1000, and we choose m =
p = 10. Figure 5 shows the execution times of the serial algorithm from SLICOT
(the execution time on one processor) and those of the parallel algorithm for several
numbers of nodes, np. The figure shows a significant reduction in execution time
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Fig. 5. Execution time vs. number of nodes of the serial and parallel BST SR algorithms.



Efficient numerical algorithms for balanced stochastic truncation 1147

from one to two processors, which is partly due to the higher efficiency of our BST
algorithm for this example and partly to the use of two processors instead of one.
The speed-up from two to four processors is nearly perfect while for larger numbers
of processors the parallel efficiency decreases. This is due to the fact that the problem
size is too small to fully exploit parallelism on more than four processors. It should
also be noted that, for this problem class, speed may not be the only performance
index. On just one of the nodes of our Beowulf cluster, problems of size n > 2000
(e.g., the n = 3113 example in the last section) cannot be solved due to memory
limitations. This becomes possible only by connecting them to a cluster such that
the data can be distributed to the nodes. In that way, much larger problems can be
solved.
We next report the scalability of the parallel algorithms. The scalability evaluates

whether a larger problem can be solved by increasing proportionally the number of
nodes of the parallel system. In the experiment we fix the problem size per node at
n/
√
np = 800, m/

√
np = 400 = qs/

√
np, p/

√
np = 400 = qr/

√
np. In Fig. 6 we report

the Mflop ratio per node for the parallel algorithms PDGESTSR and PDGESTBF.
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The figure shows a high scalability of the algorithms since there is only a minor
decrease in the Mflop ratio per node as the number of nodes is increased up to 25
(a problem of size n=4000).

5. Conclusions

We have described efficient and reliable numerical algorithms for the realization of
model reduction methods based on the square-root version of balanced stochastic
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truncation. Using the full-rank factors of the Gramians often enhances the efficiency
and accuracy of these methods significantly. The proposed method employs efficient
algorithms for solving stable Lyapunov equations based on the Newton iteration for
the sign function method. Using this algorithm inside Newton’s method for solving
the algebraic Riccati equation which yields the observability Gramian in this context
allows us to solve relatively large problems on parallel computers.

Implementations of the discussed methods are based on highly optimized software
packages for numerical linear algebra on serial and parallel computers. Our experi-
ments report similar numerical results for reliable serial model reduction algorithms
from the SLICOT library and our model reduction approach, based on the sign func-
tion method. The results on a cluster of Intel Pentium-II nodes show the performance
of our model reduction approach and the scalability of the parallel algorithms. Parallel
computing thus allows us to use these methods for systems of state-space dimension
up to order O(104).
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