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A HOMOTOPY APPROACH TO RATIONAL

COVARIANCE EXTENSION WITH

DEGREE CONSTRAINT†

Per ENQVIST∗

The solutions to the Rational Covariance Extension Problem (RCEP) are pa-
rameterized by the spectral zeros. The rational filter with a specified numerator
solving the RCEP can be determined from a known convex optimization prob-
lem. However, this optimization problem may become ill-conditioned for some
parameter values. A modification of the optimization problem to avoid the ill-
conditioning is proposed and the modified problem is solved efficiently by a
continuation method.

Keywords: stochastic realization theory, rational covariance extension problem,

ARMA model design, continuation method, optimization

1. Introduction

Given a positive covariance sequence r0, r1, . . . , rn, i.e. a sequence such that the
Toeplitz matrix

R
4
=










r0 r1 . . . rn

r1 r0
. . .

...
...
. . .

. . . r1

rn . . . r1 r0










(1)

is positive definite, the Rational Covariance Extension Problem with degree constraint
(RCEP) (Georgiou, 1983; Kalman, 1981) amounts to determining a spectral density

Φ(eiθ)
4
= r̃0 + 2

∞∑

k=1

r̃k cos kθ (2)

such that

r̃k = rk , k = 0, 1, . . . , n, (3)
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and such that Φ is rational of degree at most 2n and positive for all z on the unit
circle. Then Φ is analytic in a neighborhood of the unit circle and has a Laurent
series

Φ(z)
4
= r̃0 +

∞∑

k=1

r̃k(z
k + z−k) (4)

there. We say that r̃0, r̃1, r̃2, . . . is a rational covariance extension of r0, r1, . . . , rn
with degree constraint.

One particular solution to the RCEP is given by the Maximum Entropy (ME)
solution. The ME solution can be determined from a linear system of equations that
can be solved, in a number of operations proportional to n2, using the Levinson
algorithm (Porat, 1994). However, there are an infinite number of solutions to the
RCEP, and the other solutions require nonlinear solution methods.
Georgiou (1987) conjectured that all such extensions are completely parameter-

ized by the zeros of the numerator of the spectral density. More precisely, for any
monic stable n-th order polynomial σ , there exists a unique stable n-th order poly-
nomial a such that

Φ(z) =
σ(z)σ(z−1)

a(z)a(z−1)
(5)

defines an extension. By a stable polynomial we mean that all the roots are inside the
unit circle, and hence it is a Schur polynomial. Existence was established by Geor-
giou (1987). The rest of the conjecture was later proved in (Byrnes et al., 1995) as a
corollary of a more general result also showing that the solution depends analytically
on the covariance data and the choice of the polynomial σ. Since a finite covariance
sequence r0, r1, . . . , rn can be estimated from a finite number of data, and the poly-
nomial σ can be chosen according to any preference or also estimated from a finite
number of data, the RCEP provides means to estimate the spectral density from a
finite number of data. The ME solution corresponds to the choice σ(z) = zn, and this
method can therefore only be used to identify a small subclass of spectral densities
from a finite number of data.

An independent proof of the conjecture is given in (Byrnes et al., 1999). This proof
is constructive and provides means for determining the unique Schur polynomial a(z)
which, together with the given Schur polynomial σ(z), defines a solution to the RCEP.
In fact, the Schur polynomial a(z) is given by the solution to a convex optimization
problem. In order for the optimization problem to be convex, it is formulated in terms
of the pseudo-polynomial Q(z) = a(z)a(z−1). It is shown here that this formulation,
although the best for analysis, is not the best for calculations. In fact, it is proposed
here that the optimization problem be posed in the coefficients of the polynomial
a(z).

There are two main reasons for formulating the optimization problem directly
in the a variables. First, an ill-conditioning is introduced through the choice of the
coefficients of Q as variables. Using the filter variables a, the values of the objective
function and its derivatives are finite as long as a has precisely degree n, and the
curvature of the function is more uniform. The second reason is that the values of the
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objective function and its derivatives can be determined without a spectral factoriza-
tion of Q(z). By avoiding the spectral factorization, the amount of calculations can be
reduced considerably and numerical problems that may occur close to the boundary
are also avoided.

However, the new optimization problem has some drawbacks too. It turns out
that the modified problem is locally convex but in general not globally convex. Hence
the optimization procedure has to be initiated close to the optimum to ensure conver-
gence. In order to do this in practice, a continuation method is proposed. Since the
geometry of the solutions to the optimization problem for varying parameter values
is well-known (Byrnes et al., 1995), it follows that there is a smooth trajectory from
the maximum entropy solution to any particular solution with the same n first co-
variances. Using a predictor-corrector path following algorithm (Allgower and Georg,
1990; 1993), the solution to the optimization problem can be found. An algorithm
based on a continuation method with an adaptive step length rule is proposed, and a
convergence proof for the algorithm is provided.

It should be noted that the change of variables proposed here, from pseudo-
polynomials to polynomials, can be applied to other problems for similar benefits, for
example, to the problem given in (Byrnes et al., 2001).

The outline of this paper is as follows. In Section 2, the original optimization
problem is described. In Section 3, the new formulation of the optimization problem
is derived. The optimality conditions of first and second order are compared with the
original problem, and expressions for the derivatives of the new objective function are
determined. In Section 4, a homotopy for the new optimization problem is introduced
and the concept of continuation methods is described. In Section 5, an algorithm
solving the new optimization problem is proposed. In Section 6, a convergence proof
for the algorithm is given.

2. The Original Optimization Problem

A convex optimization formulation for finding the polynomial a(z) in (5) for an
arbitrary choice of the numerator polynomial σ(z) was presented in (Byrnes et al.,
1999). It will be reviewed here for clarity. Then a new formulation will be derived
through a change of variables.

The numerator polynomial σ(z) in (5) defines a symmetric pseudo-polynomial

P (z) = p0 +
1

2
p1(z + z

−1) + · · ·+ 1
2
pn(z

n + z−n), (6)

by P (z)
4
= σ(z)σ(z−1). A second pseudo-polynomial,

Q(z) = q0 +
1

2
q1(z + z

−1) + · · ·+ 1
2
qn(z

n + z−n), (7)
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corresponding to the polynomial a(z) in (5), defined by Q(z)
4
= a(z)a(z−1), deter-

mines the variables of the optimization problem introduced in (Byrnes et al., 1999):

(Pq)





min
q

φ(q),

s.t. q ∈ Dn



 , (8)

where

q
4
=
[

q0 q1 . . . qn

]>

, (9)

and the feasible region will be defined below. The objective function φ :
� n+1 → �

is given by

φ(q)
4
=

n∑

k=0

rkqk − 〈logQ,P 〉, (10)

where 〈·, ·〉 denotes the L2 inner product

〈a, b〉 4= 1
2π

∫ π

−π

a(eiθ)b(e−iθ) dθ. (11)

With slight abuse of notation, the same inner product notation is used for vectors
and matrices, in which case the inner product is determined componentwise. Using
the notation

r
4
=

[

r0 r1 . . . rn

]>

, z
4
=

[

zn zn−1 . . . 1
]>

,

z̃
4
=

[

1 z . . . zn
]>

, z̃∗
4
=

[

1 z−1 . . . z−n
]>

,

explicit expressions for the derivatives of φ are given by the following proposition.

Proposition 1. The gradient of φ is given by

∇φ = r−
〈

z̃,
P

Q

〉

.

The Hessian of φ is given by

Hq
4
= ∇2φ =

〈1

2
(z̃+ z̃∗)

P

Q2
,
1

2
(z̃+ z̃∗)>

〉

,

where the elements hi,j =
∂2φ

∂qi∂qj
are given by hi,j = (di+j + d|i−j|)/2, and

dk
4
=
〈

zk,
P

Q2

〉

, k = 0, 1, . . . , 2n.
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The feasible region Dn denotes the set of vectors d ∈
� n+1 of coefficients

corresponding to symmetric positive pseudo-polynomials of order at most n, namely,

Dn
4
=

{

q | Q(z) = q0 +
1

2
q1(z + z

−1) + · · ·+ 1
2
qn(z

n + z−n),

Q(z) > 0, ∀z : |z| = 1
}

. (12)

Since P (eiθ) = |σ(eiθ)|2, it is clear that p ∈ Dn, and therefore the objective function
is strictly convex. Since the feasible region is convex, (Pq) is a convex optimization
problem. If, in addition, we assume that the sequence r0, r1, . . . , rn is a positive co-
variance sequence, then (Pq) has a unique solution in the open feasible region Dn.
This follows from, among other things, the fact that the directional derivative is in-
finite on the boundary. In fact, the second term acts as a barrier and pushes the
solution to the interior of Dn (for details, see (Byrnes et al., 1999)). The stationar-
ity condition, ∇φ = 0, implies that the solution to the optimization problem (Pq)
satisfies 〈z̃, P/Q〉 = r, i.e.

P (z)

Q(z)
= r̃0 +

∞∑

k=0

r̃k(z
k + z−k), (13)

where r̃k = rk for k = 0, 1, . . . , n. Consequently, this is the unique solution to the
RCEP corresponding to the numerator polynomial σ(z), and the corresponding de-
nominator polynomial a(z) in (5) can be obtained by means of spectral factorization
of Q(z).

A difficulty in solving the problem (Pq) is that the positivity constraints on
Q should hold at an infinite number of points. This can be dealt with by using a
Linear Matrix Inequality (LMI) formulation of the constraints, see, e.g., (Wu et al.,
1997). However, since we know that the constraints will not be active at the optimal
point, the most computationally efficient way to solve this problem is to discretize
the constraints.

Another complication is caused by the barrier-like term in the objective function.
As in barrier function methods, an ill-conditioning of the Hessian may occur close to
the boundary (Nash and Sofer, 1996). But, also as in barrier methods, there are
ways to get around the ill-conditioning in this problem as well. The optimization
problem (Pq) is formulated in the parameters qk of the spectrum of the problem,
while the optimization problem presented in this paper is formulated directly in the
filter parameters a.

Example 1. To illustrate the sensitivity in the coefficients of the pseudo-polynomial,
a polynomial a(z) of degree 3 with all zeros at 0.95 is studied. Let Q(z) be the
corresponding pseudo-polynomial, and Qε(z) = Q(z) + ε(Q(z) − q0) a perturbed
version. Then if aε(z) is a spectral factor of Qε(z), and, for example, ε = −0.01,
then the coefficients of aε change as much as 100% and the zeros shift as depicted in
Fig. 1.
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Fig. 1. Location of the zeros before (o) and after (+) a small disturbance.

For the optimization process to work properly, the condition number of the Hes-
sian should not be too large. The problem of ill-conditioning occurs mostly close to
the boundary of the feasible region. In many applications, like speech processing, the
optimum will occur precisely in this region. �

Example 2. This example illustrates how fast the Hessian gets ill-conditioned
close to the boundary of the feasible region. The condition number of a matrix

is defined by κ(H)
4
= ‖H‖ ‖H−1‖, and if the matrix 2-norm is used, κ(H)2 =

max‖d‖=1 d
>Hd/min‖d‖=1 d

>Hd.

Assuming that a(z) = (z − 1 + ε)ν(z), we obtain

Q(eiθ) =
(
ε2 + 2(1− ε)(1− cos θ)

)
|ν(eiθ)|2

≤
(
ε2 + (1− ε)θ2

)
|ν(eiθ)|2. (14)

The second derivative will now be determined in two different directions, approximat-
ing the eigenvectors of the maximum and minimum eigenvalues. Let the Hessian of
φ(q) be denoted by Hq as in Proposition 1, where Hq = 〈 12 (z̃+ z̃∗) PQ2 , 12 (z̃+ z̃∗)>〉.

First, a lower bound for max‖d‖=1 d
>Hqd is determined. Let, e.g.,

Ď(z) = 1 +

n∑

k=1

(zk + z−k),

ď being the vector of coefficients of Ď, and define Mδ
4
= min0≤θ≤δ P (e

iθ) Ď(e
iθ)2

|ν(eiθ)|2
.
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Then

ď>Hqď =
〈 Ď

Q2
, P Ď

〉

≥ 1

2π

∫ π

−π

P (eiθ)

(ε2 + (1− ε)θ2)2
Ď(eiθ)2

|ν(eiθ)|2 dθ

≥ Mε
ε4

∫ ε

−ε

1

(1 + 1−εε2 θ
2)2
dθ

≥ Mε
2ε3

. (15)

Secondly, an upper bound for min‖d‖=1 d
>Hqd is determined. Since Q(1) = ε

2ν(1)2

tends to zero, let D̂(z) = Q(z) in order to cancel this term.

d̂>Hqd̂ =
〈 D̂

Q2
, P D̂

〉

= 〈1, P 〉 = p0. (16)

The condition number of the Hessian will thus increase at least as 1/ε3/2 as ε→ 0,
since Mε is an increasing function.

The condition number of the Hessian will thus increase close to the boundary,
and if the optimal solution is located close to the boundary, it will be sensitive to small
perturbations. It is important to note that the ill-conditioning mentioned here is due
to the solution procedure and not to an ill-conditioning of the covariance extension
problem per se. �

3. A New Formulation of the Optimization Problem

The optimization problem (Pq) will now be reformulated by a change of variables.
(Pq) was formulated in q =

[

q0 q1 . . . qn

]>

, the vector of coefficients of Q(z).

As new variables the elements of the vector

a
4
=
[

a0 a1 . . . an

]>

(17)

are used, i.e. the coefficients of the stable spectral factor a(z) corresponding to Q(z).
This change of variables is well defined, as will be seen next.

Let Sn and Dn define the Schur region and the region of positive pseudo-
polynomials, respectively,

Sn
4
=

{

a | a(z) = a0zn + a1zn−1 + · · ·+ an, a0 > 0,

a is a real stable polynomial

}

, (18)

Dn
4
=

{

Q | Q(z) = q0 +
1

2
q1(z + z

−1) + · · ·+ 1
2
qn(z

n + z−n),

Q(z) > 0, ∀z : |z| = 1
}

, (19)
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and consider the map T : Sn → Dn, defined by T (a)
4
= a(z)a(z−1). Since the

coefficients of a(z) are real, (Ta)(z) = |a(z)|2 > 0 for all z on the unit circle.
In order for the change of variables to be well defined, the map T should be one-to-
one, continuously differentiable and having a nonvanishing Jacobian for all a(z) ∈ Sn.
This will be shown next.

Given a pseudo-polynomial Q ∈ Dn, the Fejérs Theorem (Caines, 1987) ensures
that there is a unique polynomial a(z) such that Q(z) = a(z)a(z−1), where a(z) ∈
Sn. Therefore, there is a one-to-one correspondence between pseudo-polynomials pos-
itive on the unit circle and Schur polynomials. The inverse operation, corresponding
to T−1, of determining a(z) from Q(z) is called spectral factorization. There are a
number of methods for spectral factorization of a positive pseudo-polynomial (Good-
man et al., 1997), e.g. the Bauer method (Bauer, 1955) and the method of Wilson
(Wilson, 1969). The factorization usually becomes more difficult and more inaccurate
numerically as the zeros of a(z) get closer to the unit circle, and the mapping is
actually singular on the unit circle.

It remains to show that the map T has an everywhere nonvanishing Jacobian.
Defining the map S : Sn × Sn → Dn by

S(a)b
4
= a(z)b(z−1) + a(z−1)b(z), (20)

we have that T (a) = 12S(a)a. The Gâteaux differential at a in direction p is

δpT
4
= lim
ε→0

1
2S(a+ εp)(a+ εp)− 12S(a)a

ε

= a(z)p(z−1) + a(z−1)p(z) = S(a)p. (21)

In fact, S(a) is the Fréchet derivative of the map T . It is well-known, see, e.g.,
(Byrnes et al., 1995; Goodman et al., 1997), that if a is a Schur polynomial, then
S(a) is nonsingular.

Corresponding to the map T , there is a map π : Sn → Dn, where

Sn
4
=
{
a ∈ � n+1 | a0 > 0, a(z) = a>z is a stable polynomial

}
, (22)

defined as follows. Given an a ∈ Sn, T (a>z) determines a pseudo-polynomial Q
that can be parameterized as in (7), which in turn determines a vector q as in (9).
The map π defined in this way connects the original and the new objective functions
φ and f as depicted in Fig. 2.

Sn �
f

�

Dn

�
��� �

���
π φ

Fig. 2. Commutative diagram describing the correspondence between f and φ.
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The objective function can then be expressed in a using the function f
4
= φ ◦ π.

From the discussion above it is clear that this change of variables is well defined.

To determine an explicit expression for f , consider first the linear part of the
objective function. In the L2 inner product, we have

n∑

k=0

rkqk = 〈R,Q〉, (23)

where

R(z)
4
= r0 + r1(z + z

−1) + · · ·+ rn(zn + z−n), (24)

and the sum can now be written as 〈R, aa∗〉 = 〈Ra, a〉, where a∗(z)
4
= a(z−1).

A matrix representation is determined by observing that a(z) = z>a, then it follows
that

〈Ra, a〉 = a>〈zR, z>〉a = a>〈R, z∗z>〉a = a>Ra, (25)

where R is defined in (1). The second term in the objective function can be translated
in a similar way. Using the same factorization, we have logQ(z) = log a(z)a(z−1) =
log |a(z)|2 on the unit circle, and the objective function can be written as

f(a) = a>Ra− 2〈log |a|, P 〉. (26)

Then the new optimization problem in a can be stated as

(Pa)




min
a

f(a)

s.t. a ∈ Sn



 . (27)

In contrast to (Pq), the problem (Pa) is a nonconvex optimization problem. The
Schur region Sn is a cone with a cross section region which is nonconvex for n ≥ 3,
as depicted in Fig. 3 for the case n = 3. A number of the nice properties of (Pq) are,
however, inherited by (Pa).
Solving the new optimization problem by an iterative method requires determin-

ing function values or derivatives of the objective function. There are two terms in the
objective function (26), the first of which is just a positive definite quadratic form.
Using the symmetry of the pseudo-polynomial P , the second term can be written as

ψ(a)
4
= 〈log |a|2, P 〉 =

n∑

k=0

pk〈log |a|2, zk〉 =
n∑

k=0

pkck, (28)

where ck
4
= 〈log |a|2, zk〉 are the so-called cepstral parameters of a Moving Average

(MA) filter defined by a(z). These parameters can be determined using the recursion
formula

c0 = 2 log a0, ck =
ak
a0
−
k−1∑

j=1

j

k

ak−j
a0

cj , k = 1, . . . , n, (28′)
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Fig. 3. The region of stable monic (a0 = 1) polynomials of order 3.

which is a minor modification of the formula given in (Markel and Gray, 1976) for
Auto Regressive (AR) filters.

Fixing a0 6= 0 to be constant, (28′) shows that ψ is a polynomial in
a1, a2, . . . , an. Therefore the gradient ∇ψ remains bounded as a tends to the bound-
ary of Sn, in sharp contrast to the situation regarding φ. This is the basic reason
why the optimization problem Pa is better behaved than Pq, especially for minima
close to the boundary.

As a simple but important example let us first consider the maximum entropy
solution, i.e. the special case of the problem (Pa) corresponding to σ(z) = zn. Then
P (z) = 1, and hence ψ(a) = 2 loga0. Consequently, the objective function (26) be-
comes

f0(a)
4
= a>Ra− 2 log a0. (29)

Since the Toeplitz matrix R is positive definite, f0 is strictly convex. Hence there is
at most one minimum. To determine this possible minimum, set the gradient equal
to zero to obtain

1

2
g0(a)

4
= ∇f0 =










r0 r1 . . . rn

r1 r0
. . .

...
...
. . .

. . . r1

rn . . . r1 r0


















a0

a1
...

an









−









1/a0

0
...

0









= 0. (30)
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That is, defining ϕni
4
= ai/a0 for i = 0, 1, . . . , n, we get










r0 r1 . . . rn−1

r1 r0
. . .

...
...

. . .
. . . r1

rn−1 . . . r1 r0


















ϕn1

ϕn2
...

ϕnn









= −









r1

r2
...

rn









, (31)

and
[

r0 r1 . . . rn

] [

1 ϕn1 . . . ϕnn

]>

=
1

a20
. (32)

Hence, we obtain the well-known normal equations, which can be solved quickly using
the Levinson algorithm (Porat, 1994). Since ϕn(z) = z

n+ϕn1z
n−1+ · · ·+ϕnn is the

n-th Szegö polynomial, which is a stable polynomial, ϕn ∈ Sn, and hence there is a
unique minimum.

In the general case when P is no longer constant, the situation is more compli-
cated. First we shall need expressions for the gradient and Hessian.

Proposition 2. The gradient of f is given by

g(a)
4
= ∇f = 2

(
R−R(a)

)
a, (33)

where R(a) is the n×n Toeplitz matrix of covariances of the spectral density P/|a|2.

Proof. Noting that a∗(z) = z∗>a, the gradient of f is derived as follows:

∇f = 2Ra− 2
〈

z
1

a
, P
〉

= 2Ra− 2
〈 1

|a|2 zz
∗>, P

〉

a = 2
(
R−R(a)

)
a. (34)

The gradient of f is thus given by the difference between the Toeplitz matrices of
the desired covariances and the covariances of the filter corresponding to the current
iteration point, multiplied by the denominator coefficients of this filter. This can be
compared with the gradient of φ given in Proposition 1, which is the difference of
the desired covariances and the covariances of the filter corresponding to the current
iteration point.

Proposition 3. The Hessian of f is given by

Ha
4
= ∇2f = 2R+ 2Ξ, (35)

where the (k, j)-th element, ξk,j , of the (n+ 1)× (n + 1) matrix Ξ satisfies ξk,j =
ξ̃k+j−2, and is given by

ξ̃m =







n∑

j=0

n∑

k=0

ajakζj+k−m, m = 0, 1, . . . , n,

0, m > n,

(36)
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where ζk are the covariances of the filter σ/a
2, i.e.

P (z)

|a(z)|4 =
∞∑

k=−∞

ζkz
−k.

Proof. The second-order derivative of f is given by

∇2f = 2R+ 2
〈

zz>
1

a2
, P
〉

. (37)

The Hessian thus takes the form of a sum of a Toeplitz and a Hankel matrix as stated
in (35). It remains to show that the elements

ξ̃m =
〈z2n−m

a2
, P
〉

=
〈zm

a2∗
, P
〉

, m = 0, 1, . . . , 2n, (38)

where a∗(z)
4
= zna(z−1), are determined by (36).

The elements ξ̃m can be determined using calculus of residues, and since 1/a
2
∗

is expanded around the origin with positive powers of z , and the only terms with
inverse powers of z come from P , it follows that ξ̃m = 0 for m > n. Therefore the
Hessian is determined by only n+ 1 terms.

Another way to determine ξ̃m is to multiply the numerator and denominator
in (38) by (a∗)2,

ξ̃m =
〈

z2n−m
(a∗)2

(aa∗)2
, P
〉

=

n∑

j=0

n∑

k=0

ajak

〈

z2n−mz−n+jz−n+k,

∞∑

l=−∞

ζlz
−l
〉

=

n∑

j=0

n∑

k=0

ajakζj+k−m,

and determine the covariances ζ0, ζ1, . . . , ζ2n−m of the filter σ
2/a2. This proves the

remaining part of (36).

Clearly, we would like to find a stationary point for f , but it remains to demon-
strate that such a point exists and that it is unique.

Proposition 4. The optimization problem Pa has a unique stationary point â. More-
over, if q̂ is the unique stationary point of Pq, then π(â) = q̂.

To prove this, we can use the fact that the original optimization problem has a
unique optimum, as proven in (Byrnes et al., 1999). To this end, we first establish
the relation between the gradients and Hessians of the two optimization problems Pq
and Pa.

Proposition 5. The gradient ∇f is related to ∇φ as

∇f = (∇π)>∇φ, (39)
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where ∇π is given by

∇π =















∂q0
∂a0

∂q0
∂a1

. . .
∂q0
∂an

∂q1
∂a0

∂q1
∂a1

. . .
∂q1
∂an

...
...
. . .

...

∂qn
∂a0

∂qn
∂a1

. . .
∂qn
∂an















=









a0 a1 . . . an

2a1 . . . 2an 0
... . .

.
. .
. ...

2an 0 . . . 0









+









a0 a1 . . . an

0 2a0 . . . 2an−1
...
. . .

. . .
...

0 . . . 0 2a0









. (40)

Proof. In order to use the chain rule, the derivatives of π are needed. First, we
determine the elements πk. Let a(z) be an n-th order real polynomial

a(z)
4
= a0z

n + a1z
n−1 + · · ·+ an, a0 > 0, (41)

and Q(z) the pseudo-polynomial determined from a(z) by

Q(z) = Ta = a(z)a(z−1) =

n∑

m=−n

zm
n−|m|
∑

k=0

akak+|m|. (42)

By identifying coefficients in (7) and (42), we get

q0 = π0(a) =

n∑

k=0

a2k, qm = πm(a) = 2

n−m∑

k=0

akak+m, m = 1, . . . , n. (43)

Differentiating φ(π(a)) using the chain rule, we obtain

∂

∂ak
(φ ◦ π) =

n∑

j=0

∂φ

∂qj

∂πj
∂ak

, k = 0, . . . , n, (44)

where differentiation of (43), using the convention aj = 0 if j < 0 or j > n, gives

∂π0
∂al
= 2al,

∂πk
∂al
= 2(al+k + al−k), k = 1, . . . , n. (45)

Equations (39) and (40) are just the matrix form of (44) and (45).

Proposition 6. The Hessians of f and φ are related as

Ha = (∇π)>Hq(∇π) + 2T, (46)
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where T is the Toeplitz matrix of ∇φ. Moreover,
T = R−R(a), (47)

where R(a) is defined as in Proposition 2.

Proof. Repeated use of the chain rule determines the second-order derivatives. Differ-
entiate (44) again to get

∂2f

∂al∂ak
=

n∑

j=0

(
∂

∂al

(
∂φ

∂qj

)
∂πj
∂ak
+
∂φ

∂qj

∂2πj
∂al∂ak

)

=

n∑

i=0

n∑

j=0

∂πi
∂al

∂2φ

∂qi∂qj

∂πj
∂ak
+

n∑

j=0

∂φ

∂qj

∂2πj
∂al∂ak

, (48)

for all k = 0, . . . , n and l = 0, . . . , n. Using (43) again and the Kronecker delta
function, we have

∂2π0
∂al∂ak

= 2δk−l,
∂2πm
∂al∂ak

= 2(δk−l+m + δk−l−m) (49)

for m = 1, . . . , n, and hence the second term in (48) becomes

n∑

j=0

∂φ

∂qj

∂2πj
∂al∂ak

= 2

(
∂φ

∂ql−k
+

∂φ

∂qk−l

)

= 2
∂φ

∂q|k−l|
, (50)

if we set ∂φ/∂qj = 0 whenever j < 0 or j > n. The Toeplitz matrix T is determined
using (50) and Proposition 1.

We are now in a position to prove Proposition 4.

Proof. We will show that f has a unique stationary point. From (39) it is clear that
∇f = 0 if and only if ∇φ = 0 as long as ∇π is nonsingular. It was shown in (21) that
the Fréchet derivative of T is given by S(a). Since ∇π is a matrix representation of
S(a), ∇π must be nonsingular.
It was shown in (Byrnes et al., 1999) that Pq has exactly one stationary point q̂.

Since π is bijective, there is exactly one â ∈ Sn such that π(â) = q̂ and ∇f(â) = 0.
Consequently, the stable spectral factor â of q̂ is the only stationary point in Sn.

Unlike φ, the objective function f(a) is not convex on the whole feasible region
Sn, but we will show here that it is convex in a neighborhood of the optimum. This
is suggested by the following example.

Example 3. Let a(z) = a0z
2 + a1z + a2 be a stable polynomial and P (z) = p0 +

p1(z+ z
−1)+p2(z

2+ z−2) be a pseudo-polynomial strictly positive on the unit circle.

The second term ψ of the objective function f is determined here, using (28)
and (28′), as

ψ(a) = 2

(

p0 log a0 + p1
a1
a0
+ p2

(

a2
a0
− 1
2

(
a1
a0

)2
))

. (51)
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Then

f(a) = a>Ra− ψ(a)

=






a0

a1

a2






> 




r0 r1 r2

r1 r0 r1

r2 r1 r0











a0

a1

a2




−






p0

p1

p2






> 




2 log a0

2a1/a0

2a2/a0




+ p2

a21
a20
. (52)

It is clear that this function is strictly convex for large a0, and it is also clear that
the function is only locally convex. �

Proposition 7. The function f is locally strictly convex in a neighborhood of the
stationary point â.

Proof. According to Proposition 6, the Hessians of f and φ are related as Ha =
(∇π)>Hq(∇π)+2T. The first term (∇π)>Hq(∇π) is positive definite, since Hq is
positive definite and the map ∇π is nonsingular. Therefore, Ha is positive definite
as long as any negative eigenvalue of T is sufficiently small.

We know that ∇φ = 0 at the optimum, so at the optimum we have T = 0
in (46). Then the Hessian of φ is positive definite. Since the elements of T are
continuous functions of a, it also follows that Ha is positive definite in a neighborhood
of the optimum. The objective function f is thus locally convex around the optimum.

To further analyze the region where f is convex, we study the matrix T. Ac-
cording to Proposition 5, T = R−R(a). From this we can also see that the Hessian is
positive definite if ‖a‖ is large, since R(ka) = (1/k2)R(a), and this implies that the
components of R(ka) are small if k is large. Practically, this means that an iterative
optimization procedure applied to (Pa) should start with an a(0) of large norm and
approach the optimum from the locally convex region.

Most of the problems with the optimization problem (Pq) occur close to the
boundary of the feasible region. In (Byrnes et al., 1999) it was shown that the direc-
tional derivative of φ(q) pointing out of the feasible region tends to infinity as q
tends to the boundary. This property repels the optimum of the problem (Pq) from
the boundary, which is really important for that problem. Thanks to this property,
the solution will correspond to a strictly stable filter, and the interpolation conditions
will be satisfied at the optimum.

The functional f(a) does not have the same property, which is illustrated by the
example below.

Example 4. Consider the filter

w(z) =
z + σ

z + a
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and the derivatives

∇f = 2R
[

1

a

]

− 2
[

1 + σ2 − σa
σ

]

, ∇φ = r−








1 +
(σ − a)2
(1− a)2

(σ − a)(1− aσ)
1− a2







.

It is clear that ∇f is bounded as a tends to +1 or −1, whereas ∇φ is unbounded
if |σ| 6= 1 and a tends to +1 or −1.

This also follows from observing (28′) and noting that, for a constant a0 6= 0,
ψ(a) is a polynomial in a1, . . . , an. Therefore, the partial derivatives exist and are
bounded for all a ∈ Sn. However, since the two optimization problems are intimately
connected, the problem (Pa) inherits the property that the solution will be at an
interior point by Proposition 4. By Proposition 5, the gradient ∇φ and ∇f are
related by ∇π. Since for bounded a0 the derivative of f is bounded at the boundary,
the infinite derivative of φ at the boundary is cancelled by the singularity of ∇π at
the boundary.
Similarly, the ill-conditioning of the Hessian is also related to the singularity of

∇π at the boundary. As seen in Example 2, the condition number of Hq increases
rapidly as q tends to the boundary. By Proposition 6, ∇π connects the Hessians of
φ and f , and since ∇π is singular at the boundary, the condition number changes
drastically close to the boundary. Therefore, the optimization formulated directly in
the a(z) parameters is preferred, although it is not convex. �
To illustrate that there is a difference in the condition numbers of the Hessians

Hq and Ha, a low dimensional example is considered next.

Example 5. Let r0 = 1, r1 = 0.99 and r2 = 0.99. Also, let σ(z) = (z−0.8)(z+0.8) =
z2−0.64. With these parameters, the objective function is depicted in Fig. 4 for monic
polynomials a(z). At the optimum, where the roots of a are 0.9996 and −0.3930, we
have the condition number κ(Ha) = 64.6. If we determine the Hessian corresponding
to the objective function formulated in the q parameters, we have κ(Hq) = 2.5 · 109.

Next, the singularity of ∇π at the boundary of the feasible region is studied.
We noted above that ∇T = S(a), and it is well-known that S(a) is singular if a(z)
has roots on the unit circle. A real polynomial a(z) with roots on the unit circle
can be written in at least one of the following three forms: a(1)(z) = (z + 1)ν(z),
a(2)(z) = (z−1)ν(z) and a(3)(z) = (z2+αz+1)ν(z). First, consider the case a(1)(z) =
(z + 1)ν(z). The singular direction of S(a(1)) is given by b(1)(z) = (z − 1)ν(z), i.e.
S(a(1))b(1) = 0. Further, the singular direction b(1) is orthogonal to a(1),

〈
a(1), b(1)

〉
=
〈
(z + 1)ν, (z − 1)ν

〉
=
〈
−(z − z−1), |ν|2

〉
= 0.

By symmetry, the same relations hold for a(2) and b(2) = (z + 1)ν(z). Finally,
S(a(3))b(3) = 0 for b(3)(z) = (z2 − 1)ν(z), and
〈
a(3), b(3)

〉
=
〈
(z2 + αz + 1)ν, (z2 − 1)ν

〉
= −

〈
(z2 − z−2) + α(z − z−1), |ν|2

〉
= 0

by symmetry of |ν(z)|2.
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In Fig. 5 the singular directions (the kernels) of ∇π(a) are depicted for a series
of a’s with a0 = 1. We note that these are roughly orthogonal to the feasible region,
similarly as the directions of the unbounded derivative of the function φ(q). �
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4. Homotopy Approach

The solution to the optimization problem (Pa) is characterized by

g(a)
4
= ∇f(a) = 0. (53)
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This is a parameterized family of nonlinear equations, with the parameters
r0, r1, . . . , rn and p0, p1, . . . , pn. In this section, a continuation method (Allgower
and Georg, 1990) to solve this system of equations will be proposed. The concept of
continuation methods will be explained in the context of the optimization problem
(Pa).
For a fixed positive covariance sequence r0, r1, . . . , rn, the stationary points of

(Pa) form a parameterized solution manifold

P(r) 4= {a | g(a) = 0 for some P ∈ Dn s.t. p0 = 1} ,

where a small variation of the parameters results in a small change of the stationary
point. Considering parameter combinations with one degree of freedom, any two points
on the manifold can be connected with a smooth trajectory. A so-called homotopy is
used to deform the first-order optimality conditions of the optimization problem, and
then a predictor-corrector method is used for tracking the trajectory from a known
starting point on the solution manifold to the desired one.

Definition 1. A continuous function G : U × [0, 1]→ V , where U and V are topo-
logical spaces, is a homotopy between the functions g0 : U → V and g1 : U → V , if
G(·, 0) = g0(·) and G(·, 1) = g1(·).

A number of different homotopy deformations for the problem (Pa) exists. Three
examples, each of which is of the same type as the original problem, are

� Deformation of the covariances,

� Deformation of the zero-polynomial σ(z),

� Deformation of the covariances and the zero-polynomial σ(z).

We shall adopt a deformation of the zero-polynomial here, which generates a solution
trajectory in the solution manifold P(r). Such a homotopy is proposed to have g0 =
f0, the objective function defined in (29) corresponding to σ(z) = z

n, and g1 = f , the
objective function corresponding to the desired σ(z). Then the Maximum Entropy
solution can be used to determine the starting point of the trajectory defined by the
homotopy. Since the objective function φ(q) of (Pq) can be thought of as a linear
problem plus a barrier function, it is most natural to use a homotopy that acts on
the barrier term, as the popular interior point methods used for Linear Programming
(Nash and Sofer, 1996). Also numerical examples indicate that the deformation of
the zero-polynomial σ(z) gives the best results. An intuitive explanation of why this
gives the best results is that the dominant poles of the Maximum Entropy solution
are almost invariant under the deformation of σ(z). Maximization of the frequency
weighted Maximum Entropy measure will still concentrate on the matching of the
spectrum at the peaks, at least in regions where P is large, and the peaks are,
of course, a result of the position of the poles. There is another important reason to
choose the deformation of the zero-polynomial σ(z), namely, because the intermediate
results provide covariance interpolating filters. So if the optimization procedure is
interrupted before it has converged, relevant partial results exist.
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The zero-polynomial σ(z) can also be deformed in several ways. This deformation
should be such that

σ0(z) = z
n, σ1(z) = σ(z), (54)

and σρ(z) should be stable for all ρ ∈ [0, 1]. The choice of deformation made here is
implicitly defined by a homotopy of the pseudo-polynomial

Pρ(z)
4
= p0 + ρ

1

2
p1(z + z

−1) + · · ·+ ρ1
2
pn(z

n + z−n). (55)

Thus the following set of problems is considered:

(Pρa )





min
a

fρ(a),

s.t. a ∈ Sn,



 , (56)

where ρ ∈ [0, 1] and

fρ(a)
4
= a>Ra− 2〈log |a|, Pρ〉. (57)

For a fixed value of ρ in [0, 1], this problem is of the same form as (Pa). For ρ = 1
we have precisely (Pa), and for ρ = 0 we have P0(z) = p0, so (P0a) is the maximum
entropy problem. For intermediate values we have the following lemma.

Lemma 1. If P ∈ Dn, then Pρ ∈ Dn for all ρ ∈ [0, 1].

Proof. For each θ ∈ [−π, π], and each ρ ∈ [0, 1],

Pρ(e
iθ) = ρP (eiθ) + (1− ρ)p0 > 0,

since P (eiθ) > 0 and p0 > 0.

From the Fejérs Theorem and Lemma 1 we know that there exists a unique stable
polynomial σρ(z) such that σρ(z)σρ(z

−1) = Pρ(z), and then for each ρ in [0, 1] there
is one and only one a ∈ Sn such that

γ(a, ρ)
4
= ∇fρ(a) = 2Ra− 2

〈

z
1

a
, Pρ

〉

= 0. (58)

We denote this a by â(ρ). The function γ : Sn× [0, 1]→
� n is a homotopy between

g0 defined in (30) and g defined in (53).

4.1. Initial Value Problem Formulation

In Proposition 7 it was shown that ∇2f(a) is positive definite at the optimum, from
which it is clear that ∇aγ(a, ρ) is positive definite at the optimum for all ρ ∈ [0, 1].
The Implicit Function Theorem (Rudin, 1976) implies that there is a differentiable
function â :

� → Sn such that γ(â(ρ), ρ) = 0 for all ρ in [0, 1]. The function â
inherits the C∞ property from γ , and defines a smooth trajectory in the space Sn.
We will show below that this function satisfies an Initial Value Problem (IVP).
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Differentiation of the identity γ(â(ρ), ρ) ≡ 0 with respect to ρ gives rise to the
so-called Davidenko equation (Allgower and Georg, 1990; Davidenko, 1953)

∇aγ
(
â(ρ), ρ

)dâ(ρ)

dρ
+

∂

∂ρ
γ
(
â(ρ), ρ

)
= 0, ρ ∈ [0, 1]. (59)

Since ∇aγ(â(ρ), ρ) = ∇2fρ(â(ρ)) is positive definite, we know that â must satisfy
the well-defined initial value problem

(IVP)







dâ(ρ)

dρ
= −

[
∇aγ

(
â(ρ), ρ

)]−1 ∂

∂ρ
γ
(
â(ρ), ρ

)
,

â(0) = aME,

(60)

where aME = a0
√
p0

[

1 ϕn1 · · · ϕnn

]>

is easily obtained from (31) and (32).

4.2. Predictor-Corrector Method

A Predictor-Corrector method is a trajectory following method. It is an iterative
method that alternates between two steps. The first step is the predictor step based
on numerical integration of the IVP; here an Euler predictor step will be used. The
second step is the corrector step where we will apply Newton steps to the current
(Pρa ). An important property of the IVP that makes it well-suited for an embedding
method (Allgower and Georg, 1993; Arnold, 1983) is that the trajectory â(ρ) has no
bifurcations. This follows from the Implicit Function Theorem and the discussion in
Section 4.1.

A predictor step is now defined as an Euler step for the IVP, namely,

δâ(ρ) = −
[
∇aγ

(
â(ρ), ρ

)]−1 ∂

∂ρ
γ
(
â(ρ), ρ

)
δρ, (61)

for some step size δρ.

The corrector step is defined as an iterative optimization method applied to the
optimization problem (Pρ+δρa ) using the predictor point â(ρ)+ δâ(ρ) as the starting
point. Here, Newton’s method is used as the optimization procedure. A modified
version using an inaccurate line search, such as Armijo’s rule (Luenberger, 1984),
increases the robustness.

5. The Algorithm

One of the most important parts of the Predictor-Corrector method is the choice
of the step size δρ. Since too large a step may cause convergence problems for the
corrector algorithm, and too small a step will lead to long computation times, great
care has to be taken at this point.

With minor modifications the convergence theorem in (Allgower and Georg, 1990)
can be used to show convergence for the Predictor-Corrector method applied on (Pρa)
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if a sufficiently small uniform step length is used. But since it is hard to get a bound
on how small the steps have to be, it gives no aid in designing a numerical algorithm.

For a computationally efficient method one should use another approach, with
an adaptive procedure for choosing the step length.

5.1. Adaptive Step Length Procedure

One way to determine the step length is to use the convergence proofs available for
the corrector step method. In our case Newton’s method is used, and the well-known
Newton-Kantorovich (NK) Theorem can be applied. The NK Theorem was used by
Den Heijer and Rheinboldt (1981) for determining error models for general problems,
but it will be used here for guaranteeing convergence in the specific problem considered
here.

The following formulation of the NK Theorem can be found in (Ortega and
Rheinboldt, 1970).

Theorem 1. (Newton-Kantorovich) Assume that g : D ⊂ � n → � n is Fréchet-
differentiable on a convex set D0 ⊂ D and that

‖∇g(x)−∇g(y)‖2 ≤ γ‖x− y‖2, ∀x,y ∈ D0,
for some γ > 0. Suppose that there exists an x0 ∈ D0 such that α = βγη ≤ 1/2, for
some β, η > 0 meeting

β ≥
∥
∥∇g(x0)−1

∥
∥
2
, η ≥

∥
∥∇g(x0)−1g(x0)

∥
∥
2
. (62)

Set

t∗ = (βγ)−1
[
1− (1− 2α)1/2

]
,

t∗∗ = (βγ)−1
[
1 + (1− 2α)1/2

]
,

and assume that the closed ball B̄(x0, t∗) is contained in D0.

Then the Newton iterates

xk+1 = xk −∇g(xk)−1g(xk), k = 0, 1, . . .

are well-defined, remain in B̄(x0, t∗), and converge to a solution x∗ of g(x) = 0
which is unique in B̄(x0, t∗∗) ∩D0.
In order to apply this theorem to the function g defined by (53), the parameters

η, β and γ need to be determined. First, let a0 be the polynomial corresponding to
the predictor point â(ρ) + δâ, and define the constants η and β so that (62) hold
with x0 = â(ρ) + δâ.

Next, we prove the Lipschitz continuity of the derivative ∇g(a), and determine
a feasible value of the Lipschitz constant γ, so that D0 = B̄(a

0, t∗). To this end, note
that

∥
∥∇g(a) −∇g(b)

∥
∥
2
= 2

∥
∥
∥R+

〈 1

a2
zz>, P

〉

−R−
〈 1

b2
zz>, P

〉∥
∥
∥
2

= 2
∥
∥
∥

〈( 1

a2
− 1
b2

)

zz>, P
〉∥
∥
∥
2
.
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Let us define

χ(z) = P (z)

(
1

a(z)2
− 1

b(z)2

)

=

∞∑

k=−n

χkz
−k.

Then

〈( 1

a2
− 1
b2

)

zz>, P
〉

=









χ0 χ1 . .
.

χn

χ1 χ2 . .
.

χn+1

. .
.
. .
.
. .
. ...

χn χn+1 . . . χ2n









(63)

is a Hankel matrix with symbol χ. The Nehari Theorem (Chui and Chen, 1992)
implies ‖Hχ‖2 ≤ ‖χ‖∞, where Hχ is the infinite Hankel matrix, and it is clear that
the following inequality holds for the n× n submatrix in (63):

2
∥
∥
∥

〈( 1

a2
− 1
b2

)

zz>, P
〉∥
∥
∥
2
≤ 2

∥
∥
∥

( 1

a2
− 1
b2

)

P
∥
∥
∥
L∞

≤ 2
∥
∥
∥

( 1

a2
− 1
b2

)∥
∥
∥
L∞
‖P‖L∞. (64)

A bound on the infinity norm of the pseudo-polynomial P is easy to determine. In
fact, it is clear that

‖P‖L∞ ≤ ‖p‖1, where p
4
=
[

p0 p1 . . . pn

]

. (65)

In order to determine the infinity norm of the first factor in (64), the following lemma
is useful.

Lemma 2. If x, y ∈ �
and x, y ∈ B(a, |a|/4), then

∣
∣
∣
∣

1

x2
− 1
y2

∣
∣
∣
∣
≤ 8

|a|3 |x− y|. (66)

Proof. If x, y ∈ B(a, |a|/4), then we can write x = a + ax and y = a + ay, where
|ax| < |a|/4 and |ay| < |a|/4. Then

∣
∣
∣
∣

1

(a+ ax)2
− 1

(a+ ay)2

∣
∣
∣
∣
=

∣
∣
∣
∣

(ay − ax)(2a+ ax + ay)
(a+ ax)2(a+ ay)2

∣
∣
∣
∣
,

and since

|2a+ ax + ay| = |a|
∣
∣
∣2 +

ax
a
+
ay
a

∣
∣
∣ ≤ 5/2|a|

and

|a+ ax| = |a|
∣
∣
∣1 +

ax
a

∣
∣
∣ ≥ 3/4|a|,
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we have

∣
∣
∣
∣

1

x2
− 1
y2

∣
∣
∣
∣
≤ 1|a|3

5/2

(3/4)2(3/4)2
|ax − ay| ≤

8

|a|3 |x− y|.

So assuming that a, b ∈ B̄(a0, 1/4‖1/a0‖−1L∞), it follows that

∥
∥∇g(a) −∇g(b)

∥
∥
2
≤ 2 · 8

∥
∥
∥
∥

1

a0

∥
∥
∥
∥

3

L∞
‖a− b‖L∞‖p‖1.

Finally, using the equivalence of the vector norms to get back to the 2-norm
‖a− b‖L∞ ≤ ‖a− b‖1 ≤

√
n‖a− b‖2 shows that

∥
∥∇g(a) −∇g(b)

∥
∥
2
≤ γ̄‖a− b‖2, γ̄ = 16

√
n‖p‖1

∥
∥1/a0

∥
∥
3

L∞
, (67)

an upper bound on the Lipschitz constant is γ̄. This Lipschitz constant holds in
B̄(a0, 1/4‖1/a0‖−1L∞), so take t∗ < ‖1/a0‖−1L∞/4. Note that if P is replaced by Pρ
and ρ ∈ [0, 1], the bound on the infinity norm in (65) still holds and the same γ̄ is
valid.

In order to use the NK Theorem to prove convergence, the step length has to
be chosen so that α = βγη ≤ 1/2 and t∗ < ‖1/((â(ρ) + δâ)>z)‖−1L∞/4. This can be
achieved since η approaches zero as the step length approaches zero.

An algorithm based on this step length procedure and on predictor corrector
steps as discussed in Section 4.2 is proposed next.

Algorithm 1. (Predictor-corrector with adaptive step length)

1. Let k = 0, ρ = 0 and a(0) = aME = a0
√
p0

[

1 ϕn1 · · · ϕnn

]>

.

2. Determine an initial step length δρ.

3. If necessary, reduce the step length until α = βγη ≤ 1/2 and t∗ <
‖1/a(k)‖−1L∞/4 is satisfied.

4. Let ρ := min{1, ρ+ δρ}, k := k + 1.

5. Predictor step: Let b(k) = a(k−1)+δâ(ρ) be the estimate of â(ρ) defined by (61).

6. Corrector step: Solve Pρa for a(k) initiated at b(k), using Newton’s method.

7. If ρ = 1 then a(k) is the solution, otherwise go to 2.
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a

a

a<ε

ρâ(  )

aδ

0

1

Fig. 6. â(ρ) and predictor step.

5.2. How to Choose the Initial Step Size δρ

In this section a procedure to determine an initial step length is proposed. We know
that γ(â(ρ), ρ) = 0, so

γ
(
â(ρ), ρ

)>
â(ρ) = 2

〈
â(ρ),Râ(ρ)

〉
− 2〈1, Pρ〉 = 0 (68)

follows from (58). Now, since 〈1, Pρ〉 = p0 independently of ρ, we have
〈
â(ρ),Râ(ρ)

〉
≡ p0, (69)

so â(ρ) lies on an ellipse defined by the covariances as depicted in Fig. 6.

From (61), the predictor step can be written as δâ = v δρ, where

v = −
[
∇aγ(â(ρ), ρ)

]−1 ∂

∂ρ
γ
(
â(ρ), ρ

)
. (70)

The step size δρ can now be chosen so that â + δâ does not deviate from the
ellipse more than some given ε in the metric defined by 〈·R, ·〉. Since â(ρ) is confined
to the ellipsoid, the tangent δâ is orthogonal to the normal n̂

4
= 2Râ of the ellipsoid

at â. Then

(â+ δâ)>R(â+ δâ) = â>Ra
︸ ︷︷ ︸

=p0

+2 δâ>Râ
︸ ︷︷ ︸

=0

+ δâ>Rδâ
︸ ︷︷ ︸

≥0

≥ p0,

and â+ δâ will lie outside the ellipsoid. The initial step length δρ is chosen so that

(â+ δρv)>R(â+ δρv) = â>Râ+ ε

for some ε > 0. This criterion leads to the step size

δρ =

√
ε

v>Rv
. (71)

Note that the distance between â+δâ and â(ρ+δρ) is in general larger than ε. Note
also that, since â+ δâ is “larger” than â(ρ+ δρ), the Hessian ∇γ(â+ δâ, ρ+ δρ) is
more likely to be positive definite, as argued in the discussion following Proposition 6.
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5.3. A Practical Algorithm

The step length determined by Algorithm 1 is in general too small to be useful in
practice. Therefore, less stringent conditions need to be used in Step 3. If Newton’s
method is used with an inaccurate line search in the corrector step, the domain of
convergence for the corrector step is enlarged and it pays off to take longer predictor
steps. The initial step length determined in Section 5.2 is almost always satisfactory,
and gives only a few predictor steps with “rule of thumb” choices of ε.

6. Convergence of the Proposed Algorithm

Theorem 2. If the constant ε > 0 is chosen sufficiently small, Algorithm 1 will
converge in a finite number of steps.

0

ME
a

ρρ 1

ρ^
v

ρ^

K

+a(  )

^ ρ+δρa(         )

ρ+δρ

δρ
a(  ) δρv

PSfrag replacements

a

Fig. 7. â(ρ), predictor and corrector step.

Proof. It follows from the NK Theorem that the corrector steps will converge. What
remains to be proven is that there will only be a finite number of predictor steps.
Since the trajectory â(ρ) is in the interior of Sn and on an ellisoid (69), there exists
a compact neighborhood K ⊂ Sn of the trajectory and, especially 0 6∈ K.
Let v be the predictor step direction as defined in (70). Choose ε > 0 small

enough such that â(ρ) + δρv ∈ K for all ρ ∈ [0, 1]. Then

d(a)
4
= − ∂

∂ρ
γ(a, ρ) = 2

〈

z
1

a
, P − p0

〉

, (72)
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which follows from (58) and the definition of Pρ in (55). Next, define

C1
4
= max

{
‖1/a‖L∞ | a ∈ K

}
,

C2
4
= max

{
‖(∇aγ(a, ρ))−1‖ | a ∈ K, ρ ∈ [0, 1]

}
,

C3
4
= max

{
‖∇2aγ(a, ρ)‖ | a ∈ K, ρ ∈ [0, 1]},

C4
4
= max

{
‖d(a)‖ | a ∈ K

}
,

C5
4
= max

{
‖∇ad(a)‖ | a ∈ K

}
,

(73)

and note that these maxima exist since the arguments define continuous functions.

We will prove that the step length can uniformly be bounded from below. Thus
it is clear that ρ will converge to one in a finite number of steps.

Consider the step length condition α = βγη ≤ 1/2 in Step 3 of the algorithm.
It is clear that β ≤ C2, and from (67) it follows that γ ≤ 16

√
n‖p‖1C31 . Since

‖∇γ(a, ρ)−1γ(a, ρ)‖ ≤ ‖∇γ(a, ρ)−1‖‖γ(a, ρ)‖, it follows that the step length criterion
is implied by

∥
∥γ
(
â(ρ) + δρv, ρ+ δρ

)∥
∥ ≤ 1/2

16
√
n‖p‖1C31C22

. (74)

The predictor step is now considered. Using the Taylor expansion of γ in the
first variable around (â(ρ), ρ+ δρ), we have

γ
(
â(ρ) + δρv, ρ+ δρ

)
= γ

(
â(ρ), ρ+ δρ

)
+ δρ∇aγ

(
â(ρ), ρ+ δρ

)
v +

δρ2

2
M1[v,v].

Since γ is affine in the second argument,

γ
(
â(ρ), ρ+ δρ

)
= γ

(
â(ρ), ρ

)
− δρd

(
â(ρ)

)
= −δρd

(
â(ρ)

)
,

as seen from (72), it follows that

γ
(
â(ρ) + δρv, ρ+ δρ

)
= −δρd

(
â(ρ)

)
+
δρ2

2
M1[v,v]

+ δρ
(
∇aγ

(
â(ρ), ρ

)
− δρ∇ad

(
â(ρ)

))
v

= −δρ2∇ad
(
â(ρ)

)
v +

δρ2

2
M1[v,v]. (75)

Consequently,

∥
∥γ
(
â(ρ) + δρv, ρ+ δρ

)∥
∥ ≤ C5δρ2‖v‖+

1

2
C3δρ

2‖v‖2, (76)
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where

‖v‖ ≤
∥
∥
(
∇aγ(â(ρ), ρ)

)−1‖
∥
∥d
(
â(ρ)

)∥
∥ ≤ C2C4. (77)

So the bound for η is of order δρ2:

∥
∥γ
(
â(ρ) + δρv, ρ+ δρ

)∥
∥ ≤

(

C5C2C4 +
1

2
C3(C2C4)

2
)

δρ2, (78)

and the condition on the step length (for any ρ) is satisfied if

δρ ≤
√

1/2

16
√
n‖p‖1C31C22

1

C5C2C4 +
1
2C3(C2C4)

2
. (79)

A similar argument can be used to show a uniform bound for the condition
t∗ < ‖1/((â(ρ)+δâ)>z)‖−1L∞/4. Using (73), it is clear that the condition t∗ < 1/(4C1)
is a stricter version, and this is the one used below.

The definition t∗ = (βγ)−1(1 −
√
1− 2α), and the expression (67) for γ shows

that the condition on the step length is satisfied if

1−
√
1− 2α
β

≤ 16
√
n‖p‖1C31
4C1

.

Define a sixth constant

C6
4
= min

{∥
∥(∇aγ(a, ρ))−1

∥
∥ | a ∈ K, ρ ∈ [0, 1]

}
,

in order to bound β. Then

1−
√
1− 2α ≤ 4

√
n‖p‖1C21C6,

and assuming that (79) holds, α < 1/2 and

α ≤
(
1− (1− 4

√
n‖p‖1C21C6)2

)
/2,

determines another bound on α. Now, α = βγη, and β ≤ C2, γ = 16
√
n‖p‖1C31

are bounded by a constant and η is bounded by (78), which is quadratic in δρ. This
leads to the following bound on δρ:

δρ ≤
√

1− (1− 4√n‖p‖1C21C6)2
2C216

√
n‖p‖1C31

1

C5C2C4 +
1
2C3(C2C4)

2
. (80)
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