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NEURAL NETWORK-BASED NARX MODELS IN NON-LINEAR ADAPTIVE CONTROL
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The applicability of approximate NARX models of non-linear dynamic systems is discussed. The models are obtained by
a new version of Fourier analysis-based neural network also described in the paper. This constitutes a reformulation of a
known method in a recursive manner, i.e. adapted to account for incoming data on-line. The method allows us to obtain
an approximate model of the non-linear system. The estimation of the influence of the modelling error on the discrepancy
between the model and real system outputs is given. Possible applications of this approach to the design of BIBO stable
closed-loop control are proposed.
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1. Introduction

The method described is based on theN -D non-uniform
sampling approach which led to a Fourier analysis-based
feedforward neural network. The main scientific sources
of the approach were: the multi-dimensional Fourier anal-
ysis, feedforward neural networks and non-uniformN -D
sampling theory. The basic idea was originally proposed
by Sanner and Slotine, but was later substantially revised
and advanced, resulting in a more widely applicable and
more sophisticated algorithm.

Let us briefly describe our approach to identification
of a deterministic, non-linear, single-input single-output
(SISO) system given by the discrete-time,t ∈ Z+, input-
output NARX (Leontaritis and Billings, 1985; Chen and
Billings, 1989) model

y(t + 1) = f
(
y(t), . . . , y(t− n + 1),

u(t), . . . , u(t−m + 1)
)
, (1)

with y ∈ [a, b] ⊂ R, u ∈ [c, d] ⊂ R and f : D → [a, b]
with the domain of definitionD = [a, b]n × [c, d]m. It is
physically natural that outputy and inputu assume only
finite values on a connected set and can attain their bounds
(this does not preclude stability and boundedness issues).
In (1) we assume thatf ∈ L1(D) ∩ L2(D) is unknown,
but we can measure current and past inputsu(t), u(t −
1), . . . and outputsy(t), y(t− 1), . . . at any t. Set N =
m + n. Given the samples

λk = (λ1,k1 , . . . , λN,kN
)

= (yt, . . . , yt−n+1, ut, . . . , ut−m+1)

and
f(λk), (2)

where we writeyt = y(t) etc. for brevity (t ∈ Z+)
and k = (k1, k2, . . . , kN ), the issue is to reconstruct the
multivariable functionf , which is a problem from multi-
dimensional (N -D) Signal Processing. The approach was
introduced by Sanner and Slotine (1992), but they as-
sumed that the multi-dimensional samples are uniform,
i.e. regularly distributed in the domainD of f . This
seems to be a simplification, as the dynamics of (1) mani-
fest themselves through irregular samples (Dzieliński and
Żbikowski, 1995). Sanner and Slotine also requiredf to
be analytic.

Let us now present a brief summary of our approach
to the modelling of (1) in the context ofN -D irregular
sampling (Dzielínski andŻbikowski, 1995).

We are going to use the Fourier transform in several
variables (Stein and Weiss, 1971) and thereforef : D →
R must be first extended toRN . We do it by the space-
limited extension

f̃(x) =

 f(x) if x ∈ D,

0 otherwise.
(3)

Thus f̃ is of bounded support and its Fourier transform is

F̃ (w) =
∫

RN

f̃(x)e−jω·x dx =
∫

D

f(x)e−jω·x dx, (4)

where ω · x =
∑N

j=1 ωjxj , so thatF̃ is a Paley-Wiener
function of regular growth (̇Zbikowski and Dzielínski,
1996).
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We are given afinite number of non-uniformly
spread samples̃f(λk), where λk = (λ1,k1 , . . . , λN,kN

),
of the non-linear function f̃ = f̃(x), with x =
(x1, . . . , xN ) = (yt, yt−1, . . . , yt−n+1, ut, ut−1, . . . ,
ut−m+1), i.e. N = m + n. We want to find the func-
tion f̃ , which in general can only be done approximately
due to the finiteness of data.

The main idea of our method is to replace the non-
uniform sampling problem in the space domain by a uni-
form problem in the Fourier transform domain. The aim
is to reconstructF̃ and then, by its inversion,̃f . There-
fore, our solution consists of two basic steps. First, we
must find an approximation of̃F on the basis of given
non-uniformly sampled values of̃f , i.e. f̃(λk). Then, we
must find the Fourier inverse of the approximation ofF̃
to get an approximation of̃f .

For simplicity and clarity, we show the reasoning for
D = [a, b]× [c, d], i.e.m = n = 1, so thatN = 2. Cases
m 6= n and N > 2 are straightforward generalisations of
the 2-D derivation, but require more elaborate notations.

The Fourier transformF̃ of f̃ can be represented
by its Shannon series (Papoulis, 1962) sincef̃ is space-
limited, see (3). The actual formula can be computed (fol-
lowing the reasoning in (Petersen and Middleton, 1962))
for a rectangular sampling geometry, i.e. by sampling ar-
gumentsω1 and ω2 of F̃ independently. It follows that
the minimal (Shannon) frequencies are

ωS1 =
2π

b− a
, (5)

ωS2 =
2π

d− c
, (6)

and the corresponding exact representation ofF̃ by the
Shannon (cardinal) series is

F̃ (ω1, ω2) = e−j b+a
2 ω1e−j d+c

2 ω2

×
∞∑

k1=−∞

∞∑
k2=−∞

ej b+a
2 k1ωS1 ej d+c

2 k2ωS2

×F̃ (k1ωS1 , k2ωS2)sinc
[b−a

2
(ω1−k1ωS1)

]
×sinc

[d− c

2
(ω2 − k2ωS2)

]
, (7)

where sinc(x) = (sinx)/x. Note that if D is centred at
the origin, i.e.a = −b and c = −d, then (7) becomes the
(iterated) standard reconstruction formula:

F̃ (ω1, ω2) =
∞∑

k1=−∞

∞∑
k2=−∞

F̃ (k1ωS1 , k2ωS2)

×sinc [b(ω1−k1ωS1)] sinc [d(ω2−k2ωS2)],

whereωS1 = π/b and ωS2 = π/d. Also, in order for (7)
to uniquely represent̃F for any (ω1, ω2) ∈ R2, the sam-
pling frequenciesωS1 and ωS2 cannot be smaller than
(5) and (6), but may be larger (oversampling).

In principle, Sanner and Slotine’s approach (Sanner
and Slotine, 1992) of replacing (7) with an approximating
Gaussian neural network can be used. While this seems
to be motivated in their case by an attempt to relax the
assumption of the band-boundedness off , it is not needed
here, due to the space-limited extension (3).

An advantage of representing̃F by (7) is that by
taking the inverse transform of (7) we get a representation
of f̃ in terms of samples̃F (k1ωS1 , k2ωS2):

f̃(x1, x2) =
1

(b− a)(d− c)

×


∑
k1

∑
k2

F̃ (k1ωS1 , k2ωS2)e
jk1ωS1x1

×ejk2ωS2x2 for (x1, x2)∈D,

0 otherwise.

(8)

Since the summations in (8) are symmetric (from
−∞ to +∞), the reconstructedf̃ will be real for
all (x1, x2) ∈ R2. If quantities R̃ and Ĩ de-
note respectively the real and imaginary parts ofF̃ ,
F̃ (ω1, ω2) = R̃(ω1, ω2) + jĨ(ω1, ω2), then R̃ is even,
i.e. R̃(ω1, ω2) = R̃(−ω1,−ω2), and Ĩ is odd, i.e.
Ĩ(ω1, ω2) = −Ĩ(−ω1,−ω2).

If f̃ is known, then the above reasoning is a tautol-
ogy and (8) is not needed. However, our problem is that
f̃ is unknown, but we have its samples̃f(λ1,k1 , λ2,k2) =
f̃(yt−1, ut−1), wheret = 1, 2, . . . , T .

Since f̃ is space limited, its Fourier transform̃F
can be, in principle, reconstructed from (7), for which only
samples ofF̃ are needed. Thus the core issue is how to
obtain these fromf̃(yt−1, ut−1). Of course, this can be
done only approximately, as we have finite data. From
the definition of the Fourier transform we approximate the
integral (4) by the finite Riemann-like sum

F̃T (ω1, ω2) =
T∑

t=1

f̃(yt−1, ut−1)e−j(ω1yt−1+ω2ut−1)At

=
T∑

t=1

yte−j(ω1yt−1+ω2ut−1)At, (9)

where T is the horizon of observation andAt is the
area associated with(yt−1, ut−1), with

∑T
t=1 At = (b−

a)(d − c). While the summation in (9) is over one index,
t, it is an approximation of the double (N = 2) integral
(4), which manifests itself in(yt−1, ut−1) and At.

Note that (9) is a non-standard approximation of (4)
since(yt−1, ut−1) are distributed non-uniformly, i.e. they
are not nodes of a rectangular grid (an ordinary Riemann
sum). Therefore, we have to allocate areaAt to each
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(yt−1, ut−1) according to the density of the points inD,
which may be viewed as a weighting of (9). One possi-
ble approach is to use Voronoi diagrams, for which linear-
time computational methods exist (Okabeet al., 1992).
Thus At would be the area of the Voronoi polygon gen-
erated by(yt−1, ut−1). This can be extended toN > 2
dimensions, as well (Dwyer, 1991). Another approach,
implemented in our software, is to preprocess the sam-
ples to make them quasi-equidistributed and to apply the
Monte Carlo method, (Stroud, 1971), effectively setting
At = (b−a)(c−d)/T (hereT is the number of samples
after preprocessing).

It should be emphasised that if non-uniformity is
such that the points are evidently not equidistributed, the
approximation of (9) is inaccurate. An example of this
situation is when the points cluster in a few regions ofD,
leaving the rest of the rectangle with only very few points.
Such an outlier gives little information about the values
of f̃ in its neighbourhood, but the area allocated to it is
a relatively large fraction of(b − a)(d − c), thus ampli-
fying the uncertainty. There are two possible remedies in
such a situation. One is to shrinkD, eliminating the re-
gions with little information, and another is to try to gen-
erate the missing data. As the data are obtained from the
dynamical system (1), the latter means designing a better
identification experiment, while the former suggests that
D is a superset of the true domain.

When a reasonable approximatioñFT is obtained, it
can be substituted to (7) and then to (8). In order to ob-
tain a computationally feasible approximation, the sums
in (8) thus modified must be symmetrically truncated to
(2L1 + 1)(2L2 + 1) terms, say. Then the approximate
reconstruction formula is0 for (x1, x2) outsideD, and
for (x1, x2) ∈ D it yields

f̃a(x1, x2) =
1

(b−a)(d−c)

{
R(0, 0)+2

L1∑
k1=1

R(k1ωS1 , 0)

×cos(k1ωS1x1)−I(k1ωS1 , 0) sin(k1ωS1x1)

+ 2
L2∑

k2=1

R(0, k2ωS2) cos(k2ωS2x2)

− I(0, k2ωS2) sin(k2ωS2x2)

+ 2
L1∑

k1=1

L2∑
k2=−L2

k2 6=0

[
R(k1ωS1 , k2ωS2)

× cos(k1ωS1x1 + k2ωS2x2)

− I(k1ωS1 , k2ωS2) sin(k1ωS1x1

+ k2ωS2x2)
]}

. (10)

Here R and I are respectively the real and imaginary
parts of F̃T of (9), i.e. F̃T (ω1, ω2) = R(ω1, ω2) +
jI(ω1, ω2), and the assumptions thatR is even andI
is odd are made.

Note thatL1 and L2 above are independent ofT
of (9), as they result from a symmetric truncation of (7),
while T defines the number of data points available. In
principle, increasingL1 and L2 should improve the ac-
curacy of the approximation (10), but there are limitations
imposed by the accuracy of̃FT of (9) and computational
resources available.

Formula (10) is in essence a rectangular partial sum
of a multiple Fourier series with coefficients expressed by
(an approximation of) the Fourier transform of̃f . Hence
Gibbs’ phenomenon will occur on∂D; this can be allevi-
ated by artificially enlargingD.

Finally, note that (10) is an interpolation formula
valid for all points of D, but obtained from the samples
(yt−1, ut−1). The latter defineR and I in (10) via (9).

The main features of the algorithm are as follows:

• the use of real-world data from an input-output,
discrete-time NARX model;

• relative computational simplicity: only (9) and (10)
are needed;

• mild assumptions:m,n in (1) known,f ∈ L1(D)∩
L2(D) and the availability of measurements (2).

2. Adaptive Version of the Identification
Method

The presented method seems to be a promising tool in the
area of non-linear dynamic systems modelling. The ver-
sion discussed so far is based on the assumption of the
availability of all samples of the functionf . This means
it is off-line in character. This assumption has a direct
influence on the definition of Riemann sums in (9). To de-
fine the areasAt we need all theλk ’s. Let us note that
the order in which these values appear in the model does
not correspond to the order in which they are summed up.
This means we renumber the data in comparison with their
natural indexing. While this is not a problem in the off-
line approach, it may cause some difficulties when trying
to construct an on-line (adaptive) version of the method.

However, it is possible to reformulate this method
in a recursive manner, i.e. to adapt it to account for in-
coming dataon-line. The core issue is to decide how
to define the summation pattern similar to the one given
by (9). The most natural way is to subdivide the re-
gion in which f̃ is non-zero into an increasing number
of areas along with incoming data. Thus, we start with
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2N subregions obtained from the initial valuesλ0 =
(yt0 , yt0−1, . . . , yt0−n+1, ut0 , ut0−1, . . . , ut0−m+1), then
after the arrival of the first measured value of the function
f̃ the number of subdivisions increases to3N , etc. At
each step we are able to evaluate the approximate value of
(9) in the form

F̃i(ω1, ω2) =
i∑

t=1

f̃(yt−1, ut−1)

× e−j(ω1yt−1+ω2ut−1At, (11)

with i = 1, 2, . . . , T , where At’s are computed on-line.
In general, we setAt = (b−a)(c−d)/(i+1). In the first
instance these are only two subregions along each axis ob-
tained fromλ0. In the simplest case they might be of the
interval form {[a, yt0 ], [yt0 , b]}, {[a, yt0−1], [yt0−1, b]},
. . . , {[a, yt0−n+1], [yt0−n+1, b]}, {[c, ut0 ], [ut0 , d]},
{[c, ut0−1], [ut0−1, d]}, . . . {[c, ut0−m+1], [ut0−m+1, d]}.
Next, in each of these pairs of subintervals one of them
(it depends on whether the value of the incoming sample
lies in the first or the second subinterval of the pair) is
further subdivided giving the triple of subintervals along
each axis, and so on. This proceeds as long as new
measurements arrive. Finally, after allT samples have
arrived, we obtain the samẽFT (ω1, ω2) as with (9).

Some other interesting details of the method have
also been investigated. The problem of determining a
function of compact support from the values of its Fourier
transform on a finite segment is linked to the problem of
analytic continuation, which is an ill-posed problem in
Hadamard’s sense. The solution to such a problem is not
unique. However, it is possible to find an approximate
solution with a small error by universal methods of regu-
larisation (Tikhonov and Arsenin, 1977). TheN -D Paley-
Wiener theory (̇Zbikowski and Dzielínski, 1996) is also of
relevance here.

3. Applicability of Approximate NARX
Models

In this section we discuss the adequacy of an approxi-
mate (due to modelling errors) NARX model (1) of the
real plant for control purposes. In other words, we want to
know if an inaccurate NARX representation (1) of the real
NARX system would reflect well the system’s behaviour
when influenced by the same control signal.

Consider a function constituting a bound on the norm
of the modelling error, i.e. with the difference between
f in (1) and g being the right-hand side (RHS) of the
NARX representation of the real plant. This function
should bound the norm uniformly inu (for all admissi-
ble control signalsu). The question is what this tells us

about the error betweeny and z being the real plant out-
put. If the error is small, then applying a control signal to
the approximate model would cause a similar behaviour
of the real system. This also applies to the Bounded In-
put Bounded Output (BIBO) stability analysis, because if
we prove stability for the model (1), then it will hold for
the real plant, provided the difference betweeny and z
is bounded.

The approach to the problem is based on the finite
difference inequalities.

Proposition 1. The controlled difference equation (1) is
equivalent to the followingn-th order controlled finite dif-
ference equation:

∆(n)y(k) = f̄(Y (k), U(k)), (12)

where

Y (k) =
(
∆(n−1)y(k), . . . ,∆y(k), y(k)

)
,

U(k) =
(
∆(n−1)u(k), . . . ,∆u(k), u(k)

)
. (13)

From now on f̄ denotes the right-hand side (RHS)
of the finite difference equation corresponding to (1) and,
similarly, ḡ for the real plant.

By Proposition 1, we may consider the model-plant
correspondence and the BIBO stability in the framework
of (controlled) finite difference equations.

Lemma 1. Let the functionW : Rn × Ik0 → R be con-
tinuous, non-negative, monotonically increasing onRn

for eachk ∈ Ik0 , and let r : Ik0 → R be the solution of

∆(n)r(k) = W (R(k), k),

∆(i)r(k0) = r̄i for i = 0, 1, . . . , n− 1, (14)

where

R(k) =
(
∆(n−1)r(k), . . . ,∆r(k), r(k)

)
. (15)

With the notation as in (13), consider twon-th order finite
difference equations:

∆(n)z(k) = ḡ(Z(k), U(k)),

∆(i)z(k0) = z̄i for i = 0, 1, . . . , n− 1 (16)

for the true NARX description of the plant, where

Z(k) =
(
∆(n−1)z(k), . . . ,∆z(k), z(k)

)
(17)

and

∆(n)y(k) = f̄(Y (k), U(k)),

∆(i)y(k0) = ȳi for i = 0, 1, . . . , n− 1, (18)
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stand for the approximate NARX model (1) of the plant.
Here f̄ : Rn × Rn → R and ḡ : Rn × Rn → R are
assumed to be continuous and satisfy

‖f̄(Y (k), U(k)) − ḡ(Z(k), U(k))‖

≤ W
(
‖∆(n−1)y(k)−∆(n−1)z(k)‖,

. . . , ‖y(k)− z(k)‖, k
)

(19)

uniformly with respect tou ∈ U for all k ≥ k0, whereU
is the set of admissible control signals, defined onIk0 . Fi-
nally, let y : Ik0 → R and z : Ik0 → R be any solutions
of (18) and (16), respectively, such that

‖ȳi − z̄i‖ ≤ r̄i for i = 0, 1, . . . , n− 1. (20)

Then

‖y(k)− z(k)‖ ≤ r(k) for all k ≥ k0. (21)

Remark 1. The continuity ofW : Rn×Ik0 → R is to be
understood by interpretingW as a restriction of a func-
tion continuous onRn×R. Alternatively, we may require
that W is continuous onRn for each fixedk ∈ Ik0 .

Remark 2. Note that we assume the same order,n, of the
model (18) and the plant (16).

Remark 3. For BIBO stability considerations the set of
admissible control signalsU is the set of bounded func-
tions u : Ik0 → R. Because of the form of (18),U de-
scribes not only the constraints onu, but also on its finite
differences∆(n−1)u(k), . . . ,∆u(k).

Lemma 1 has important consequences for modelling
and control of NARX systems. Solutions of (14) de-
termine the discrepancy (see (20) and (21)) between the
model (18) and the real plant (16) under the action of the
same control signal. Thus, if we can findW satisfying
(19) with r̄i, i = 0, 1, . . . , n−1, satisfying (20) and such
that solutions of (14) are bounded, then the discrepancy is
also bounded.

This is of particular interest for the neural mod-
elling of NARX systems (̇Zbikowski and Dzielínski,
1996; Dzielínski andŻbikowski, 1995), where (18) is a
neural approximation of the real plant. If the discrepancy
is small, then the controller designed for theapproximate
NARX model should perform well for thereal NARX
plant. In practice, this equivalence may be provable only
for a subset of admissible controlsU , because Lemma 1
gives only sufficient conditions.

Lemma 1 and the developments above could be ap-
plied to the BIBO stability analysis of the real plant in the
closed-loop context. Recall that we do not knowg of the
real plant, or—equivalently—̄g of (16), but we havef

of (1), or—equivalently—̄f of (18). Thus, the design of
a control law must be based on̄f , but the control signal
will be applied to the real plant (16). The fundamental re-
quirement is that this approach will lead to a BIBO stable
closed-loop system. The closed-loop system is the real
plant (16) with a controller designed for its approximate
model (18). The stability in this context is the BIBO sta-
bility meaning that the controller generates bounded in-
puts resulting in bounded outputs of (16). In this sense we
can talk about a closed-loop BIBO stability.

The main result in this area is based on one of the
comparison theorems given by Pachpatte (1970, Thm. 5).

Theorem 1. Let the functionsf̂1 : Rn × Ik0 → R and
f̂2 : Rn × Ik0 → R be continuous, non-negative and
monotonically increasing onRn for eachk ∈ Ik0 . More-
over, let f̂1 and f̂2 satisfy the inequalities

f̂1(Y (k), k) ≤ ∆(n)y(k) ≤ f̂2(Y (k), k) (22)

for all k ≥ k0, where∆(n)y(k) is as in (12). Letv(k)
and w(k) be the solutions of

∆(n)v(k) = f̂1(∆(n−1)v(k), . . . , v(k), k),

∆(i)v(k0) = vi
0, for i = 0, 1, . . . , n− 1 (23)

and

∆(n)w(k) = f̂2(∆(n−1)w(k), . . . , w(k), k),

∆(i)w(k0) = wi
0, for i = 0, 1, . . . , n− 1, (24)

respectively, such that

vi
0 ≤ ∆(i)y(k0) ≤ wi

0 for i = 0, 1, . . . , n− 1. (25)

Then

v(k) ≤ y(k) ≤ w(k) (26)

for all k ≥ k0.

Thus, if we are able to find two functionŝf1 and f̂2

such that (22) holds, it means (by (12)) that

f̂1(Y (k), k) ≤ f̂(Y (k), k) ≤ f̂2(Y (k), k) (27)

for all k ≥ k0 and for a givenu ∈ U , say u(k) ≡ ϑ(k).
Additionally, let f̂1 and f̂2 be such that (23) and (24)
have bounded solutions (see, e.g., (Dzieliński, 1999) for a
criterion of the boundedness of the solutions), let andu
be bounded. Then, from (26), the solution of (12) corre-
sponding tou(k) ≡ ϑ(k) is also bounded. If this can be
shown for allu ∈ U , then the system described by (12) is
BIBO stable and, by Proposition 1, so is (1).
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The above can be applied in the closed-loop context,
whereu is generated by a control law. However, it should
be borne in mind that the controller design is possible only
on the basis off̄ in (18), while u will be applied to (16).

In order to obtain a stable closed-loop system, the
following procedure ofBIBO redesigncan be devised:
First, the model-plant equivalence must be established, i.e.
a setU of admissible, bounded inputs must be found for
which Lemma 1 holds. Thus, based on ana-priori es-
timate of the modelling error, a functionW satisfying
(19) should be constructed, so that (21) is satisfied withr
bounded. The setU for which these hold is then the start-
ing point for the second step of BIBO redesign, since it
ensures that bounded‖f̄(Y (k), U(k))− ḡ(Z(k), U(k))‖
results in bounded‖y(k) − z(k)‖ for all k ≥ k0. Now,
given a reference signalξ : Ik0 → R, a control law φ,
φ(Y (k), ξ(k)) = u(k) with u ∈ U , must be designed, so
that (27) holds withf̂1, f̂2 of Theorem 1 satisfying the
condition of the boundedness of solutions.

4. Conclusions

A new version of the method for identification of non-
linear systems given as NARX models was described. It is
based on a harmonically limitedN -D Fourier transform,
which enables reconstruction of the right-hand side of the
NARX equation (1) in the multi-dimensional frequency
domain via feedforward neural networks. It entails a novel
method for the approximate interpolation of a non-linear
function from a finite set of its irregular samples. The nov-
elty of the presented method lies in its adaptive character,
i.e. the possibility of accounting for the incoming data on-
line.

The neural models usually suffer from a certain de-
gree of inaccuracy. The results given in the paper allow
us to check whether the inaccurate model is a sufficiently
good approximation of the real plant, i.e. whether the dif-
ference between the model’s and real plant’s outputs is
bounded.

This result can also be important for checking the
BIBO stability of the model and for designing the stable
closed-loop system.
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