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NEURAL NETWORK-BASED NARX MODELS IN NON-LINEAR ADAPTIVE CONTROL
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The applicability of approximate NARX models of non-linear dynamic systems is discussed. The models are obtained by

a new version of Fourier analysis-based neural network also described in the paper. This constitutes a reformulation of a
known method in a recursive manner, i.e. adapted to account for incoming data on-line. The method allows us to obtain
an approximate model of the non-linear system. The estimation of the influence of the modelling error on the discrepancy

between the model and real system outputs is given. Possible applications of this approach to the design of BIBO stable
closed-loop control are proposed.
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1. Introduction and

The method described is based on tNeD non-uniform . ), _ @)
sampling approach which led to a Fourier analysis-basedWhere we writey, = y(t) etc. for brevity ¢ € Z,)
feedforward neural network. The main scientific sources @nd & = (k1. k2, ... ky), the issue is to reconstruct the
of the approach were: the multi-dimensional Fourier anal- Multivariable functionf, which is a problem from multi-
ysis, feedforward neural networks and non-unifoisp  dimensional {V-D) Signal Processing. The approach was
sampling theory. The basic idea was originally proposed introduced by Sanner and Slotine (1992), but they as-
by Sanner and Slotine, but was later substantially revisedSUmed that the multi-dimensional samples are uniform,

and advanced, resulting in a more widely applicable and I-€- régularly distributed in the domai@> of f. This
more sophisticated algorithm. seems to be a simplification, as the dynamics of (1) mani-

fest themselves through irregular samples (Da&Xi and

Let us briefly describe our approach to identification Zbikowski, 1995). Sanner and Slotine also requifedo

of a deterministic, non-linear, single-input single-output

(SISO) system given by the discrete-timtec Z, , input- be analytic. )

output NARX (Leontaritis and Billings, 1985; Chen and Let us now present a brief summary of our approach

Billings, 1989) model to the_modell_lng of_ (1) in _the cor_wtext oiN-D irregular
sampling (Dzielinski andZbikowski, 1995).

y(t+1) = f(y@),....y(t —n+1), We are going to use the Fourier transform in several
variables (Stein and Weiss, 1971) and thereffteD —
ut), ..., u(t —m+1)), (1) R must be first extended t&". We do it by the space-

with y € [a,b] CR, u € [¢,d] CR and f: D — [a, b limited extension

with the domain of definitionD = [a, b]" x [c,d]™. Itis ) f(z) if z €D,

physically natural that outpuy and inputu assume only flz) = 3)

finite values on a connected set and can attain their bounds 0 otherwise.

(this does not preclude stability and boundedness issues). ~

In (1) we assume thaf € L'(D) N L?(D) is unknown, Thus f is of bounded support and its Fourier transform is

but we can measure current and past inputs), u(t — . 3 _ _

1),... and outputsy(t),y(t — 1),... atanyt. Set N = Fw)= [ f(z)e7“?dz = / f(x)e 7« dz, (4)

m + n. Given the samples RY D

N ~ .

M= s s AN wherfaw CT= ) Wiy, SO thatF |§ a Paley'-V\{len.er

function of regular growth Zbikowski and Dzieliski,

= (yta'"7yt—n+17ut7"'7ut—m+1) 1996)
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We are given afinite number of non-uniformly

spread sampleg?()\k), where A\ = (A1 ks s AN kn )
of the non-linear functionf = f(z), with =z =
(Ilv"wa) = (yt’yt—lv"'7yt—n+17ut7ut—17"'7

Ut—my1), I-8. N = m + n. We want to find the func-
tion f, which in general can only be done approximately
due to the finiteness of data.

The main idea of our method is to replace the non-
uniform sampling problem in the space domain by a uni-
form problem in the Fourier transform domain. The aim
is to reconstructt’” and then, by its inversionf. There-
fore, our solution consists of two basic steps. First, we
must find an approximation oﬁion the basis of given
non-uniformly sampled values of, i.e. f(\x). Then, we
must find the Fourier inverse of the approximationof
to get an approximation of.

For simplicity and clarity, we show the reasoning for
D = [a,b] X [¢,d],i.e.m =n =1, sothatN = 2. Cases
m # n and N > 2 are straightforward generalisations of
the 2-D derivation, but require more elaborate notations.
The Fourier transformF of f can be represented
by its Shannon series (Papoulis, 1962) sinfcés space-
limited, see (3). The actual formula can be computed (fol-

lowing the reasoning in (Petersen and Middleton, 1962)) o rag
for a rectangular sampling geometry, i.e. by sampling ar-

gumentsw; and w, of F' independently. It follows that
the minimal (Shannon) frequencies are

2T
b—a’

2
d—c’

(%)

wsl

(6)

ws,

and the corresponding exact representatiorFoby the
Shannon (cardinal) series is

F(wy,wn) =e 15" w1e 7 50w
oo o0
% Z Z ejHTaklwsl ej%kQ"JSQ
k1:—00 kg:—o()
xF(klwsl,k2w52)sinc[%(wlfk1wgl)
. —c
X smc[ (wo — kowsg, )} , (7)
where sinc(z) = (sinz)/z. Note that if D is centred at

the origin, i.ea = —b and ¢ = —d, then (7) becomes the
(iterated) standard reconstruction formula:

F((.Ul,(.L)Q): Z Z F(klwgl,kngQ)

klzfoo kz:*OO

x sinc [b(w1 —kiwsg, )] sinc [d(we —kows, )],

wherewg, = 7/b and wgs, = w/d. Also, in order for (7)
to uniquely represent’ for any (w1, ws) € R?, the sam-
pling frequenciesws, and wg, cannot be smaller than
(5) and (6), but may be larger (oversampling).

In principle, Sanner and Slotine’s approach (Sanner
and Slotine, 1992) of replacing (7) with an approximating
Gaussian neural network can be used. While this seems
to be motivated in their case by an attempt to relax the
assumption of the band-boundednesg oit is not needed
here, due to the space-limited extension (3).

An advantage of representing by (7) is that by
taking the inverse transform of (7) we get a representation
of f interms of samples”(k wsg, , kaws, ):

f 1
fove) = g—oa—a
ZZﬁ(klel’k2wS2)ejk1wslzl
k1 ko
xelk2wsy®2 for (x1,x9) €D, 8)
0 otherwise.

Since the summations in (8) are symmetric (from
—o0 to +0), the reconstructedf will be real for
all (z1,20) € RZ2 If quantities R and I de-
pectively the real and imaginary parts Bf
F(wi,ws) = R(wi,ws) + jI(wi,ws), then R is even,
ie. Rwi,wz) = R(—wi,—ws), and I is odd, i.e.
I(wl,wQ) = —I(—wl, —(4.)2).

If f is known, then the above reasoning is a tautol-
ogy and (8) is not needed. However, our problem is that
f is unknown, but we have its samplg$; ,, A2k, )
f(yi—1,us—1), wheret =1,2,...,T.

Since f is space limited, its Fourier transfordy
can be, in principle, reconstructed from (7), for which only
samples of ' are needed. Thus the core issue is how to
obtain these fromf(yt_l,ut_l). Of course, this can be
done only approximately, as we have finite data. From
the definition of the Fourier transform we approximate the
integral (4) by the finite Riemann-like sum

T
Z f(ytfla Utfl)efj(wlytflerzutfl)At

t=1

FT(whwz)

yte_j(wlyt—l'f‘WZUt—l)At
b)

[M]=

9)
t

where T is the horizon of observation and; is the

area associated withy, 1, u; 1), with 33/, A, = (b —

a)(d — ¢). While the summation in (9) is over one index,

t, it is an approximation of the doubléV( = 2) integral

(4), which manifests itself ify;—1,u;—1) and A;.

Note that (9) is a non-standard approximation of (4)
since (y:—1,u;—1) are distributed non-uniformly, i.e. they
are not nodes of a rectangular grid (an ordinary Riemann
sum). Therefore, we have to allocate arda to each

1
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(yt—1,us—1) according to the density of the points i, Here R and I are respectively the real and imaginary
which may be viewed as a weighting of (9). One possi- parts of Fr of (9), i.e. FT(wl,WQ) = R(wr,we) +
ble approach is to use Voronoi diagrams, for which linear- j7(w;,ws), and the assumptions tha is even andl
time computational methods exist (Okaéeal., 1992). is odd are made.

erated by(y;—1,u;—1). This can be extended t& > 2 of (9), as they result from a symmetric truncation of (7),
dimensions, as well (Dwyer, 1991). Another approach, while T defines the number of data points available. In
implemented in our software, is to preprocess the sam-pyinciple, increasingl; and L, should improve the ac-

ples to make them quasi-equidistributed and to apply the cyracy of the approximation (10), but there are limitations

Monte Carlo method, (Stroud, 1971), effectively setting jmposed by the accuracy df; of (9) and computational
Ay = (b—a)(c—d)/T (hereT isthe number of samples |esources available.

after preprocessing). ) _ . o Formula (10) is in essence a rectangular partial sum
It should be emphasised that if non-uniformity is of a multiple Fourier series with coefficients expressed by
such that the points are evidently not equidistributed, the (an approximation of) the Fourier transform ¢f Hence
approximation of (9) is inaccurate. An example of this Gibbs’ phenomenon will occur 0 D; this can be allevi-
situation is when the points cluster in a few regionsiaf ated by artificially enlargingD.
leaving the rest of_the rgctar)gle With_only very few points. Finally, note that (10) is an interpolation formula
S“°~h.a"? outhgr gives little information about the valggs valid for all points of D, but obtained from the samples
of f in its neighbourhood, but the area allocated to it is (ye—1,us_1). The latter defineR and 7 in (10) via (9)

a relatively large fraction ofb — a)(d — ¢), thus ampli- . .
fying the uncertainty. There are two possible remedies in The main features of the algorithm are as follows:

such a situation. One is to shrink, eliminating the re-
gions with little information, and another is to try to gen-
erate the missing data. As the data are obtained from the
dynamical system (1), the latter means designing a better
identification experiment, while the former suggests that
D is a superset of the true domain.

When a reasonable approximatidfr is obtained, it
can be substituted to (7) and then to (8). In order to ob-
tain a computationally feasible approximation, the sums
in (8) thus modified must be symmetrically truncated to
(2Ly + 1)(2L, + 1) terms, say. Then the approximate 2. Adaptive Version of the Identification
reconstruction formula i$ for (x;,x2) outside D, and Method
for (z1,22) € D ityields

e the use of real-world data from an input-output,
discrete-time NARX model,

e relative computational simplicity: only (9) and (10)
are needed;

e mild assumptionsm, n in (1) known, f € L*(D)n
L?(D) and the availability of measurements (2).

The presented method seems to be a promising tool in the
_ 1 Ly area of non-linear dynamic systems modelling. The ver-
[ (@1, 22) = (l)—cz)(cl—p){R(O’O)+2 > R(kws,,0) sion discussed so far is based on the assumption of the
i ki=1 availability of all samples of the functiorf. This means
it is off-line in character. This assumption has a direct

x cos(kiws, 1) —I(kiwg,,0) sin(kiws, © ' > !
(hrws, z1) L (k1ws, . 0) sin(krws, 1) influence on the definition of Riemann sums in (9). To de-

L2 .
fine the areasd; we need all the\,’s. Let us note that
+2 kZ R(0, kpws, ) cos(kaws, z2) the order in which these values appear in the model does
,2:1

not correspond to the order in which they are summed up.

— 1(0, kaws, ) sin(kawg, x2)

Ly Lo

+2y 0 Y

|:R(k1WS1 ) kQWSQ)
k1=1 k2=-L2

ko0
x cos(kiws, x1 + kawg, x2)

— I(kws, , kaws, ) sin(kiws, 1

]}

(10)

This means we renumber the data in comparison with their
natural indexing. While this is not a problem in the off-
line approach, it may cause some difficulties when trying
to construct an on-line (adaptive) version of the method.

However, it is possible to reformulate this method
in a recursive manner, i.e. to adapt it to account for in-
coming dataon-line  The core issue is to decide how
to define the summation pattern similar to the one given
by (9). The most natural way is to subdivide the re-
gion in which f is non-zero into an increasing number
of areas along with incoming data. Thus, we start with
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2N subregions obtained from the initial values = about the error between and z being the real plant out-
(Yt Yto—1s - - - s Ytg—nt1> Uty Utg—1s - - - s Utg—m+1), theEN put. If the error is small, then applying a control signal to
after the arrival of the first measured value of the function the approximate model would cause a similar behaviour
f the number of subdivisions increases 1/, etc. At of the real system. This also applies to the Bounded In-
each step we are able to evaluate the approximate value oput Bounded Output (BIBO) stability analysis, because if
(9) in the form we prove stability for the model (1), then it will hold for
the real plant, provided the difference betwegrand z

is bounded.

The approach to the problem is based on the finite
difference inequalities.

Fi(wi,wa) = > fgr-1,u1)
t=1

% e*j(wlyt—l‘i’W?ut—lAt’ (11)

Proposition 1. The controlled difference equation (1) is
with 4 = 1,2,...,T, where A;’s are computed on-line.  equivalent to the following:-th order controlled finite dif-
In general, we setl; = (b—a)(c—d)/(i+1). Inthefirst  ference equation:
instance these are only two subregions along each axis ob- (n) _
tained from ). In the simplest case they might be of the AMy(k) = f(Y(k),U(k)), 12)

interval form {[a, ys.], [Uro, 01}, {[a Yo 1] [0 —1, 6]},

where
T {[a7ytofn+1]v [ytnfn+17b]}! {[C, Ut0]7 [utoﬂd]}’
{[Cv utO*lL [ut0*17 d]}v e {[Ca utO*erl]a [ut07m+1’ d]} Y(k) = (A(n_l)y(k), ey Ay(k}), y(k)),
Next, in each of these pairs of subintervals one of them
(it depends on whether the value of the incoming sample U(k) = (A("_l)u(k:), ooy Au(k),u(k)).  (13)

lies in the first or the second subinterval of the pair) is

further sybdmded giving the. triple of subintervals along From now on j denotes the right-hand side (RHS)
each axis, and so on. This proceeds as long as new

measurements arrive. Finally, after afl samples have of the finite difference equation corresponding to (1) and,

arrived, we obtain the sam&;(wy,ws) as with (9). similarly, g for t_h.e real plant. )
. , . By Proposition 1, we may consider the model-plant
Some other interesting details of the method have

. . - correspondence and the BIBO stability in the framework
also been investigated. The problem of determining a

X ) > < of (controlled) finite difference equations.

function of compact support from the values of its Fourier
transform on a finite segment is linked to the problem of Lemma 1. Let the functionW: R™ x I, — R be con-
analytic continuation which is an ill-posed problem in  tinuous, non-negative, monotonically increasing B
Hadamard's sense. The solution to such a problem is notfor each & € I, and letr: I, — R be the solution of
unique. However, it is possible to find an approximate
solution with a small error by universal methods of regu- AMr(k) = W(R(K), k),
larisation (Tikhonov and Arsenin, 1977). Theé-D Paley- () . .
Wiener theory Zbikowski and Dzieliski, 1996) is also of A¥r(ko) =7 for i=0,1,...,n—1, (14)
relevance here. where
S : R(k) = (AT Vr(k),..., Ar(k),r(k)).  (15)
3. Applicability of Approximate NARX

Models With the notation as in (13), consider twoeth order finite

difference equations:

In this section we discuss the adequacy of an approxi- () ~
mate (due to modelling errors) NARX model (1) of the A z(k) = g(Z(k), U(k)),
real pl_ant fpr control purposes. In othervyords, we want to A(i)z(k()) —% for i=0,1,....,n—1 (16)
know if an inaccurate NARX representation (1) of the real
NARX SyStem would reflect well the System’s behaviour for the true NARX description of the p|ant, where
when influenced by the same control signal.

Consider a function constituting a bound on the norm
of the modelling error, i.e. with the difference between
f in (1) and g being the right-hand side (RHS) of the
NARX representation of the real plant. This function A(n)y(k) = F(Y (k),U(k)),
should bound the norm uniformly im (for all admissi-
ble control signalsu). The question is what this tells us A(i)y(ko) =g; for i=0,1,...,n—1, (18)

Z(k) = (A" Vz(k), ..., Az(k), 2(k))  (17)

and
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stand for the approximate NARX model (1) of the plant. of (1), o—equivalently—# of (18). Thus, the design of

Here f: R® x R® — R and g: R* x R* — R are
assumed to be continuous and satisfy

IF(Y (k),U(k)) — g(Z(k),U(k))||
<W(|ACDy(k) — AV (k)]|,
L lly(k) = 2(k)), k)

uniformly with respectta: € U for all k& > ko, whereld
is the set of admissible control signals, definedlgn Fi-
nally, let y: I,, — R and z: I, — R be any solutions
of (18) and (16), respectively, such that

for

(19)

g — zil| <7 i=0,1,...,n—1. (20)

Then

ly(k) —

Remark 1. The continuity of W : R™ x I}, — R isto be
understood by interpretingl” as a restriction of a func-
tion continuous orR™ x R. Alternatively, we may require
that W is continuous orR™ for each fixedk € Iy, .

2(k)|| <r(k) forall k>ko.  (21)

Remark 2. Note that we assume the same orderof the
model (18) and the plant (16).

Remark 3. For BIBO stability considerations the set of
admissible control signal& is the set of bounded func-
tions u: I, — R. Because of the form of (18)/ de-
scribes not only the constraints an but also on its finite
differencesA~Vu(k), ..., Au(k).

Lemma 1 has important consequences for modelling
Solutions of (14) de-

termine the discrepancy (see (20) and (21)) between the
model (18) and the real plant (16) under the action of the

and control of NARX systems.

same control signal.
A9 with 7;, i = 0,1, .

Thus, if we can fiddl' satisfying
,n—1, satisfying (20) and such

a control law must be based ofy but the control signal
will be applied to the real plant (16). The fundamental re-
quirement is that this approach will lead to a BIBO stable
closed-loop system. The closed-loop system is the real
plant (16) with a controller designed for its approximate
model (18). The stability in this context is the BIBO sta-
bility meaning that the controller generates bounded in-
puts resulting in bounded outputs of (16). In this sense we
can talk about a closed-loop BIBO stability.

The main result in this area is based on one of the
comparison theorems given by Pachpatte (1970, Thm. 5).

Theorem 1. Let the functionsf1: R™ x I, — R and
f2: R™ x I, — R be continuous, non-negative and
monotonically increasing ofR™ for eachk € Ij,,. More-
over, let f; and f, satisfy the inequalities

Y (R), k) < AWy(k) < fo(Y(R), k) (22)

for all k > ko, where A™y(k) is as in (12). Letv(k)
and w(k) be the solutions of

AMWy(k) = fLAMVy(k),. .. v(k), k),
A(i)v(k,‘o) =y, for i=0,1,....n—1 (23)
and
AMp(k) = fo(AP Dw(k), ... w(k), k),
AWDw(ky) = wh, for i=0,1,...,n—1, (24)
respectively, such that
vy < A(i)y(ko) <wh for i=0,1,....,n—1. (25)

Then
v(k) < ylk) < w(k)

(26)

that solutions of (14) are bounded then the discrepancy i IStor all k > k.

also bounded.

This is of particular interest for the neural mod-

elling of NARX systems Zbikowski and Dzielnski,
1996; Dzielhski andZbikowski, 1995), where (18) is a

neural approximation of the real plant. If the discrepancy

is small, then the controller designed for ygproximate
NARX model should perform well for theeal NARX

Thus, if we are able to find two function§ and f»
such that (22) holds, it means (by (12)) that

forall k > ko and for a givenu € U, say u(k) = J(k).

(27)

plant. In practice, this equivalence may be provable only aqgitionally, let f; and f, be such that (23) and (24)

for a subset of admissible contralg, because Lemma 1
gives only sufficient conditions.

have bounded solutions (see, e.g., (Daighi, 1999) for a
criterion of the boundedness of the solutions), let and

Lemma 1 and the developments above could be ap-be bounded. Then, from (26), the solution of (12) corre-
plied to the BIBO stability analysis of the real plant in the sponding tou(k) = ¥(k) is also bounded. If this can be

closed-loop context. Recall that we do not kngwof the
real plant, o—equivalently—g of (16), but we havef

shown for allu € U, then the system described by (12) is
BIBO stable and, by Proposition 1, so is (1).
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