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A GENERAL SOLUTION TO THE OUTPUT-ZEROING PROBLEM
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The problem of zeroing the output in an arbitrary linear continuous-time systetmB, C, D) with a nonvanishing transfer
function is discussed and necessary conditions for output-zeroing inputs are formulated. All possible real-valued inputs and
real initial conditions which produce the identically zero system response are characterized. Strictly proper and proper
systems are discussed separately.
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1. Introduction asymptotically stable system in which there are no Smith
zeros and one could infer wrongly that there are no output-
As is known, the problem of zeroing the system output zeroing inputs which give nontrivial solutions of the state
is StriCtly related to the notion of multivariable zeros. equation_ However, extending in a natural way the con-
These zeros, however, are defined in many, not necescept of the Smith zeros, it is possible to show that there are
sarily equivalent, ways (for a survey of these definitions infinitely many real-valued inputs for this system which
see (MacFarlane and Karcanias, 1976; Schrader and Saingjve nontrivial solutions and the identically zero system
1989; Latawiecet al, 2000), where a new concept of the response.
so-called “control zeros” was introduced and analysed).
The most commonly used definition employs the Smith Such an extension is based on the definition of invari-
canonical form of the system (Rosenbrock) matrix and de- @nt zeros, see (Tokarzewski, 1998; 2000b) and (1a) below,
termines these zeros (which will be called in the sequel the Which employs the system matrix and zero directions and
Smith zeros) as the roots of diagonal (invariant) polyno- freats the zeros as the triples (complex number, nonzero
mials of the Smith form (Emami-Naeini and Van Dooren, State-zero direction, input-zero direction). This definition
1982; Rosenbrock, 1970). Equivalently, the Smith zeros enables us to extend in (Tokarzewski, 1998) the results
are defined as the points of the complex plane where the0f (El-Ghezawiet al, 1982) (where square strictly proper
system matrix loses its normal rank. This definition treats Systems of uniform rank are analysed) on nonsquare sys-
zeros merely as complex numbers and for this reason ittems (by using the Moore-Penrose pseudoinverse and the
may create difficulties in their dynamical state-space inter- singular value decomposition (SVD) of the first nonzero
pretation. Most likely in order to overcome these difficul- Markov parameter), as well as relate system zeros to the
ties, MacFarlane and Karcanias (1976) added to the notionotions of reachability and observability (by using the
of the Smith zeros the notions of state-zero and input-zeroKalman canonical form and classical definitions of decou-
directions and gave certain dynamical (geometric) inter- Pling zeros). A crucial role in characterization of invariant
pretation of these zeros. The output-zeroing problem in and decoupling zeros is played in (Tokarzewski, 1998) by
relationship with the Smith zeros was studied, under cer- Matrices A — BD*C' and KA (see Section 3 below,
tain simplifying assumptions concerning the systems con-Where these matrices appear in the characterization of the
sidered, in (Karcanias and Kouvaritakis, 1979; MacFar- Output-zeroing problem).

lane and Karcanias, 1976), and was interpreted geometri- The invariant zeros defined in this way (see (1a) be-

cally in (Isidori, 1995, pp. 164, 296). low) are invariant under similarity transformations of the

A more detailed analysis indicates, however, that for state space and under constant state feedbacks. They do
characterizing the output-zeroing problem the notion of not change after introducing a nonsingular pre- or post-
Smith zeros may be too narrow. This observation can becompensator taS(A4, B, C, D). Moreover, as is shown
motivated by a simple numerical example (see Examplein (Tokarzewski, 2000b; Prop. 1), each Smith zero is also
4, Section 4) of a minimal (reachable and observable) andan invariant zero. The main differences between invari-
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ant and Smith zeros are as follows: The number of Smith output-zeroing input. Note that in each output-zeroing in-
zeros is always finite, while the number of invariant ze- put (z°,uo(t)), uo(t) should be understood simply as an
ros may be infinite (then a system is called degenerate).open-loop control signal which, when applied to (1) ex-
On the other hand, each output decoupling zero is alwaysactly at x(0) = 2°, yields y(¢) = 0 forall ¢ > 0.

an invariant zero, which is not the case when the Smith Moreover, we consider the following definition of

zeros are considered. In some cases the Smith zeros anghyariant zeros (Tokarzewski, 1998; 2000b): A complex
invariant zeros coincide. It takes place, e.g., when the sys-nymper ) is an invariant zero of (1) if and only if (iff)
tem matrix is of full column normal rank (Tokarzewski, there exist vector®) # 20 € C™ (state-zero direction)

2000b; Cor. 1). This concerns in particular the classes of 3nq 4 ¢ ¢™ (input-zero direction) such that
all systems diagonally decouplable by a static state feed-
back and of all systems of uniform rank (in particular, of

all SISO systems with nonzero transfer function). ) (1a)

Because, as is noticed in (Tokarzewski, 2000b;
Rem. 1) (see also Remarks 1 and 4 below), to each in-where
variant zero we can assign a real initial condition and a
real-valued input which produce the zero output, the in-
variant zeros can be easily interpreted (even in the degen- . LT
erate case) in the context of the output-zeroing problem. 4eNotes the system matrix. Transmission zeros of (1) are
Of course, since each Smith zero is an invariant zero, thisd€fined as invariant zeros of its minimal subsystem.
interpretation remains valid also for Smith zeros. The same symbat is used to denote thetate-zero
Taking into account the above concept of invari- Q|rect|on!n the def!n!t!on of invariant £Er0s .and thre-

tial statein the definition of output-zeroing inputs. The

ant zeros, we can state the following question (cf. tate-zero direction: must be a nonzero vector (real or
Tokarzewski, 2000a): Find a state-space characterization® o ¢ 2610 direction:™ Must be a nonzero vecto (real 0

of the output-zeroing problem (at least in the form of nec- ggmzlse);)én(g;?::éw(sf; tz:r? dsfgglr%n ((1); 'g;’iﬂirgrﬁelrg; Eﬁm
essary conditions for initial conditions and inputs zeroing ber may serve as an in a?/'ar)(t ero). in other orzs in the
the system output) which could convey in a compact form i {1 v invariant z ' w '
information about invariant zeros and their action in a sys- equatio
tem. More precisely, we want to characterize in a simple Tl 0
manner all the possible real-valued inputs and real initial u 0
the solutions of the form
0
u

conditions which produce the identically zero system re-
are not taken into account in the process of defining in-

sponse.
variant zeros.

According to the formulation of the output-zeroing
problem, theinitial state z° must be a real vector (but
. i oy
y(t) = Cx(t) + Du(t), not necessarily nonzero)._ If_ tfﬂatg zero dlrectlom0
is a complex vector, then it gives tvinitial states Re =
wherez(t) € R", u(t) € R™, y(t) € R” and A, B # 0, and Imz° (and, of course, at least one of these initial

C # 0, D are real matrices of appropriate dimensions. By states must be a nonzero vector).

sl — A
C

-B

P(s) s

P

2. Preliminaries

Consider a systen$ (A, B, C, D) with m inputs andr
outputs
x(t) = Ax(t) + Bu(t),
1)

U we denote the set of admissible inputs which consists

of all piecewise continuous real-valued functions of time
u(+) : [0,00) — R™.

The point of departure for our discussion is the fol-
lowing formulation of the output-zeroing problem (in par-
ticular, of the notion of output-zeroing inputs) (see Isidori,
1995, p. 163): Find all pairgz?,u(t)), consisting of
an initial statez® € R and an admissible inputy(t),
such that the corresponding outpyft) of (1) is identi-
cally zero for allt > 0. Any nontrivial pair (i.e. such
that 2 # 0 or ug(t) # 0) of this kind is called an

The differences mentioned above can be easily read
out from the text (they are stressed in Remarks 1 and 4,
and they are easily seen in Example 4, cf. Section 4).

We denote by M ™ the Moore-Penrose pseudoin-
verse of matrix M. Recall (Gantmacher, 1988) that for
a givenr x m real matrix M of rank p, a factorization
M = MM, with an r x p matrix M; and ap x m
matrix M is called the skeleton factorization @ff. The
skeleton factorization is not unique; however, in any such
factorization M; has full column rank (i.e. is monic) and
M, has full row rank (i.e. is epic). TheM ™ is uniquely
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determined (i.e. independently upon a particular choice of Thus we have the following characterization of output-

matricesM; and M- in the skeleton factorization af/) zeroing inputs and the corresponding solutions:

as M+ = M, M, where M;" = (M{'M;)~*MT and

My = MT(MyMI)~1. From the definition of M * the Proposition 1. Let (2°,uq(t)) be an output-zeroing in-

relations MM*M = M and MTMM+ = M+ fol- put for a proper system (1) and lefy(¢#) denote the cor-

low. If M is square and nonsingular, théd+ = A/~ 1. responding solution. Ther® € Ker (I, — DD*)C, and
Consider the equatiol/z = b, where M is as yo(z.f) is of the form (7) for some functiom;, (¢) € U sat-

above andb € R”, and suppose that this equation is solv- 1S¥iNg Duy,(t) = 0 for all ¢ > 0, and zo(?) is of the

able (i.e. there exists at least one solution). Then any so-om (6). Moreoverzo(t) € Ker (I, — DDT)C for all

lution can be expressed in the form= z§ + z,, where > 0.

25 = M*b and z, is an arbitrary solution of the homo-

geneous equationz — 0 Remark 1. Naturally, Proposition 1 does not tell us

whether the output-zeroing inputs exist. However, if the
set of invariant zeros is nonempty, for each such zero there

3. Main Results exists an output-zeroing input (see (i) below) which in turn
may be characterized as in Proposition 1 (see (ii) below).
3.1. Proper SystemsD70) In order to discuss output-zeroing inputs corresponding to

invariant zeros, it is convenient to treat system (1) as a
complex one, i.e. admitting complex inputs, solutions and
outputs, which are denoted respectivelydyz and 3.

(i) Suppose that\ € C is an invariant zero of (1),
do(t) = Azo(t) + Buo(t), 0= Cxzo(t) + Duo(t), i.e.atriple, 2 # 0, g satisfies (1a). Then (1a)
implies that the inputig(t) = ge*t, t > 0, applied to

Let (2°,uo(t)) be an output-zeroing input for a proper
system (1) and let:y(¢) denote the corresponding solu-
tion. Then for allt > 0 we have the equalities

_ .0
0(0) = o™ (2) system (1) (treated as a complex one) at the initial con-
Consider the following equation: dition o” gives Zo(t) = 2% and §(t) = Cio(t) +
Dip(t) = 0 (note that if the triplesh;, 29 # 0, g
Du(t) = —Cxo(t) (3 and Xy, 2 # 0, g» satisfy (1a), then any linear com-

bination of inputsii; (t) = gie*t and G (t) = goe??,
ie.a(t) = ad(t) + Pus(t) with a,8 € C, applied
to (1) at the initial conditionaz? + Bz3, yields #(t) =
ug(t) = =D Czo(t) + un(t), 4) azfert + paderzt and §(t) = 0).

where u,(t) is some piecewise continuous function sat- Write the trig)le A, SE(; # 0.9 (L)mder consideration
isfying Duy,(t) = 0 for all ¢+ > 0. Because(z°, ug(t)) asA =0+ jw,z° =Rea” +J Irrgox ' g- Tf})en (1a) a(I)so
is assumed to be known, hence, by the uniqueness of soholds for the tripleA = o — jw, z° = Rez” — jlmz”,

lutions, zo(¢) is known anduy,(¢) can be also treated as 9 (€. A = ¢ — jw is also an invariant zero). This
a known function uniquely determined by (4). means in turn that these triples generate two real initial

conditions and two real-valued inputs which produce the
identically zero system response. More precisely, the
pair (Rez®, Redio(t)), where Retg(t) = 2gert +

with an unknown functionu(t) € U. Sinceug(t) satis-
fies (3), it can be written (see Section 2) as

Introducing (4) into the second equality of (2), we get
DD*Cux(t) = Cxo(t), i.e.x¢(t) € Ker (I, — DDT)C
for all ¢ > 0. Introducing (4) into the first equality of (2),

we obtain tgert isan output;z%roing ilnpl;t ?nd yields the solution
_ zo(t) = Redo(t) = 520 e*+5 20 e*'. Analogously, the
2o(t) = (A — BDTC)xo(t) + Bup(t), 5) pair (Im 2°, Tm (1)), where Im dig(t) = —jk ge*t +
20(0) =2°, t>0 j% get, constitutes an output-zeroing input which gives

the solutionzo(t) = Im &o(t) = —j a0 Mt 45 170 M,
and, consequently,
. (i) We show now that the inputsRewo(t) and
zo(t) = 6t(AfBD+C)I0_|_/ e(tf-r)(AfBD‘*'C)Buh(T) dr. Imag(t) may be expressed in the form (7). To this end,
0 we use the following result (Tokarzewski, 1998, p. 1289,
_ (6) Prop. 5): If atriple), z° #0, ¢ satisfies (1a), then
From (6) and (4) it follows that
_ — _Dta0
wo(t) = — D CelA-BD) 40 g=91+t92, g1€KerD, go=-D"Cux
and

t
+ t—r)(A-BDtC
-D C/Oe( . 'Bup(r)dr+un(t). () 349 (A—BD*(C)a® = Bgr, 2° € Ker (I, —DD*)C.
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Thus we can writeio(t) as

o(t) = geM = goe?t + gre* = —DTCz0e? + gret
(8)
with iy, (t) := gie*. Sincedy(t) = ger and ig(t) =

20eM satisfy, at the initial condition:?, the state equation
of (1), i.e.

= —D+Co(t) + an(t),

.’E()(t) = A(f(](t) + B'LNL(](t), ffo(O) = IIJO, (9)
introducing the right-hand side of (8) into (9), we get

To(t) = (A — BDTC)io(t) + Bun(t), #0(0) =a°.

(10)
By virtue of the uniqueness of solutions, this yields

Fo(t) = 20N — ot (A=BDTC) 0
t
- / et="(A=BDTO) By, (7)dr. (11)
0

Introducing the right-hand side of (11) into the right-

hand side of (8) and taking the real part, we obtain the

desired result, i.e.

Reiig(t) = —DTC eA=BDTO)Re 20
_ D+C«/t e(t—r)(A-BD*C)
0

x BRe iy (7)dr + Redip(t).  (12)

As for the output-zeroing inputlm z®, Tmig(t)), we
proceed similarly.

Corollary 1. Let (2°,uo(t)) be an output-zeroing input
for a proper system (1) and let,(¢) denote the corre-
sponding solution. Then

() ¥ B(I, — D*D) = 0, then zo(t) =
t(A=BDTC) 0 Moreover, the pair(z°, ug(t)), where
uy(t) = —DTCe!A=BDPT O30 s also output-zeroing
and yields the solution:o(t) = e/(A=BD7C) 30,

(i) If D has full column rank, thenuy(t) =
—D+Cet(A_BD+C);L'O and l‘o(t) — et(A—BD+0)CE0_
Proof. (i) To the state equation of (1) introduce the input

ug(t) = —DTCxo(t) (13)

at the initial conditionz?. In other words, consider the

Cauchy problem (i.e. the initial value problem, see (Son-

tag, 1990, Appendix C))

i(t) = Azx(t) + Buj(t), x(0) =2, (24)

Introducing (13) into (14) and taking into account the first
equality of (2), we can write
(t) — do(t) = A((t) — zo(t))
+ (A — BD+C)$0(t) - j?o(t). (15)
However, by virtue of (2), the last two terms on the right-
hand side of (15) can be written as
(A= BDTO)wo(t) — do(t)
= A.Io(t) - Io(t) — BD+( - DUO(t))

= —B(I,, — DY D)uy(t). (16)

At B(I,, — D*D) = 0, from (2) and (16) it follows that

xo(t) = eH(A=BDT0) 0, a7)

This ends the proof of the first claim in (i). Moreover,
from (13) and (17) we infer that

uy(t)=—-DTC e (A=BDTC) 20, (18)

Now, setting z(t) = z(t) — xo(¢) and taking into
account (16), we replace (15) by the Cauchy problem

#(t) = Az(t)=B(L,—D'D)ug(t), =z(0)=0, t>0.

(19)
At B(I,, — D*D) = 0 the unique solution of (19)

is z(t) = 0, which means that the unique solutiarjt)
of (14) satisfies

x(t) = xo(t) = eHA=BDTC) 0 (20)

forall ¢ > 0. In order to show thataB(I,,, —D*D) = 0
the pair (2%, u(t)) is an output-zeroing input for (1),
we use (2), (13) and the relations(t) = x¢(¢t) and
DD*TD = D, and for allt > 0 we obtain

y(t) = Cx(t) + Dug(t) = Cxo(t) — D(DTCx(t))

This ends the proof of the second claim in (i).

(i) If D is monic (i.e.D*D = I,,,), then (13) con-
stitutes the unique solution of (3) and, consequently, we
have ug(t) = ug(t) for 0 <t < 0. [ |

Remark 2. Although the assumptiod3(1,,— Dt D) = 0
does not imply in general thai(t) = uo(t), it implies
that uo(¢t) and u(t) applied at the initial state® affect
the state equation of (1) in the same way. This follows
immediately from the relations

Bug(t) — Bug(t) = —B(D*Cux(t)) — Bug(t)
= B.D+D'LLO(t) — B’Lbo(t)
= —B(I,, — D" D)uyg(t) = 0.
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The relation Duf(t) — Dug(t) = 0 forall ¢t > 0 is forallt > 0, i.e.z¢(t) € S forall + > 0. Substituting

obvious (see (21)). t =0 in (iv), one gets (i).
When D has full row rank, the necessary condition In order to prove the converse implication, we have
given by Proposition 1 becomes also sufficient. to show that any paiz°®, wuo(t)) such thatz® € S

and ug(t) has the form (ii) constitutes an output-zeroing
Corollary 2. In (1) let D have full row rank. Then  jnput and produces a solution of the state equation of the
(% uo(t)) is an output-zeroing input iffug(t) has the  form (iii). To this end, we check first that functions (ii)
form (7), wherez® € R"™ and uy(t) is an element of  an i) satisfy the state equation of (1). Then we observe
U satisfying Duy,(t) = 0 forall ¢ > 0. Moreover, the  that the system response corresponding to the input (ii),
solution corresponding t¢z°, uo(t)) has the form (6). when applied to the system at the initial conditiof, is
Proof. The assumption implieDD+ = I.. We show equal to
first that (7) applied to (1) at the initial conditiatf gives
a solution of the form (6). To this end, in view of the (V) y(t) = (I,—DD*) C MA=BD )0,
uniqueness of solutions, it is enough to check that (6)
and (7) satisfy the state equation. Next, introducing (7) Now, expanding the term!(A=BD7C) in a finite series
and (6) to the output equation, we ggtt) = Duy(t). Z}:Ol ai(t) (A — BD*TC)! and taking into account that
This proves that ifz’ € R” and uo(t) isasin (7) (atan  2° € S¢, from (v) we obtain
arbitrary admissibleuy, (t) € Ker D), then (2%, ug(t)) is
an output-zeroing input. The converse implication follows n-t

i l
immediately from Proposition 1. Vi) y(t) = Z a(t)[(I—DD*)C(A~BD*C)']2*
=
A more detailed characterization of the output- ’
zeroing problem than that obtained in Corollary 1(ii) is =0 forall ¢>0.

given by the following result. ) _ o

This means thatz?, u(t)) is an output-zeroing input.
Finally, in order to prove thatro(t) € S for all

t > 0, we proceed analogously as in the first part of the

proof (cf. (iv)). ]

Corollary 3. In a proper system (1), let matri0 have
full column rank. Thenz®, uo(t)) is an output-zeroing
input if and only if

n—1

() 2° € 57 := () Ker {(I, —DD*)C (A-BD*C)"} Remark 3. Any proper system (1) can be transformed, by
1=0 introducing an appropriate precompensator, into a proper

and system in which the first nonzero Markov parameter has

. 4 tHA-BDTC). 0 full column rank. In fact, suppose that in (1) is not

(i) uo(t) = —D7Ce v monic, i.e.rank D = p < m. Let D = Dy Dy, with

Moreover, the corresponding solution equals D, € R™P monic and D, € RP*™ epic, be a skeleton

(il zo(t) = HA-BD*C) 0 factorization of D. Introduce the precompensatd?]

to (1) i.e. consider the-input, r-output system
and is entirely contained in the subspa6g.

. . o ’ _ /
Proof. If (z°, uo(t)) is an output-zeroing input for the () a(t) = Ax(t) + B'o(t), y(t) = Cx(t) + D'v(?),

system, then, as is known from Corollary 1(ii)s(¢) has
the form (ii) andz((t) is as in (iii). So we need to show
relation (i), and thatr(t) € S¢ for all ¢ > 0. However,
by assumption, employing (ii) and (iii), we can write the

where B’ = BDY, D' = DDY and v € RP. Since
D, DI is nonsingular, we haveank D’ = rank D; = p,
i.e. D' has full column rank.

following equality: After simple matrix m.anipulations., we obtaiA.—.
B'(D')*C = A— BD*C, i.e. the matrix characterizing
0=y(t) = Cxo(t) + Duo(t) output-zeroing inputs in system (i) is exactly the same as

T " HA—BD*C) 0 in the o_riginz_il system (1). Each invariant zero of _(i) is_
=, —DD7)Ce z”forallt > 0. also an invariant zero of (1) (although the converse impli-
Differentiating this equality, — 1 times and using (i), we  cation is false; for instance, system (i) is never degener-

get the desired relation ate, even if such is system (1)). Of course(if’, vy (t))
is an output-zeroing input for (i), thefw?, ug(t)), with
(Ir = DD¥)Co(t) =0, uo(t) = DTvy(t), is an output-zeroing input for (1). Fi-
(iv) : nally, by introducing a precompensatér., the control-

(I, — DD*)C(A éD*C)”*lxo(t) o lability of (1) may be lost.
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3.2. Strictly Proper Systems(D=0) and using the relations
If D =0, then the first nonzero Markov parameter of (1) CB=--=CA"'B=0
is denoted byCA*B, where 0 < k < n — 1 (i.e. and
CB =---=CA*'B =0 and CA*B # 0). In (1) .
let rank C A* B = p. Define the matrix zo(t) = etAz0 ¢ / DA By (7) dr,
0
K :=1—- B(CA*B)*CA* (22) _ .

we obtain at the first stepyV)(t) = CAxg(t) +
and let H{H,, with H; € R™P and H, € RP*™, CBug(t) = 0. SinceCB = 0, we haveCAx(t) = 0.
denote a skeleton factorization 6fA*B. The follow- For the i-th derivative of y(¢), 1 < i < k, we obtain
ing lemma characterizes some useful algebraic propertiey) (t) = C Az (t) + C A" Buy(t) = 0, which, in view
of K. of CA*=1B = 0, yields CAzy(t) = 0. Thus z¢(t) is

entirely contained in the subspace
Lemma 1. (Tokarzewski, 1998, p. 128Mhe matrix (22) .
has the following properties: S = ﬂ Ker CA, (25)
() Kj=Kg =0

i.e. zo(t) € Sy forall ¢t > 0.
The (k + 1)-th derivative of (24) yieldg,(*+1) (¢) =
C A*+120(t) + CA*F Bug(t) = 0, which can be written as

CAM 1 go(t) = —CA*Bug(t) forall t >0. (26)

(II) Cn(Rn) = X & Qp, with X, := {J) : Ko
r} = Ker (HI CA¥), Qi := {z : Kz = 0} =
Im (BH]) and dim X3 = n — p, dim Q;, = p.

Moreover,
(i) KiBHY =0, HTCA*K; =0, Note that premultiplying (23) byC A* and using (26),
C(KxA) = CAl for 0 <1 <k, we obtain CA*i(t) = 0 and, consequently, by virtue
’ - of (22), we get the following relation:
HICA' for 0<1<E, Kp2o(t) = 2o(1). 27
V) HIC(KA) ={ Ko(t) = do(t) (27)
0 for [ >k+1. Consider the equation
Since K, is determined uniquely, its properties C A lgo(t) = —CA*Bu(t) (28)

listed in Lemma 1 do not depend upon a particular choice
of matrices H; and H- in the skeleton factorization of
CAFB. In the sequel, only property (iv) of the lemma
will be used (see the proof of Corollary 5).

Suppose now thatz®, uy(t)) is an output-zeroing ug(t) = —(CAFBYTCA* L ag(t) +up(t),  (29)
input for the strictly proper system (1) and denote by
xo(t) the corresponding solution. Thus for all > 0
we have the equalities

with an unknown functionu(t) € U. Because, by as-
sumption,ug(t) satisfies (28)uo(t) (see Section 2) can
be written as

where u(t) € U is some function which satisfies
CA¥Buy,(t) = 0 forall t > 0. Because(x?, ug(t)) and,
consequentlyxy(t) are assumed to be knowny, (t) is
do(t) = Azo(t) + Bug(t), x0(0) = 2° (23) treated as a known function which is uniquely determined
by (29). Introducing (29) to (23) and employing (22), we
and can write (23) as
y(t) _ Cxo(t) — CetALCO + C/t e(t—T)ABuo(T) dr ft()(t) = KkAxO(t) + Buh(t)a 1'()(0) = xo' (30)
0 Thus we have

0. (24) t
xo(t) = e KrAL0 +/ e(t_T)K’“ABuh(T) dr (31)
0

Differentiating (24) successively times according

to the well-known rule of differentiation (Chen, 1984)
i ug(t) = —(CAFB)TCAM 1 eMray0
gt = )u(r)dr = g(t — T)u(7) |7=

and

dt t
fo — (CAFB)TC AR / et ABYy, (1) dr

tq 0
+ . &g(t — 7)u(T)dT, +un(t). 32)
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The above discussion leads to the following characteriza-Finally, introducing the right-hand side of (36) into the

tion of output-zeroing inputs.

Proposition 2. Let (2°,uo(t)) be an output-zeroing in-
put for a strictly proper system (1) and lety(¢) denote
the corresponding solution. Ther? € Sy, cf. (25), and
up(t) has the form (32), for some,,(¢t) € U satisfying
CA*Buy(t) = 0 forall ¢t > 0, and zo(t) is as in (31).
Moreover, zo(t) € Sy, forall ¢t > 0.

Note that on the assumptions of Proposition 2 the
input (32) applied to (1) at an arbitrary initial condi-
tion z(0) € R™ yields the solution of the state equa-
tion of the form z(t) = e*4(x(0) — 2°) + x¢(t), where
xo(t) is as in (31), and the system output equals) =
Cet4(x(0) — 20).

Remark 4. Suppose that € C is an invariant zero of a
strictly proper system (1), i.e. the triple, 2° # 0, ¢
satisfies (1a). Thenio(t) = ge*, t > 0, applied
to system (1) (treated as a complex one)24t yields
To(t) = 2% and §(t) = CZo(t) = 0. We show
now that the output-zeroing input®Re 2°, Re g (¢)) and
(Im z°, Tm1ig(t)) corresponding to\ can be written as
in (32). To this end, it is enough to use the following
result (Tokarzewski, 1998, p. 1287, Prop. 2): If a triple
A, z° # 0, g satisfies (1a), then

g=9g1+92, g1 €KerCAFB,

(33)
g2 = —(CA*B)*CAR+120,

where g1, g» are uniquely determined by, and

A — K, Az® = Bgy, KiAz" — Az® = Bgs,

k (34)
2% € N Ker CAL
=0

Now, using (33), we can writé(t) as

io(t) = geM = g™ + gre™
—(CAFB) O AR 120N 1 g eM

—(CAFB)YYC AR 34 (t) + (), (35)

where iy, (t) := gie™.
0 )\t

For iig(t) = ge* and Zo(t) = 2%* we can
write equalities of the form (23). Then, employing (35),
from (23) we get equalities of the form (30). By virtue of
the uniqueness of solutions, this means that

t
To(t) = 2l = e FrAgl +/ e=IEABG, (1) dr.
0
(36)

right-hand side of (35) and taking the real part of the re-
sultant form of @,(¢), we obtain the desired result. We
proceed similarly with(Im 2, Tm g (t)).

Corollary 4. Let (z°,uq(t)) be an output-zeroing in-
put for a strictly proper system (1) and lety(¢t), ¢t €
[0,+00) denote the corresponding solution. Then

() If KyB = 0, then zq(t) = et®x42°. More-
over, at K, B = 0 the pair (z°, uj(t)), where u(t)
—(CA*B)TCAFF1etErA20 s also output-zeroing and
yields the solutionzg(t) = etFr420,

(i) If CA*B has full column rank, then(t) =
—(CAFB)*C Ak 1etKeAz0 and xo(t) = etErigl,

Proof. (i) Premultiplying both the sides of the first equal-
ity in (23) by K} and using (27), we obtain

K Azo(t) — @o(t) = —KyBug(t), x0(0) =2z°. (37)

At KB = 0, from (37) it follows that

zo(t) = eKrAag0, (38)
This ends the proof of the first claim in (i). For the proof
of the second claim, let us introduce to the state equation
of (1) the input
uh(t) = —(CAFB)TCAM g (t) (39)
at the initial conditionz®. That is, consider the Cauchy
problem
@(t) = Az(t) + Buj(t), x(0) = 2°. (40)

After using (39) and (22), eqn. (40) can be rewritten

as

@(t) —do(t) = A(x(t) — zo(t))

Now, settingz(t) = x(t) — zo(t) and taking into account
(37), the problem (41) can be replaced by

2(t) = Az(t) — KxBuo(t), =z2(0)=0. (42)
At K;B = 0 the unique solution of (42) is(t) = 0,
which means in turn that the unique solutiefx) of (40)
satisfiesz(t) = xo(t) = eFxA420 forall ¢+ > 0. Con-
sequently, since from Proposition 2 we hawg(t) €
Sy C Ker C, the pair (z°, uj(t)), where in view of (38)
and (39)

ug(t) = —(CAFB)TC AR ERA0 0 (43)

is an output-zeroing input and gives the same solution
of (1) as (2%, ug(t)). This proves the second claim of (i).
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(i) By virtue of (22), we getKyB = B(I,, — Moreover, the solution of the state equation corresponding
(CA*B)T(CA*B)). If CA*B is monic, thenI,, — to (2%, ug(t)) has the form
(CAEB)*(CA*B) = 0, i.e. KB = 0. Moreover, in
this case the unique solution of (28) has the form (39). (iii) o(t) = e FrA 20
Hence ug(t) = uj(t), t € [0, +00), where u(¢t) is as

and is entirely contained ir5¢’, i.e. zo(t) € S¢ for all
t>0.

Remark 5. The assumptionk;, B = 0 does notimply in  Proof. Suppose first thatz, u,(¢)) is an output-zeroing
general the equality.; () = uo(t) forall t > 0, although input. Then, as we know from Corollary 4(ii)o(t) has
itimplies x(t) = zo(t). The reason behind this becomes the form (i) and the corresponding solution is as in  (iii).
clear if we consider the relationBug(t) — Bug(t) = Moreover, by assumption, we have

(Kk — I)A.’E()(t) — B’LL()(t) = KkA(Eo(t) — {I?o(t) =

—KBuo(t). Thus, atK,B = 0, although in general (V) y(t) = Czo(t) = Ce" 4 2% = 0 for ¢ € [0, +o0).
uo(t) # ul(t) (cf. Example 1), both these inputs ap-
plied at the initial conditionz® affect the state equa-
tion of (1) in exactly the same way (since we have then
Buj(t) — Bug(t) = 0).

in(43). m

Differentiating the identity (iv)n — 1 times, we can write

C$0 (t) = O,
C(KrA)zo(t) =0,
Corollary 5. In a strictly proper system (1) le©' A*B V) :
have full row rank. Ther(z, ug(t)) is an output-zeroing
inputiff 2° € S and ug(¢) is as in (32) withuy,(t) € U
satisfying u,(t) € Ker CA*B. Moreover, the corre-
sponding solutionz(¢) has the form (31) and is entirely
contained inSy.

C(KkA)"*.lxo(t) =0

for all t > 0. This means that(¢) € S¢ for all ¢t > 0.
In particular, takingt = 0, we get the relation:® € S¢.
) o In order to prove the converse implication, we should
Proof. We write the skeleton factorization af A*B as show that any pair(z®, u(t)) such thatz® € 5S¢ and
H,H,, where Hy = I, Hy = CA*B. ~We show first (4} has the form (ii) constitutes an output-zeroing in-
that the inputuo(?) in (32), with an arbitrarily fixed ad- ,t To this end, we verify first that functions (ii) and (i)
missible uy (t) € K_er._CAkB and ” € Sk, applied to satisfy the state equation of system (1). This means that
the system at the initial con_d|t|on:0,_ produces a solu- e input function (i) applied to the system at the initial
tion of the form (31). To this end, it is enough to ver-  qngition 0 yields the solution of the form (iii). Further-
ify that (32) and (31) satisfy the state equation of (1). more, the system response is equal to
The corresponding output equalgt) = CetfrA20 4
fg Cet="KeABy, (1) dr. Now, using Lemma 1(iv) (at  (vi) y(t) = Cxo(t) = C et Krd g0,
H, = I,) and the assumption® c Sy, for the power se-
ries expansion ofCet +420 we can write CetXx 420 =
S (# /1N C Al = 0.

Analogously,

Now, expanding the terna’ X4 in a finite power series
27:_01 a;(t)(K,LA)" and making use of the assumption
20 € S¢, we can evaluate the system output (vi) as fol-
lows:

|
—

y(t) = C et Krd g0 = a(t) C (KLA) 2 =0
l

(t—7) Ky A =1k _
Ce Buy (1) = B CA®Buy (1) = 0.

Il
=)

This yields y(t) = 0, i.e. @, uo(t)) is output-zeroing.
The converse implication is an immediate consequence offor all ¢ > 0. ]

Proposition 2. [ |
Remark 6. Any strictly proper system (1) can be trans-

Corollary 6. In a strictly proper system (1) le€ A*B formed, by introducing an appropriate precompensator,

have full column rank. Then a paifz®, uo(t)) is an into a strictly proper system in which the first nonzero

output-zeroing input if and only if Markov parameter has full column rank. In fact, assume
- that in (1), Ck'A’fB is not monic, i.erank CA*B = p <

. 0 ol . m. Let CA*B = H,H,, with H; € R"*? monic and

® v eS8y = m Ker C(KyA) Hy € RP*™ epic, be a skeleton factorization. Introduce
=0 to (1) a precompensatdd , i.e. consider the-input, r-

and uo(t) has the form output system

(i) uo(t) = —(CAFB)TCAFFL ot KA 20, () z(t) = Az(t)+B'v(t), y(t) = Cx(t),
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where we haveB’ = BHI and v € RP. The
first nonzero Markov parameteC'A*B’ of (i) has
full column rank. It follows from the skeleton fac-
torization CA*B’ H1H}, where H) = HyHT
is nonsingular.  The output-zeroing inputs for sys-
tem (i) are characterized by matri¥{;A of sys-
tem (1). For system (i) we form matrix<;, 1
B'(CAkB")*CA*, where (CA*B')* = (Hy)TH
(HoHI)"Y(HTH,)"'HT' and, consequently,K},
I — BH][(HoHY) ' (H] H,)"'HT)C A* I
BHYH{CA* = K}, i.e. K, A = K} A, as claimed.

If (2°v0(t)) is output-zeroing for (i), then
(20, ug(t)), with ug(t) = HI vo(t), is an output-zeroing
input for (1). Since HI is monic, the converse impli-
cation does not hold in general. Of course, (i) is never
degenerate, even if the original system (1) is. By intro-
ducing the precompensatdf, the controllability of (1)
may be lost.

Remark 7. If in a strictly proper system (1) matri® is
not of full column rank, i.eKer B # {0}, then any pair
(2 = 0, ux(t)), where uy(t) is an arbitrary nonzero
admissible input satisfyingu;,(t) € Ker B, forms an
output-zeroing input. It is clear that each input of this

kind affects the state equation in exactly the same way

as the pair(z® = 0, ug(t) = 0) (i.e. it gives the triv-
ial solution z(¢) = 0). We do not associate the set of
all pairs (z° = 0, ux(t) € Ker B) with invariant zeros

since it may exist independently upon these zeros (as in

the system

-10
0 -2

-3101
0010

10
01

A:

| o[ o

which is minimal and has no invariant zeros).

|

Finally, one can note that ifz°, uo(t)) is an output-
zeroing input for (1), then any paifz?, ug(t) + uxn(t)),
with up(t) € Ker B, is also output-zeroing and gives the
same solution a$x®, uy(t)) (cf. Example 1).

It is now clear that the operation of introducing
the precompensatoF? to (1) (see Remark 6) removes
from (1) all the output-zeroing inputs of the foria:®
0, un(t) € Ker B) (since in (i) the matrixB’ = BHY
has full column rank). On the other hand, this opera-
tion removes from (1) all those invariant zeros which oc-
cur outsides(KA) (o(-) stands for the spectrum of a
matrix) (because all the invariant zeros of system (i) in
Remark 6 remain ino(KA), see (Tokarzewski, 1998,

&

4. Examples

Example 1. (Tokarzewski, 1998). In (1) let

~10 -3 101 00
A=|0 201, B=|010|, C= .
010
0 0 -3 101

The system is minimal and nondegenerate (in the sense
of (1a)). We havek = 0 and

1/2 0 | 0 00
CcBt=| 0 1|, Ko=|0 00
1/2 0 | -101
The triple
[0 2
A=0, 2= 1|0|, g=10
|1 1

satisfies (1a)X = 0 is the only invariant zero), ang can
be written asg = g1 + g» with

1/2
g1 = 0 € KerCB
~1/2
and
3/2
go=—(CB)TCA2° = | 0
3/2
Any pair (z°, ug(t)), where
f(@t)
uo(t) = g2+ g1 + 0
—f(t)

and f : [0,00) — R! is an arbitrary piecewise continuous
function, is output-zeroing and gives the solutief(t) =

0
V. ¢

Example 2. Consider a square strictly proper sys-
tem (1) of uniform rank (i.e. such thaiCA*B)~! ex-
ists). Then(z?, ug(t)) is output-zeroing iffz° € ). and
ug(t) = —(CA*B)"1CAFH1etKrAz0 where K, =
I — B(CA*B)~"1CA*. Moreover, the zero dynamics
(Isidori, 1995) are governed by the equatiarit)
K Azx(t) and initial conditionsz(0) € Sk. ¢

p. 1288, Cor. 2)) and, consequently, all the output-zeroing Example 3. Consider a square proper system (1) of uni-

inputs corresponding to such zeros.

form rank (i.e. such thaD—! exists). Then(z°,ug(t))
is output-zeroing iffug(t) = —D~1Cet(A-BD™ )0,
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2% € R™. Moreover, the zero dynamics are governed by By showing how to assign to each invariant zero an appro-
the equationi(t) = (A — BD~'C)x(t) and initial con- priate output-zeroing input (Remarks 1 and 4), we studied

ditions z(0) € R™. ¢ dynamic properties of these zeros (the question of the al-
gebraic characterization and calculation of zeros is dis-

Example 4. (Tokarzewski, 2000b). In (1) let cussed in (Tokarzewski, 1998; 2000b)). It is shown that
if the first Markov parameter has full row rank, the neces-

0 1 0 00 sary conditions become also sufficient (Corollaries 2 and 4

A=|lo0 0 1|, B=|01]|, C= —2-10 ] and Examples 2 and 3). Necessary and sufficient condi-
1-9-1 10 0 10 tions for output-zeroing inputs for systems with the first

nonzero Markov parameter of full column rank are given

The system is degenerate (in the sense of (1a)) and it had Corollaries 3 and 6.

no Smith zeros. Finally, some remarks concerning systems with iden-
In particular, tically zero transfer functions should be made. As is no-

ticed in (Tokarzewski, 2000b; Remark 3), @(s) = 0

in (1), then the system is degenerate (in the sense of (1a)).

More precisely, any\ ¢ o(A) is its invariant zero. Fur-

thermore, using the Kalman canonical form of (1), it is

possible to show that the trajectories of the solutions cor-

responding to such zeros are contained in the subspace

of all controllable and unobservable states. Note that

Jjw+1

0
A=jw, - =|0]|, g= )
. _

satisfy (1a) for anyw # 0. To A = jw we assign

0 G(s) = 0 can be the desired property of a system. It
Rea® — Reiin (1) — | €8 wt — w sin wt takes place, e.g., when the disturbance decoupling prob-
( er’ = |01, Reto(t) = — cos wt ) lem is analysed, cf. (Sontag, 1990; p. 146).
1
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