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CONTROLLABILITY, OBSERVABILITY AND OPTIMAL CONTROL
OF CONTINUOUS-TIME 2-D SYSTEMS
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We consider linear 2-D systems of Fornasini-Marchesini type in the continuous-time case with non-constant coefficients.
Using an explicit representation of the solutions by utilizing the Riemann-kernel of the equation under consideration, we
obtain controllability and observability criteria in the case of the inhomogeneous equation, where control is obtained by
choosing the inhomogeneity appropriately, but also for the homogeneous equation, where control is obtained by steering
with Goursat data. The optimal control problem with a quadratic cost functional is also solved.
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1. Introduction

We study controllability and observability properties of
the linear system described by the following hyperbolic
system:

∂2

∂s∂t
x = A0(s, t)x + A1(s, t)

∂

∂s
x + A2(s, t)

∂

∂t
x

+ B(s, t)u, (1)

where x(s, t) ∈ Rn, u(s, t) ∈ Rm together with
A0(s, t), A1(s, t), A2(s, t) ∈ Rn×n, B(s, t) ∈ Rn×m,
A0 and B being assumed to be piecewise continuous on
some intervalI := [S0, S1]× [T0, T1], while A1, A2 are
assumed to be continuously differentiable on the same in-
terval. Hereby we call a function inI piecewise continu-
ous if there exists a rectangular subdivisionR1, . . . , RN

of I such that the restriction of the function to the open

rectangles
◦

Ri, i = 1, . . . , N has a continuous extension
to their closure. This linear 2-D system is considered to-
gether with the initial-boundary or Goursat conditions

x(s, t0) = x1(s) ∈ Rn, (s, t0) ∈ I,

x(s0, t) = x2(t) ∈ Rn, (s0, t) ∈ I,

x1(s0) = x2(t0),
(2)

wherex1, x2 are piecewise continuously differentiable.

For applications in image processing, see, e.g., (Jain
and Jain, 1977; 1978). For this type of control prob-
lems there has also been developed a Pontryagin maxi-
mum principle (see, e.g., (Wolfersdorf, 1978) and the ref-
erences therein) for applications in optimization of quasi-
stationary chemical reactors.

The main aim of this paper is to obtain conditions
on the parameters of the system (1), (2) for unconstrained
controllability. Therefore, analogously to (Sontag, 1998,
p. 83), we start with the following definition:

Definition 1. The system (1), (2), is said to be(com-
pletely) controllablein a given intervalJ = [s0, s1] ×
[t0, t1] if for any initial-boundary condition (2) and any
x ∈ Rn there exists a piecewise continuous functionu in
J , u(s, t) ∈ Rm, such thatx(s1, t1) = x.

There are several papers concerning the controllabil-
ity of systems of type (1), (2). Here we only make a refer-
ence to (Bergmannet al., 1989; Pulvirenti and Santagati,
1975; Kaczorek, 1995; 1996). In (Pulvirenti and Santa-
gati, 1975) the scalar case is treated, in (Bergmannet al.,
1989) and (Kaczorek, 1995) the case of constant coeffi-
cients is studied. In (Kaczorek, 1996) the general case
with non-constant coefficients is treated and a necessary
and sufficient controllability criterion is obtained by de-
manding the so-called Gramian matrix to be positive def-
inite (see Theorem 4). In the present paper we formulate
controllability conditions for the case of non-constant co-
efficients by making use of the solutions of the adjoint
equation, which are similar to the one-dimensional situa-
tion. This then also gives rise to observability results. Be-
sides, we also study control by Goursat data and solve an
optimal control problem. The controllability problem for
the system (1), (2) under certain restrictions on the steer-
ing function u is treated in (Gyurkovics and Jank, 2001).

In order to find conditions for controllability and ob-
servability as in the classical one-dimensional case, we
recall a representation formula for solutions of (1), (2) ob-
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tained with thematrix Riemann functionfor (1). This for-
mula yields an operator, mapping any admissible function
u to a solutionx of (1) and (2).

Although this representation formula is used, e.g., in
(Bergmannet al., 1989; Kaczorek, 1995; 1996), a proof is
available only for the scalar case in (Pulvirenti and Santa-
gati, 1975). In principle, one can deduce the desired rep-
resentation also from (Vekua, 1967, p. 15). However, the
presentation there is oriented towards the representation
of solutions of elliptic differential equations with analytic
coefficients using a complex transformation into a formal
hyperbolic system.

Since we consider neither analytic coefficients nor el-
liptic equations, for the reader’s convenience we shortly
recall that representation theory, which is based on a
method introduced by Riemann. Readers not interested in
the construction of solutions to (1), (2) can directly start
with Theorem 3.

The paper is organized as follows: After the intro-
ductory section, in Section 2 we briefly recall the repre-
sentation theory for solutions of equation (1) using the
matrix Riemann kernel function. Then in Section 3 we
obtain controllability and observability results for systems
with non-constant coefficients using solutions of the ad-
joint equation. In Sections 4 and 5 we briefly address the
issue of control of the system by initial boundary values
and optimal control, respectively.

In the next section we introduce the Riemann kernel
function for equations of type (1).

2. Riemann Kernel and a Representation
Formula

Before introducing the Riemann kernel function, we prove
a lemma concerning the solvability of an integral equation
of Volterra type. Let us first define the set of matrix-valued
functions

Sn×k(J ) :=
{

U : J → Rn×k | U(s, t),

∂

∂s
U(s, t),

∂

∂t
Ut(s, t),

∂2

∂s∂t
U(s, t)

are piecewise continuous inJ ⊂ I
}

.

Lemma 1. Let A(s, t, ξ, η) ∈ Sn×n(I). Then the follow-
ing integral equation of Volterra type:

R0(s, t, σ, τ)

−
∫ s

σ

∫ t

τ

R0(ξ, η, σ, τ)A(s, t, ξ, η) dξ dη = In (3)

has a unique continuous solution such that
∂2

∂s∂tR0(s, t, σ, τ) is piecewise continuous and∂
∂sR0

and ∂
∂tR0 are continuous inI × I.

Proof. The operatorT defined by

(TF )(s, t, σ, τ) :=
∫ s

σ

∫ t

τ

F (ξ, η)A(s, t, ξ, η) dξ dη

maps any matrix-valued functionF (ξ, η) ∈ Rn×n con-
tinuous in I to Rn×n-valued functions continuous in
I × I. There exists a constantC > 0 such that

‖(TF )(s, t, σ, τ)‖

≤ max
(s,t,ξ,η)∈I×I

‖A(s, t, ξ, η)‖

× max
(ξ,η)∈I

‖F (ξ, η)‖ |s−σ| |t−τ |

≤ C|s−σ| |t−τ | max
(ξ,η)∈I

‖F (ξ, η)‖, (4)

and for k = 2, 3, . . . we have

‖(T kF )(s, t, σ, τ)‖

≤ Ck

(k!)2
|s− σ|k|t− τ |k max

(ξ,η)∈I
‖F (ξ, η)‖.

Equation (3) can now be written as

R0 = In + TR0. (5)

Then it follows from the Picard iteration (Arnol’d, 1980,
p. 212), settingR0

0 = In, Rk
0 = In + TRk−1

0 , k =
1, 2, . . . ,

Rl
0 =

l∑
k=0

T kIn, (6)

where T 0 = id, and for k = 1, 2, . . . : T k = TT k−1.
Here id denotes the identity mapping the space of matrix-
valued functionsF (ξ, η) ∈ Rn×n continuous inI to
Rn×n-valued functions continuous inI × I.

For ε > 0 and m, l sufficiently large,m > l, to-
gether with (4), (6) we obtain the estimate

‖Rm
0 −Rl

0‖ =
∥∥∥ m∑

k=l+1

T kIn

∥∥∥
≤

m∑
k=l+1

Ck |s− σ|k|t− τ |k

(k!)2
< ε.

Hence we infer the uniform convergence ofRl
0 towards

R0 and thatR0 is continuous onI × I and solves (3).

The uniqueness can also be concluded in the usual
way, since any difference∆ of two solutions of equa-
tion (3) solves the homogenous equation∆ = T∆, and
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hence also∆ = T k∆, k = 2, 3, . . . . From this, together
with (4), we see that∆ = 0. Furthermore, from (5), (6)
we obtain

∂2

∂s∂t
Rl

0(s, t, σ, τ)

= Rl−1
0 (s, t, σ, τ)A(s, t, s, t)

+
∫ t

τ

Rl−1
0 (s, η, σ, τ)

∂

∂t
A(s, t, s, η) dη

+
∫ s

σ

Rl−1
0 (ξ, t, σ, τ)

∂

∂s
A(s, t, ξ, t) dξ

+
∫ s

σ

∫ t

τ

Rl−1
0 (ξ, η, σ, τ)

∂2

∂s∂t
A(s, t, ξ, η) dξ dη.

Taking the limit asl → ∞, we infer that ∂2

∂s∂tR0 is also
piecewise continuous inI ×I. In a similar way, it can be
seen that ∂

∂sR0 and ∂
∂tR0 are continuous.

Now we are ready to introduce the Riemann kernel
function.

Theorem 1. (Riemann kernel function)Let A0(s, t) ∈
Rn×n be piecewise continuous andA1(s, t), A2(s, t) ∈
Rn×n be continuously differentiable onI. Then the fol-
lowing integral equation of Volterra type:

R(s, t, σ, τ) +
∫ s

σ

R(ξ, t, σ, τ)A2(ξ, t) dξ

+
∫ t

τ

R(s, η, σ, τ)A1(s, η) dη

−
∫ s

σ

∫ t

τ

R(ξ, η, σ, τ)A0(ξ, η) dξ dη = In (7)

has a unique continuous solutionR(s, t, σ, τ) ∈ Rn×n

such that ∂2

∂s∂tR(s, t, σ, τ) is piecewise continuous and
∂
∂sR(s, t, σ, τ), as well as ∂

∂tR(s, t, σ, τ), is continuous
in I × I.

This matrix-valued functionR(s, t, σ, τ) ∈ Rn×n is
called thematrix Riemann functionor thematrix Riemann
kernelof the equation

∂2

∂s∂t
x−A1

∂

∂s
x−A2

∂

∂t
x−A0x = 0. (8)

Proof of Theorem 1.Iterating equation (7) in a similar
way as we have done with (3) yields a sequence of matrix-
valued functionsR(i)(s, t, σ, τ), but it seems to require
an enormous effort to get appropriate estimates in order
to obtain convergence. Therefore we follow the way pro-

posed in (Vekua, 1967). We introduce the following inte-
gral equations:

R1(s, t, ξ) = A2(ξ, t)−
∫ s

ξ

R1(ξ1, t, ξ)A2(ξ1, t) dξ1,

R2(s, t, η) = A1(s, η)−
∫ t

η

R2(s, η1, η)A1(s, η1) dη1.

(9)

Defining the integral operators

(T1R1)(s, t, ξ) := −
∫ s

ξ

R1(ξ1, t, ξ)A2(ξ1, t) dξ1

and

(T2R2)(s, t, η) := −
∫ t

η

R2(s, η1, η)A1(s, η1) dη1,

which map continuously differentiable functions into con-
tinuously differentiable functions, equations (9) can now
formally be written asR1 = A2 + T1R1 and R2 =
A1 + T2R2.

Iterating (9) in a similar way as we did before, i.e.
calculating successivelyR0

1 = A2, Rl
1 = A2 + TRl−1

1 ,
R0

2 = A1, Rl
2 = A1 + TRl−1

2 , l = 1, 2, . . . , we obtain

R1(s, t, ξ) =
∞∑

j=0

(T j
1 A2)(s, t, ξ),

R2(s, t, η) =
∞∑

j=0

(T j
2 A1)(s, t, η).

(10)

The uniform convergence is obvious, since, as has been
done before in the proof of Lemma 1, we have performed a
simple Picard-iteration procedure, and henceR1, R2 are
continuously differentiable functions and the unique so-
lutions of (9). With these solutions we now determine a
matrix-valued functionR0(s, t, σ, τ) such that

R(s, t, σ, τ) = R0(s, t, σ, τ)

−
∫ s

σ

R0(ξ, t, σ, τ)R1(s, t, ξ) dξ

−
∫ t

τ

R0(s, η, σ, τ)R2(s, t, η) dη. (11)
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Inserting (11) into (7), while suppressingσ and τ , yields

In = R0(s, t)−
∫ s

σ

R0(ξ, t)R1(s, t, ξ) dξ

−
∫ t

τ

R0(s, η)R2(s, t, η) dη

+
∫ s

σ

[
R0(ξ, t)−

∫ ξ

σ

R0(ξ1, t)R1(ξ, t, ξ1) dξ1

−
∫ t

τ

R0(ξ, η)R2(ξ, t, η) dη
]
A2(ξ, t) dξ

+
∫ t

τ

[
R0(s, η)−

∫ s

σ

R0(ξ, η)R1(s, η, ξ) dξ

−
∫ η

τ

R0(s, η1)R2(s, η, η1) dη1

]
A1(s, η) dη

−
∫ s

σ

∫ t

τ

[
R0(ξ, η)−

∫ ξ

σ

R0(ξ1, η)R1(ξ, η, ξ1) dξ1

−
∫ η

τ

R0(ξ, η1)R2(ξ, η, η1) dη1

]
A0(ξ, η) dξ dη.

Together with (9) and (10), we then obtain, after a short
calculation,

In = R0(s, t)−
∫ s

σ

∫ t

τ

R0(ξ, η)R2(ξ, t, η)A2(ξ, t) dξ dη

−
∫ s

σ

∫ t

τ

R0(ξ, η)R1(s, η, ξ)A1(s, η) dξ dη

−
∫ s

σ

∫ t

τ

[
R0(ξ, η)−

∫ ξ

σ

R0(ξ1, η)R1(ξ, η, ξ1) dξ1

−
∫ η

τ

R0(ξ, η1)R2(ξ, η, η1) dη1

]
A0(ξ, η) dξ dη.

Interchanging the order of integration in the last two
lines we finally obtain the following integral equation of
Volterra type forR0:

R0(s, t, σ, τ)

−
∫ s

σ

∫ t

τ

R0(ξ, η, σ, τ)A(s, t, ξ, η) dξ dη = In, (12)

where

A(s, t, ξ, η)

:= R2(ξ, t, η)A2(ξ, t) + R1(s, η, ξ)A1(s, η)

+ A0(ξ, η)−
∫ s

ξ

R1(ξ1, η, ξ)A0(ξ1, η) dξ1

−
∫ t

η

R2(ξ, η1, η)A0(ξ, η1) dη1

and, together with ∂2

∂s∂tA = 0, we haveA ∈ Sn×n(I).
In order to establish Theorem 1, we need the existence and
uniqueness of the solution of this latter integral equation.
Setting A in (3) as defined in (12) and using Lemma 1,
we infer that R as defined in (11) is a continuous so-
lution of (7). SinceR0, R1, and R2 are unique, we
also obtain the uniqueness ofR. Moreover, sinceR1

andR2 are continuously differentiable,∂∂sR0 and ∂
∂tR0

are continuous and∂2

∂s∂tR0 is piecewise continuous, we

infer from (11) that also ∂2

∂σ∂τ R is piecewise continu-
ous.

The next step now is to prove some important prop-
erties of the matrix Riemann function.

Theorem 2. The matrix Riemann function is a solution of
the differential equation

∂2

∂s∂t
R(s, t, σ, τ) +

∂

∂s

(
R(s, t, σ, τ)A1(s, t)

)
+

∂

∂t

(
R(s, t, σ, τ)A2(s, t)

)
− R(s, t, σ, τ)A0(s, t) = 0, (13)

with det R(s, t, s, τ) 6= 0, det R(s, t, σ, t) 6= 0 and

i)
∂

∂s
R(s, t, σ, t) + R(s, t, σ, t)A2(s, t) = 0,

ii)
∂

∂t
Rt(s, t, s, τ) + R(s, t, s, τ)A1(s, t) = 0,

iii)
∂

∂ξ
R(s, t, ξ, t)−A2(ξ, t)R(s, t, ξ, t) = 0,

iv)
∂

∂η
R(s, t, s, η)−A1(s, η)R(s, t, s, η) = 0,

v) R(s, t, s, t) = In.

Proof. That R is a solution of theadjoint differential
equation (13) results from differentiating (7). Item (i) fol-
lows by settingt = τ in (7) and differentiating the result
with respect tos. Analogously, we obtain (ii) and (v).

With the well-known Abel-Jacobi-Liouville formula
(Gantmacher, 1986, p. 470), we obtain from, e.g., (ii)
and (v)

detR(s, t, s, τ) = e
∫ t

τ
trace

(
A1(s,η)

)
dη,

which yields the desired property. Analogously, from (i)
and (v) we obtain the second determinant. The remaining
two items require some more effort. For any continuous
matrix-valued functionX(s, t) ∈ Rn×n, differentiable
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with respect tos for all t ∈ I, together with (ii) we de-
duce that

∂

∂t

(
R(s, t, s, τ)X(s, t)

)
−R(s, t, s, τ)

( ∂

∂t
X(s, t)−A1(s, t)X(s, t)

)
=
( ∂

∂t
R(s, t, s, τ)+R(s, t, s, τ)A1(s, t)

)
X(s, t) = 0.

Replacing thereint by η and integrating the result with
respect toη from τ to t together with (v) yields

R(s, t, s, τ)X(s, t)− InX(s, τ)

=
∫ t

τ

R(s, η, s, τ)
[ ∂

∂η
X(s, η)−A1(s, η)X(s, η)

]
dη.

Setting nowX(s, τ) := R(s, t, s, τ) and applying again
(v) yields

0 =
∫ t

τ

R(s, η, s, τ)

×
[ ∂

∂η
R(s, t, s, η)−A1(s, η)R(s, t, s, η)

]
dη.

Since t, τ ∈ I are arbitrary, we infer that necessarily

R(s, η, s, τ)
[ ∂

∂η
R(s, t, s, η)−A1(s, η)R(s, t, s, η)

]
= 0

for all η ∈ I. Since R(s, t, s, η) is invertible, we ob-
tain (iv). Analogously, we get (iii).

Having introduced the matrix Riemann function, we
can now use it to obtain a general representation formula
for all solutions to (1).

We start deriving an important identity.

Lemma 2. Let U(s, t) ∈ Sn×k(I) and let the matrices
A0, A1, A2 be defined as before. Then with

F (U) :=
∂2

∂s∂t
U −A1

∂

∂s
U −A2

∂

∂t
U −A0U

and R as the matrix Riemann function, we obtain the
identity

∂2

∂s∂t
(RU)−RF (U) =

∂

∂s

[( ∂

∂t
R + RA1

)
U

]

+
∂

∂t

[( ∂

∂s
R + RA2

)
U

]
. (14)

Proof. It is easy to check that the left-hand side, together
with (13) and the definition ofF (U), yields

∂2

∂s∂t
(RU)−RF (U)

= 2
∂2

∂s∂t
RU +

∂

∂s
R

∂

∂t
U +

∂

∂t
R

∂

∂s
U

+ RA1
∂

∂s
U + RA2

∂

∂t
U +

( ∂

∂t
(RA2)

)
U

+
( ∂

∂s
(RA1)

)
U,

and this exactly equals the term on the right-hand side
of (14).

The next identity yields an integrated version of (14).

Lemma 3. Let U(σ, τ) ∈ Sn×k(J ) and let R(s, t, σ, τ)
be the matrix Riemann kernel of the differential equa-
tion (8). Then we obtain the identity

U(s, t) = R(s0, t0, s, t)U(s0, t0)

+
∫ t

t0

R(s0, τ, s, t)
[ ∂

∂τ
U(s0, τ)−A1(s0, τ)U(s0, τ)

]
dτ

+
∫ s

s0

R(σ, t0, s, t)
[ ∂

∂σ
Uσ(σ, t0)−A2(σ, t0)U(σ, t0)

]
dσ

+
∫ s

s0

∫ t

t0

R(σ, τ, s, t)F
(
U(σ, τ)

)
dσ dτ, (15)

where (s0, t0) ∈ J .

Proof. Interchanging the first pair of variables(s, t) with
the second pair(σ, τ) and integrating the identity (14)
from s0 to s with respect toσ and also fromt0 to t
with respect toτ yields for the left-hand side of (14)∫ s

s0

∫ t

t0

∂

∂σ∂τ
(RU) dσ dτ

−
∫ s

s0

∫ t

t0

R(σ, τ, s, t)F
(
U(σ, τ)

)
dσ dτ

=
∫ s

s0

∂

∂σ

(
R(σ, t, s, t)U(σ, t)

)
dσ

−
∫ s

s0

∂

∂σ

(
R(σ, t0, s, t)U(σ, t0)

)
dσ

−
∫ s

s0

∫ t

t0

R(σ, τ, s, t)F
(
U(σ, τ)

)
dσ dτ
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= R(s, t, s, t)U(s, t)−R(s0, t, s, t)U(s0, t)

−R(s, t0, s, t)U(s, t0) + R(s0, t0, s, t)U(s0, t0)

−
∫ s

s0

∫ t

t0

R(σ, τ, s, t)F
(
U(σ, τ)

)
dσ dτ.

For the right-hand side, we obtain∫ t

t0

( ∂

∂t
R(s, τ, s, t) + R(s, τ, s, t)A1(s, τ)

)
U(s, τ) dτ

−
∫ t

t0

( ∂

∂t
R(s0, τ, s, t)+R(s0, τ, s, t)A1(s0, τ)

)
U(s0, τ)dτ

+
∫ s

s0

( ∂

∂s
R(σ, t, s, t)+R(σ, t, s, t)A2(σ, t)

)
U(σ, t) dσ

−
∫ s

s0

( ∂

∂s
R(σ, t0, s, t)+R(σ, t0, s, t)A2(σ, t0)

)
U(σ, t0)dσ.

Using now the properties of the Riemann kernel as
stated in Theorem 2, we obtain

U(s, t)−R(s0, t, s, t)U(0, t)−R(s, t0, s, t)U(s, t0)

+ R(s0, t0, s, t)U(s0, t0)

−
∫ s

s0

∫ t

t0

R(σ, τ, s, t)F
(
U(σ, τ)

)
dσ dτ

= −
∫ t

t0

∂

∂t
R(s0, τ, s, t)U(s0, τ) dτ

−
∫ t

t0

R(s0, τ, s, t)A1(s0, τ)U(s0, τ) dτ

−
∫ s

s0

∂

∂s
R(σ, t0, s, t)U(σ, t0) dσ

−
∫ s

s0

R(σ, t0, s, t)A2(σ, t0)U(σ, t0) dσ

= −R(s0, τ, s, t)U(s0, τ)|tτ=t0

+
∫ t

t0

R(s0, τ, s, t)
( ∂

∂τ
U(s0, τ)−A1(s0, τ)U(s0, τ)

)
dτ

−R(σ, t0, s, t)U(σ, t0)|sσ=s0

+
∫ s

s0

R(σ, t0, s, t)
( ∂

∂σ
U(σ, t0)−A2(σ, t0)U(σ, t0)

)
dσ.

This immediately yields the desired identity (15).

Remark 1. Notice that from Lemma 3 we can conclude
that the matrix Riemann function with respect to the sec-
ond pair of variables is a solution of the homogeneous

equation (1) inI, i.e.

∂2

∂σ∂τ
R(s, t, σ, τ)

= A0(σ, τ)R(s, t, σ, τ) + A1(σ, τ)
∂

∂σ
R(s, t, σ, τ)

+ A2(σ, τ)
∂

∂τ
R(s, t, σ, τ).

Proof. Calculating ∂2

∂σ∂τ R, ∂
∂σ R, ∂

∂τ R from (7) and
defining

ϕ(s, t, σ, τ)

:=
∂2

∂σ∂τ
R(s, t, σ, τ)−A1(σ, τ)

∂

∂σ
R(s, t, σ, τ)

−A2(σ, τ)
∂

∂τ
R(s, t, σ, τ)−A0(σ, τ)R(s, t, σ, τ)

yields, together with Theorem 2, (iii), (iv) and (v),

ϕ(s, t, σ, τ) = −
∫ s

σ

ϕ(ξ, t, σ, τ)A2(ξ, t) dξ

−
∫ t

τ

ϕ(s, η, σ, τ)A1(s, η) dη

+
∫ s

σ

∫ t

τ

ϕ(ξ, η, σ, τ)A0(ξ, η) dξ dη.

With R1, R2 and (10), we perform again the transforma-
tion (11):

ϕ(s, t, σ, τ) = ϕ0(s, t, σ, τ)

−
∫ s

σ

ϕ0(ξ, t, σ, τ)R1(s, t, ξ) dξ

−
∫ t

τ

ϕ0(s, η, σ, τ)R2(s, t, η) dη,

which yields the integral equation forϕ0:

ϕ0(s, t, σ, τ) = (Tϕ0)(s, t, σ, τ).

By iterating this equation we obtainϕ0(s, t, σ, τ) =
(Tnϕ0)(s, t, σ, τ) for all n ∈ N. Using the estimate (4)
for T , we see thatϕ0 = 0 and henceϕ = 0.

Now we can obtain a representation formula in much
the same way as for the one-dimensional continuous-time
case. This formula will then also enable us to derive sim-
ilar controllability criteria.
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Theorem 3. (i) Let u be a piecewise continuous function,
u(s, t) ∈ Rm, and let x ∈ Sn×1(J ) be a solution of (1)
in J . Then

x(s, t) = R(s0, t0, s, t)x1(s0)

+
∫ s

s0

R(σ, t0, s, t)
(
x′1(σ)−A2(σ, t0)x1(σ)

)
dσ

+
∫ t

t0

R(s0, τ, s, t)
(
x′2(τ)−A1(s0, τ)x2(τ)

)
dτ

+
∫ s

s0

∫ t

t0

R(σ, τ, s, t)B(σ, τ)u(σ, τ) dσ dτ, (16)

where (s0, t0) ∈ J , x1(σ) := x(σ, t0), x2(τ) :=
x(s0, τ).
(ii) For any piecewise continuously differentiable func-
tions x1 (resp. x2) in [s0, s1] (resp. in [t0, t1]), with
x1(s0) = x2(t0), and a piecewise continuous functionu,
u(s, t) ∈ Rm, in J , x in (16) is a solution of the dif-
ferential equation (1) (i.e.x ∈ Sn×1(J ) and fulfils (1)
a.e.), with the initial-boundary values (2).

Proof. If x ∈ Sn×1(J ) is a solution of (1), then from the
identity (15), settingF (x) = Bu, we infer the represen-
tation (16).

To show (ii), we first prove by direct computation
that x as represented by (16) is inSn×1 and fulfils (1).
There we have to use Remark 1 and properties (iii), (iv)
and (v) of Theorem 2.

It remains to prove thatx(s, t) also has the desired
boundary values. From (16) we obtain

x(s0, t) = R(s0, t0, s0, t)x1(s0)

+
∫ t

t0

R(s0, τ, s0, t)
[
x′2(τ)−A1(s0, τ)x2(τ)

]
dτ,

which yields, after partial integration,

x(s0, t) = R(s0, t0, s0, t)x1(s0) + R(s0, τ, s0, t)x2(τ)|tt0

−
∫ t

t0

[ ∂

∂τ
R(s0, τ, s0, t)

+ R(s0, τ, s0, t)A1(s0, τ)
]
x2(τ) dτ.

Using then (ii) and (v), from Theorem 2 we finally get
x(s0, t) = x2(t). Analogously, we obtainx(s, t0) =
x1(s).

Notice that (16) remains true ifu is in the space of
square integrable functionsLn

2 (J ) and x, x1, x2 are
in some appropriate Sobolev space, since the representa-
tion operator is continuous. We used piecewise continu-
ous functions having in mind only technical applications.

In some particular situations it is possible to apply a
simple transformation of (1) in order to obtain a simpler
form.

Remark 2. Let A1(s, t), A2(s, t) ∈ Rn×n be piecewise
continuously differentiable onI such that the integrabil-
ity conditions

∂A1

∂s
(s, t) =

∂A2

∂t
(s, t),

A1(s, t)A2(σ, t) = A2(σ, t)A1(s, t)

(17)

hold for all σ, s, t ∈ [S0, S1], t ∈ [T0, T1].
If V (s, t, s0, t0), (s, t, s0, t0) ∈ I is the solution of

∂

∂s
V = A2(s, t)V,

∂

∂t
V = A1(s, t)V

(18)

with V (s0, t0, s0, t0) = In, then by the transformation

x = V y (19)

eqn. (1) with boundary values (2) is equivalent to

∂2

∂s∂t
y + V −1(s, t)

( ∂

∂t
A2(s, t)−A2(s, t)A1(s, t)

−A0(s, t)
)
V (s, t)y = V −1(s, t)B(s, t)u(s, t) (20)

and
y(s, t0) = V −1(s, t0)x1(s),

y(s0, t) = V −1(s0, t)x2(t),

y(s0, t0) = x1(s0) = x2(t0).

(21)

Proof. First, notice that the required solution of (18) under
the assumption of (17) can be written as

V (s, t, s0, t0)

= exp
(∫ s

s0

A2(σ, t) dσ
)

exp
(∫ t

t0

A1(s0, τ) dτ
)
. (22)

Inserting (19) into (1) together with (17) and (18), we ob-
tain

V
∂2

∂s∂t
y +

( ∂

∂t
A2 −A2A1 −A0

)
V y

= V
∂2

∂s∂t
y +

( ∂

∂s
A1 −A1A2 −A0

)
V y = Bu,

and hence (20). Clearly, from (19) we have (21). Since
V (s, t) ∈ Rn×n is regular inI, we conclude the equiva-
lence.
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3. Controllability and Observability

The first controllability condition can now be obtained
similarly to the one-dimensional case by using the rep-
resentation formula (16).

Theorem 4. Let A0 be piecewise continuous and
A1, A2 be continuously differentiable inI. Let further-
more R denote the matrix Riemann function of (8). The
system (1) together with (2) is completely controllable in
J if and only if

W = W (s0, t0, s1, t1)

:=
∫ s1

s0

∫ t1

t0

R(σ, τ, s1, t1)B(σ, τ)BT (σ, τ)

×RT (σ, τ, s1, t1) dσ dτ > 0. (23)

Proof. From the representation (16) we conclude that for
the control

u(σ, τ) := BT (σ, τ)RT (σ, τ, s1, t1)z, z ∈ Rn

we have

x(s1, t1) = R(s0, t0, s1, t1)x1(s0)

+
∫ s1

s0

R(σ, t0, s1, t1)

×
(
x′1(σ)−A2(σ, t0)x1(σ)

)
dσ

+
∫ t1

t0

R(s0, τ, s1, t1)

×
(
x′2(τ)−A1(s0, τ)x2(τ)

)
dτ + Wz.

If W > 0, then with

z = W−1
(
x(s1, t1)−R(s0, t0, s1, t1)x1(s0)

−
∫ s1

s0

R(σ, t0, s1, t1)
(
x′1(σ)−A2(σ, t0)x1(σ)

)
dσ

−
∫ t1

t0

R(s0, τ, s1, t1)
(
x′2(τ)−A1(s0, τ)x2(τ)

)
dτ
)

∈ Rn

we see that the controlu = BT RT z steers the system
from x(s0, t0) = x1(s0) = x2(t0) to x(s1, t1) for any
given x(s1, t1) and any boundary functionsx1(s), x2(t).
Hence the system is completely controllable.

If, on the other hand, the system is supposed to
be controllable, then for any givenx1(s), x2(t) and

x(s1, t1) ∈ Rn or, equivalently, for any giveñx ∈ Rn

with

x̃ = x(s1, t1)−R(s0, t0, s1, t1)x1(s0)

−
∫ s1

s0

R(σ, t0, s1, t1)
(
x′1(σ)−A2(σ, t0)x1(σ)

)
dσ

−
∫ t1

t0

R(s0, τ, s1, t1)
(
x′2(τ)−A1(s0, τ)x2(τ)

)
dτ

there exists an admissible controlu steering the system
to x(s1, t1), which is then equivalent to

x̃ =
∫ s1

s0

∫ t1

t0

R(σ, τ, s1, t1)B(σ, τ)u(σ, τ) dσ dτ.

Since W is a symmetric and positive semi-definite ma-
trix, all we have to prove is thatW is regular or thatW
has a kernel containing only the zero vector.

If x̃ 6= 0 were in the kernel ofW (i.e. Wx̃ = 0),
then∫ s1

s0

∫ t1

t0

x̃T R(σ, τ, s1, t1)B(σ, τ)BT (σ, τ)

×RT (σ, τ, s1, t1)x̃dσ dτ

=
∫ s1

s0

∫ t1

t0

|BT RT x̃|2 dσ dτ = 0

and thereforeBT RT x̃ = 0 a.e.

From controllability and our consideration above we
obtained a representation for̃x using an appropriate con-
trol function u. Together with this definition of̃x, we get

|x̃|2 = x̃T x̃ =
∫ s1

s0

∫ t1

t0

x̃T RBu dσ dτ = 0,

a contradiction. This meansIm W = Rn and, since in
generalW ≥ 0, we haveW > 0.

As a first example, we study the controllability of the
system (1) in the case of constant coefficients.

Theorem 5. (Kalman controllability)The system

∂2

∂s∂t
x = A0x + Bu, x(s, 0) = x1(s),

x(0, t) = x2(t), x1(0) = x2(0),

where A0 ∈ Rn×n, B ∈ Rn×m and x1, x2 are piece-
wise continuously differentiable fors, t > 0, is com-
pletely controllable in [0,∞) × [0,∞), i.e. completely
controllable for all s1, t1 > 0, if and only if

rank (B,A0B,A2
0B, . . . , An−1

0 B) = n. (24)
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Proof. First, from (7) we determine the Riemann kernel
for the equation in Theorem 5, i.e. for a constant coef-
ficient A0. Iterating equation (7) withR0 = In and
Rm+1(s, t, σ, τ) := In +

∫ s

σ

∫ t

τ
A0Rm(ξ, η, σ, τ) dξ dτ ,

m = 0, 1, . . . yields

Rm =
m∑

j=0

1
(j!)2

Aj
0(s− σ)j(t− τ)j .

After showing the convergence, we obtain the Riemann
kernel of (7)

R(s, t, σ, τ) =
∞∑

j=0

1
(j!)2

Aj
0(s− σ)j(t− τ)j .

We now infer controllability from Theorem 4. The
system is not controllable if and only if there exists
(s1, t1) ∈ [0,∞) × [0,∞) and x ∈ Rn \ {0} such that
xT W (0, 0, s1, t1)x = 0. SincexT RBBT RT x ≥ 0, this
is equivalent toBT RT x = 0, i.e.

∞∑
j=0

1
(j!)2

(σ − s1)j(τ − t1)jBT (AT
0 )jx = 0.

This implies

BT (AT
0 )jx = 0 for all j = 0, 1, 2, . . . .

Together with the Cayley-Hamilton theorem, this is equiv-
alent to

rank


BT

BT AT
0

...

BT (AT
0 )n−1

 < n.

Hence we obtain a contradiction. Since the maximal rank
of the above matrix equalsn, the theorem is proved.

Corollary 1. Let A0 ∈ Rn×n, B ∈ Rn×m, A1 = α1In,
A2 = α2In, α1, α2 ∈ R, A := α1α2In+A0. The system

∂2

∂s∂t
x = A0x + A1

∂

∂s
x + A2

∂

∂t
x + Bu,

x(s, 0) = x1(s), x(0, t) = x2(t),

where x1, x2 are piecewise continuously differentiable
for s, t > 0, is completely controllable in[0,∞)×[0,∞)
if and only if

rank (B,AB,A2B, . . . , An−1B) = n. (25)

Proof. From Remark 2 we infer that there exists a trans-
formation matrixV (s, t, 0, 0) = exp(α1t+α2s)In trans-
forming (1) into (20), which is in this case

∂2

∂s∂t
y − (α1α2In + A0)y =

∂2

∂s∂t
y −Ay

= V −1(s, t)Bu(s, t). (26)

This equation is completely controllable if and only if the
original system (1) is completely controllable.

The matrix Riemann function of (26) is again

R(s, t, σ, τ) =
∞∑

j=0

1
(j!)2

Aj(s− σ)j(t− τ)j . (27)

For s1, t1 > 0 we infer from Theorem 4 the complete
controllability of (26) if and only if

W (0, 0, s1, t1)

=
∫ s1

0

∫ t1

0

R(σ, τ, s1, t1)V −1(σ, τ)

×BBT (V T )−1(σ, τ)RT (σ, τ) dσ dτ

=
∫ s1

0

∫ t1

0

e−2(α1τ+α2σ)R(σ, τ, s1, t1)

×BBT RT (σ, τ, s1, t1) dσ dτ > 0.

As before, non-controllability is equivalent to the exis-
tence ofx ∈ Rn \ {0} such that

e−(α1τ+α2σ)BT RT x = 0,

which, together with (27), finally yields the desired result.

More general controllability criteria in the case of
constant coefficients are derived in (Gyurkovics and Jank,
2001; Kaczorek, 1996).

Next we derive general controllability criteria in the
case of non-constant coefficients.

Theorem 6. Let R be the matrix Riemann function
of (8) and, furthermore, letJ be an interval such that
R(s0, t0, s1, t1) 6= 0. If there existsy0 ∈ R1×n\{0} such
that with y(s, t) = y(s, t, s1, t1) := y0R(s, t, s1, t1),

y0R(s0, t0, s1, t1) = y(s0, t0, s1, t1) 6= 0,

and

y(s, t)B(s, t) = 0 for all (s, t) ∈ J ,

(28)

then the system (1) is not completely controllable inJ .
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Proof. Notice that with a solutionx ∈ Sn×1 of (1),
from (15) by premultiplying this identity from the left-
hand side byy(s, t) and observing thaty(s1, t1) = y0,
we see that

y0x(s1, t1)

= y(s0, t0, s1, t1)x(s0, t0)

+
∫ t1

t0

y(s0, τ, s1, t1)

×
[ ∂

∂τ
x(s0, τ)−A1(s0, τ)x(s0, τ)

]
dτ

+
∫ s1

s0

y(σ, t0, s1, t1)

×
[ ∂

∂σ
x(σ, t0)−A2(σ, t0)x(σ, t0)

]
dσ

+
∫ s1

s0

∫ t1

t0

y(σ, τ, s1, t1)B(σ, τ)u(σ, τ) dσ dτ. (29)

If we now assume that the solutionx of (1) fulfils the
following boundary conditions:

x(s0, τ) = x2(τ) := e
∫ τ

t0
A1(s0,η) dη

x0,

and
x(σ, t0) = x1(σ) := e

∫ σ
s0

A2(ξ,t0) dξ
x0,

where x1(s0) = x2(t0) = x0, then together withyB =
0 we obtain

y0x(s1, t1) = y(s0, t0, s1, t1)x0 = y0R(s0, t0, s1, t1)x0

for arbitraryx0 ∈ Rn.

Choosing x0 ∈ Rn such thaty(s0, t0, s1, t1)x0 6= 0
yields a contradiction if we intend to steer the system to
x(s1, t1) = 0. Hence the system is not completely con-
trollable.

We say thaty ∈ S1×n(I) is a solution of the adjoint
differential equation to (8) if it fulfils

∂2

∂s∂t
y +

∂

∂s

(
y(s, t)A1(s, t)

)
+

∂

∂t

(
y(s, t)A2(s, t)

)
− y(s, t)A0(s, t) = 0 (30)

a.e., and hence if, e.g.,y0 ∈ R1×n, then y(s, t) =
y(s, t, σ, τ) := y0R(s, t, σ, τ) is a solution of the adjoint
equation (30). These solutions of the adjoint equation can
now be used to obtain sufficient conditions for complete
controllability in the case of non-constant coefficients.

Theorem 7. Let (1) be defined in the intervalI =
[S0, S1]× [T0, T1] and let R denote the matrix Riemann
function of (1) or (8), respectively. If for all nontriv-
ial solutions y of the adjoint equation (30) of the form
y0R(s, t, s0, t0) = y(s, t), y0 ∈ R1×n \ {0} we have

yB 6≡ 0 onI ∩ [s0,∞)× [t0,∞), (31)

for s0 > S0, t0 > T0, then there existss∗1 > s0, t
∗
1 >

t0 such that the system (1) is completely controllable in
J =[s0, s

∗
1]× [t0, t∗1].

Proof. First we prove that for alls0 > S0, t0 > T0, there
exists s∗1 > s0, t

∗
1 > t0 such thatyB 6≡ 0 on J for

all nontrivial solutionsy of the adjoint equation (30) that
can be represented in the formy(s, t) = y0R(s, t, s0, t0),
wherey0 ∈ R1×n.

Assume that this is wrong. Then there exist se-
quencessν → S1, tν → T1 as ν → ∞, and nontriv-
ial solutions yν(s, t) = y0,νR(s, t, s0, t0) of the adjoint
equation withyνB ≡ 0 on [s0, sν ] × [t0, tν ]. Without
loss of generality we assume|yν(s0, t0)| = 1, and also
(by taking a subsequence if necessary)

lim
ν→∞

yν(s0, t0) = x0 ∈ Rn.

Sinceyν(s, t) = y0,νR(s, t, s0, t0), we conclude that

lim
ν→∞

yν(s, t) = ( lim
ν→∞

y0,ν)R(s, t, s0, t0)

= x0R(s, t, s0, t0) =: y0(s, t).

Hencey0(s, t) is a nontrivial solution of the adjoint equa-
tion, sincex0 6= 0. On the other hand, we have

y0(s, t)B(s, t) = lim
ν→∞

yν(s, t)B(s, t) = 0,

for s > s0, t > t0. This contradicts our assumption.

In the next step we prove

W (s0, t0, s
∗
1, t

∗
1) > 0,

which, by Theorem 4, yields complete controllability.

In general, W (s0, t0, s
∗
1, t

∗
1) ≥ 0 and we have to

show that W is regular. Assume there is somea ∈
R1×n \ {0} such thataW = 0. Hence

aWaT =
∫ s∗1

s0

∫ t∗1

t0

aR(σ, τ, s∗1, t
∗
1)B(σ, τ)BT (σ, τ)

×R(σ, τ, s∗1, t
∗
1)a

T dσ dτ

=
∫ s∗1

s0

∫ t∗1

t0

y(σ, τ)B(σ, τ)BT (σ, τ)

×yT (σ, τ) dσ dτ = 0.
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Therefore

aR(σ, τ, s∗1, t
∗
1)B(σ, τ) = 0 on [s0, s

∗
1]× [t0, t∗1].

This is again a contradiction. Thus,W > 0 and by Theo-
rem 4 the system is completely controllable on[s0, s

∗
1]×

[t0, t∗1].

Since Theorem 7 makes use only of particular solu-
tions of the adjoint differential equation (30), there is a
stronger sufficient controllability condition applying con-
dition (31) toall nontrivial solutions of the adjoint differ-
ential equation. Hence we obtain a controllability condi-
tion closer to the one-dimensional case.

Corollary 2. Under the assumptions of Theorem 7 and
if condition (31) holdsfor all nontrivial solutions of the
adjoint differential equation (30), there exists∗1 > s0

andt∗1 > t0 such that the system (1) is completely con-
trollable in J =[s0, s

∗
1]× [t0, t∗1].

Next we discuss the observability of the system (1),
(2) together with a linear output. We shall introduce a no-
tion of observability analogously to that given in (Sontag,
1998, p. 263).

Definition 2. Let C be piecewise continuous on the inter-
val I, C(s, t) ∈ Rk×n. Then we define the linear output
of the system (1), (2) by

y(s, t) = C(s, t)x(s, t), y(s, t) ∈ Rk, (32)

where x(s, t) is a solution of (1), (2). Suppose that for
all (s1, t1) ∈ I and for all controlsu ∈ Sm×1(I ∩
(−∞, s1]×(−∞, t1]) for any two trajectoriesx, x̃ of (1)
belonging to the same inputu, from

C(s, t)x(s, t) = C(s, t)x̃(s, t),

(s, t) ∈ I ∩ (−∞, s1]× (−∞, t1]

it follows necessarily that

x(s, t) = x̃(s, t) in I ∩ (−∞, s1]× (−∞, t1].

Then the system (1), (2) with the output (32) is said to be
observablein I.

Remark 3. Write x̂ = x−x̃. Then observability is equiv-
alent to the condition that

C(s, t)x̂(s, t) = 0, (s, t) ∈ I ∩ (−∞, s1]× (−∞, t1]

implies

x̂(s, t) = 0 in I ∩ (−∞, s1]× (−∞, t1],

where x̂ is any solution of the homogeneous system (1),
i.e. with u = 0.

Hence observability is equivalent to the condition
that for all (s1, t1) ∈ I and for all nontrivial solutions
x̂ of (8) there holds

x̂T CT 6≡ 0

in I ∩ (−∞, s1]× (−∞, t1].

Comparing this last remark with the controllability
criterion obtained in Theorem 7 and Corollary 2 yields a
necessary criterion for observability.

Theorem 8. If the system (1), (2) with the output (32) is
observable inI, then the system of type (30)

∂2

∂s∂t
x−AT

1 (−s,−t)
∂

∂s
x−AT

2 (−s,−t)
∂

∂t
x

−
(
AT

0 (−s,−t) +
∂

∂s
AT

1 (−s,−t) +
∂

∂t
AT

2 (−s,−t)
)
x

= CT (−s,−t)v (33)

is completely controllable in−I.

Proof. From Remark 3 we infer that for any nontrivial so-
lution x̂ of (8) there holdŝxT CT 6≡ 0 in I∩(−∞, s1]×
(−∞, t1]. Then y(s, t) := x̂(−s,−t) is a nontrivial so-
lution of

∂2

∂s∂t
y +

∂

∂s

(
yAT

1 (−s,−t)
)

+
∂

∂t

(
yAT

2 (−s,−t)
)

− y
(
AT

0 (−s,−t) +
∂

∂s
AT

1 (−s,−t)

+
∂

∂t
AT

2 (−s,−t)
)

= 0.

Since this is the adjoint homogeneous differential equa-
tion of (33), using Corollary 1 we infer the controllability
of (33).

4. Initial-Boundary-Value Control

In this section we briefly indicate that for equations of
type (1) there is also a possibility of steering the system
by its initial-boundary values.

First we define the following operators mapping the
set of piecewise continuous functions into itself:

L11u :=
∫ s1

s0

R(σ, t0, s1, t)u(σ) dσ,

L12u :=
∫ t

t0

R(s0, τ, s1, t)u(τ) dτ,

L21u :=
∫ s

s0

R(σ, t0, s, t1)u(σ) dσ,

L22u :=
∫ t1

t0

R(s0, τ, s, t1)u(τ) dτ.

(34)
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Theorem 9. Consider the homogeneous system

∂2

∂s∂t
x = A0(s, t)x+A1(s, t)

∂

∂s
x+A2(s, t)

∂

∂t
xt (35)

and let furthermore two piecewise continuous functions
ϕ1(t), ϕ2(s), t0 ≤ t ≤ t1, s0 ≤ s ≤ s1 be given and
x0 ∈ Rn. If the operator(

L11 L12

L21 L22

)
, (36)

where L11, L12, L21, L22, as defined in (34), is invert-
ible, then there exist initial-boundary values

x1(σ) = x(σ, t0), x2(τ) = x(s0, τ) (37)

with x1(s0) = x2(t0) = x0, such that the associated
solution of (35) given by (16) fulfils

x(s1, t) = ϕ1(t), x(s, t1) = ϕ2(s). (38)

Proof. From the representation formula (16), withu = 0,
we see that

x(s, t) = R(s0, t0, s, t)x1(s0)

+
∫ s

s0

R(σ, t0, s, t)
(
x′1(σ)−A2(σ, t0)x1(σ)

)
dσ

+
∫ t

t0

R(s0, τ, s, t)
(
x′2(τ)−A1(s0, τ)x2(τ)

)
dτ. (39)

Now let x1 and x2 be determined as the solutions of the
following differential equations:

x′1(σ)−A2(σ, t0)x1(σ) = u1(σ), x1(s0) = x0,

x′2(τ)−A1(s0, τ)x2(τ) = u2(τ), x2(t0) = x0,
(40)

with u1, u2 to be determined next.

From (40), (39), (34) and usingx(s1, t) = ϕ1(t),
x(s1, t) = ϕ2(t), x(s0, t0) = x0, we obtain the integral
equation(

ϕ1(t)
ϕ2(s)

)
−

(
R(s0, t0, s1, t)x0

R(s0, t0, s, t1)x0

)
=

(
L11 L12

L21 L22

)(
u1

u2

)
.

(41)

If (41) is solvable, then it determinesu1, u2 in terms of
the initial point x0 = x(s0, t0) and the prescribed termi-
nal datax(s1, t), x(s, t1). So (40) determines the Goursat
data needed to steer the system to the prescribed terminal
data.

5. Optimal Control

In (Kaczorek, 1995; 1996), among other results, a solu-
tion to the minimum energy control problem for (1) was
obtained. We present a solution to the optimal control
problem for (1) where we relax the condition to meet ex-
actly a predefined endpointx(t1, s1) and, furthermore,
impose quadratic costs also for the state. Therefore, in
this section we study an optimal control problem associ-
ated with (1) and with a quadratic performance criterion.
Here we prefer a Hilbert space approach where, beside
the spaces already used, we introduce the Hilbert space
Hk(J ), k ∈ N of all Rk-valued functions inJ , square
integrable with the scalar product

〈x, y〉 = xT (s1, t1)y(s1, t1)

+
∫ s1

s0

∫ t1

t0

xT (σ, τ)y(σ, τ) dσ dτ

for all x, y ∈ Hk(J ).

Definition 3. (i) Let R be the matrix Riemann function
of (1). Then

R̃ : Rn → Hn(J ), x0 7→ R(s0, t0, ·, ·)x0.

(ii) Let R be the matrix Riemann function of (1) and let
B, as in (1), be piecewise continuous onJ . Then

L : Hm(J ) → Hn(J ),

u 7→ L(u) =
∫ (·)

s0

∫ (·)

t0

R(σ, τ, ·, ·)B(σ, τ)u(σ, τ)dσdτ.

(iii) Let Q(s, t) ∈ Rn×n be piecewise continuous inJ ,
K1 ∈ Rn×n. Then

Q̃ : Hn(J ) → Hn(J ),

x(·, ·) 7→

(
(s, t) 7→

{
Q(s, t)x(s, t) (s, t) 6= (s1, t1)
K1x(s, t) (s, t) = (s1, t1)

)
.

(iv) Let T (s, t) ∈ Rm×m be piecewise continuous inJ .
Then

T̃ : Hm(J ) → Hm(J ),

x(·, ·) 7→

(
(s, t) 7→

{
T (s, t)x(s, t) (s, t) 6= (s1, t1)
0 (s, t) = (s1, t1)

)
.

Moreover, for the matrix Riemann functionR and any
piecewise continuously differentiable functionx1(σ) ∈
Rn in [s0, s1] we set

Θ1(·, ·) :=
∫ (·)

s0

R(σ, t0, ·, ·)
(
x′1(σ)

−A2(σ, t0)x1(σ)
)
dσ ∈ Hn(J ), (42)
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and for any piecewise continuously differentiable function
x2(τ) ∈ Rn in [t0, t1] we set

Θ2(·, ·) :=
∫ (·)

t0

R(s0, τ, ·, ·)
(
x′2(τ)

−A1(s0, τ)x2(τ)
)
dτ ∈ Hn(J ). (43)

With this notation, for any control functionu piecewise
continuous inJ , the representation formula (16) can be
rewritten as

x(·, ·) = R̃x0 + Θ1 + Θ2 + Lu, x0 ∈ Rn. (44)

Furthermore, we introduce the following quadratic perfor-
mance criterion:

J :=
1
2
xT (s1, t1)K1x(s1, t1)

+
1
2

∫ s1

s0

∫ t1

t0

(
xT (σ, τ)Q(σ, τ)x(σ, τ)

+ uT (σ, τ)T (σ, τ)u(σ, τ)
)
dσ dτ,

KT
1 = K1, QT (σ, τ) = Q(σ, τ),

TT (σ, τ) = T (σ, τ) for all σ, τ ∈ J . (45)

Using the definition of the scalar product and Defini-
tion 3 (iii), we obtain

〈x, Q̃x〉 = xT (s1, t1)K1x(s1, t1)

+
∫ s1

s0

∫ t1

t0

xT (σ, τ)Q(σ, τ)x(σ, τ) dσ dτ.

From (iv) we get

〈u, T̃u〉 =
∫ s1

s0

∫ t1

t0

uT (σ, τ)T (σ, τ)u(σ, τ) dσ dτ.

Hence we obtain for the quadratic performance criterion

2J = 〈x, Q̃x〉+ 〈u, T̃u〉. (46)

Theorem 10. The functionalJ in (46) together with the
constraint (44) admits a unique minimum among all ad-
missible controlsu ∈ Hm(J ) if and only if

T̃ + L∗Q̃L > 0 on Hm(J ). (47)

The optimal control is then a piecewise continuous func-
tion in J given as

uopt = −(T̃ + L∗Q̃L)−1L∗Q̃(R̃x0 + Θ1 + Θ2), (48)

whereL∗ denotes the adjoint operator toL with respect
to the scalar product inHn(J ).

Proof. Inserting (44) into (46) yields

2J = 〈R̃x0+Θ1+Θ2+Lu, Q̃(R̃x0+Θ1+Θ2+Lu)〉

+ 〈u, T̃u〉

= 〈u, T̃u〉+〈Lu, Q̃Lu〉+〈Lu, Q̃(R̃x0+Θ1+Θ2)〉

+ 〈R̃x0 + Θ1 + Θ2, Q̃Lu〉+ J0

= 〈u, (T̃ + L∗Q̃L)u〉

+ 2〈u, L∗Q̃(R̃x0 + Θ1 + Θ2)〉+ J0, (49)

where J0 denotes the remaining part of the criterion,
which does not depend onu.

This functional now admits a unique minimum in
Hm(J ) if and only if (47) holds. In that case the min-
imum is given by (48) and this is indeed a piecewise con-
tinuous function.

Notice that (47) is fulfilled if, for instance,T (σ, τ) >
0, Q(σ, τ) ≥ 0 for all (σ, τ) ∈ J and K1 ≥ 0. This
follows immediately from

〈u, (T̃ + L∗Q̃L)u〉 =
(
(Lu)∗K1Lu

)
(s1, t1)

+
∫ s1

s0

∫ t1

t0

(
uT (σ, τ)T (σ, τ)u(σ, τ)

+
(
(Lu)∗QLu

)
(σ, τ)

)
dσ dτ > 0

for all u ∈ Hm(J ) \ {0}.
Next we calculate the adjoint operatorL∗ of L.

With w ∈ Hn(J ), u ∈ Hm(J ) and

〈w,Lu〉 = 〈u, L∗w〉,

we obtain

〈w,Lu〉 =
∫ s1

s0

∫ t1

t0

(
wT (s, t)

×
∫ s

s0

∫ t

t0

R(σ, τ, s, t)B(σ, τ)u(σ, τ) dσ dτ
)
dsdt

+wT (s1, t1)
∫ s1

s0

∫ t1

t0

R(σ, τ, s1, t1)B(σ, τ)u(σ, τ) dσ dτ.

Interchanging the order of integration in the first part
yields∫ s1

s0

∫ s

s0

(∫ t1

t0

[ ∫ t

t0

wT (s, t)R(σ, τ, s, t)B(σ, τ)

× u(σ, τ) dτ
]
dt
)

dσ ds

=
∫ s1

s0

∫ s

s0

dσ ds
(∫ t1

t0

dτ
[ ∫ t1

τ

wT (s, t)R(σ, τ, s, t)

×B(σ, τ)u(σ, τ) dt
])
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=
∫ t1

t0

dτ

∫ t1

τ

dt

∫ s1

s0

dσ
(∫ s1

σ

wT (s, t)R(σ, τ, s, t)

×B(σ, τ)u(σ, τ) ds
)

=
∫ s1

s0

∫ t1

t0

dσ dτ
[( ∫ s1

σ

∫ t1

τ

wT (s, t)R(σ, τ, s, t) dsdt
)

×B(σ, τ)u(σ, τ)
]

=
(∫ s1

s0

∫ t1

t0

dσ dτ
[( ∫ s1

σ

∫ t1

τ

wT (s, t)R(σ, τ, s, t) dsdt
)

×B(σ, τ)u(σ, τ)
])T

=
∫ s1

s0

∫ t1

t0

uT (σ, τ)BT (σ, τ)
(∫ s1

σ

∫ t1

τ

RT (σ, τ, s, t)

× w(s, t) dsdt
)

dσ dτ

=
〈
u, BT (·, ·)

∫ s1

(·)

∫ t1

(·)
RT (·, ·, s, t)w(s, t) dsdt

〉
.

Hence, adding the transpose of the second part we obtain
for w ∈ Hn(J )

(L∗w)(σ, τ)

= BT (σ, τ)
(∫ s1

σ

∫ t1

τ

RT (σ, τ, s, t)w(s, t) dsdt

+ RT (σ, τ, s1, t1)w(s1, t1)
)
. (50)

Corollary 3. Under the assumptions of Theorem 10 and
with T being piecewise continuous onJ , T (s, t) ∈
Rm×m, TT (s, t) = T (s, t), if T−1(s, t) exists for all
(s, t) ∈ J , then the optimal control is given by

uopt(σ, τ) = −T−1(σ, τ)BT (σ, τ)Φ̃(x)(σ, τ),

wherex is the solution of the integral equation

x(s, t) = y0(s, t)

−
∫ s

s0

∫ t

t0

R(σ, τ, s, t)B(σ, τ)T−1(σ, τ)

×BT (σ, τ)Φ̃(x)(σ, τ) dσ dτ, (51)

with

y0(s, t) = R(s0, t0, s, t)x0

+
∫ s

s0

R(σ, t0, s, t)
(
x
′

1(σ)−A2(σ, t0)x1(σ)
)
dσ

+
∫ t

t0

R(s0, τ, s, t)
(
x
′

2(τ)−A1(s0, τ)x2(τ)
)
dτ,

and

Φ̃ : Hn(J ) → Hn(J ),

x 7→ Φ(x)(·, ·)=
∫ s1

(·)

∫ t1

(·)
RT (·, ·, ξ, η)Q(ξ, η)x(ξ, η) dξ dη

+ RT (·, ·, s1, t1)K1x(s1, t1).

Proof. From ( 44) we getx−Lu = R̃x0 + Θ1 + Θ2 and
this, together with (48), yields̃Tuopt = −L∗Q̃x. Notice
that T̃ is not invertible on all ofHm(J ), since, e.g., with

◦
u (s, t) :=

{
0 for (s, t) 6= (s1, t1),
1 for (s1, t1),

we obtainT̃
◦
u= 0, whereas‖u‖ = 1.

Conversely, if u is piecewise continuous and if,
moreover,T−1(s, t) exists for all (s, t) ∈ J , then T̃ u =
0 implies Tu(s, t) = 0 for (s, t) 6= (s1, t1), and this
holds if and only ifu = 0 on J . Hence the restriction of
T̃ to the set of piecewise continuous functions is invertible
and its inverse isT−1. Let T−1 exist for all (σ, τ) ∈ J .
Then for the optimal control we obtain

uopt = −T−1L∗Q̃x. (52)

Furthermore, using Definition 3 (iii) and (50), we obtain

uopt(σ, τ) = −T−1(σ, τ)BT (σ, τ)Φ̃(x)(σ, τ), (53)

where x is a solution of (1), (2) or (44), i.e. of (51). No-
tice that in a similar way as in Section 2 it can be proved
that the integral equation (51) has a unique solution. It
remains an open question if the operatorΦ̃ can be repre-
sented in feedback form, hence ifuopt can be written as
uopt = −T−1BT Kx.

6. Conclusions

For the system (1), (2) we obtain criteria for controlla-
bility for general, non-constant coefficients. Along with
the well-known necessary and sufficient conditions, where
one demands the positive definiteness of the “Gramian”
matrix (23), we also obtain a sufficient controllability cri-
terion by using solutions of the adjoint system.

Observability is defined in the usual way, i.e. that a
given input and a known linear output determine uniquely
the state. In Theorem 8 we then obtain a necessary condi-
tion for observability in terms of the controllability of an
associated system.

We also derive conditions to control the homoge-
nous systems by prescribed “Goursat” data. Finally, us-
ing a Hilbert-space approach, we solve the optimal control
problem with a quadratic performance criterion.
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All these results are based on a representation for-
mula for solutions of (1), (2) using the associated matrix
Riemmann function. For completeness, and also for the
reader’s convenience, in Section 2 we provide the reader
with all the necessary tools concerning the matrix Rie-
mann function.
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