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CONTROLLABILITY, OBSERVABILITY AND OPTIMAL CONTROL
OF CONTINUOUS-TIME 2-D SYSTEMS
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We consider linear 2-D systems of Fornasini-Marchesini type in the continuous-time case with non-constant coefficients.

Using an explicit representation of the solutions by utilizing the Riemann-kernel of the equation under consideration, we

obtain controllability and observability criteria in the case of the inhomogeneous equation, where control is obtained by

choosing the inhomogeneity appropriately, but also for the homogeneous equation, where control is obtained by steering
with Goursat data. The optimal control problem with a quadratic cost functional is also solved.
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1. Introduction The main aim of this paper is to obtain conditions
- - ] on the parameters of the system (1), (2) for unconstrained

We study controllability and observability properties of controllability. Therefore, analogously to (Sontag, 1998,

the linear system described by the following hyperbolic p. 83), we start with the following definition:

system:

o2 9 P Definition 1. The system (1), (2), is said to Keom-

355i% = Ao(s,t)x + Al(s’“%x + A2(s’t)§x pletely) controllablein a given interval 7 = [so, s1] X
[to, t1] if for any initial-boundary condition (2) and any

+ B(s, t)u, (1) x € R™ there exists a piecewise continuous functiotin

. J, u(s,t) € R™, such thatx(sy,t1) = .
where z(s,t) € R", u(s,t) € R™ together with
Ag(s,1), Ar(s,t), As(s,t) € R™", B(s,t) € R™™, There are several papers concerning the controllabil-
Ay and B being assumed to be piecewise continuous on jty of systems of type (1), (2). Here we only make a refer-
some intervalZ := [So, 51 x [To, Ty}, while Ay, A; are  ence to (Bergmanat al, 1989; Pulvirenti and Santagati,
assumed to be continuously differentiable on the same in-1975: Kaczorek, 1995; 1996). In (Pulvirenti and Santa-

terval. Hereby we call a function iff piecewise continu-  gatj 1975) the scalar case is treated, in (Bergnetra,

ous if there exists a rectangular subdivisith, . ..., Ry 1989) and (Kaczorek, 1995) the case of constant coeffi-
of 7 such that the restriction of the function to the open ¢jents is studied. In (Kaczorek, 1996) the general case
rectanglesR;, i = 1,..., N has a continuous extension Wwith non-constant coefficients is treated and a necessary

to their closure. This linear 2-D system is considered to- and sufficient controllability criterion is obtained by de-
gether with the initial-boundary or Goursat conditions manding the so-called Gramian matrix to be positive def-
inite (see Theorem 4). In the present paper we formulate
x(s,tg) = z1(s) €R", (s,t0) €I, controllability conditions for the case of non-constant co-
z(s0,t) = x2(t) € R™, (so,t) €Z, 2) efficients by making use of the solutions of the adjoint
21(s0) = za(to), e_quat|on, which are s_|m|Ia_r to the one-dm_1_ensmna| situa-
tion. This then also gives rise to observability results. Be-
wherezq, 2, are piecewise continuously differentiable.  sides, we also study control by Goursat data and solve an
For applications in image processing, see, e.g., (Jain®Ptimal control problem. The controllability problem for
and Jain, 1977; 1978). For this type of control prob- the system (1), (2) under certain restrictions on the steer-
lems there has also been developed a Pontryagin maxiing function« is treated in (Gyurkovics and Jank, 2001).
mum principle (see, e.g., (Wolfersdorf, 1978) and the ref- In order to find conditions for controllability and ob-
erences therein) for applications in optimization of quasi- servability as in the classical one-dimensional case, we
stationary chemical reactors. recall a representation formula for solutions of (1), (2) ob-
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tained with thematrix Riemann functiofor (1). This for-
mula yields an operator, mapping any admissible function
u to a solutionz of (1) and (2).

Although this representation formula is used, e.g., in
(Bergmanret al,, 1989; Kaczorek, 1995; 1996), a proof is
available only for the scalar case in (Pulvirenti and Santa-

gati, 1975). In principle, one can deduce the desired rep-

resentation also from (Vekua, 1967, p. 15). However, the

has a unique continuous solution such that

2 Ro(s,t,0,7) is piecewise continuous and Ry
and 6tR0 are continuous inZ x Z.

Proof. The operatorl” defined by

HWMmmﬂ:/vﬁ@mMW@m%m

presentation there is oriented towards the representatiormaps any matrix-valued functiol'(¢,17) € R™ ™ con-

of solutions of elliptic differential equations with analytic

tinuous in Z to R™*™-valued functions continuous in

coefficients using a complex transformation into a formal 7 x 7. There exists a constadf > 0 such that

hyperbolic system.

Since we consider neither analytic coefficients nor el-
liptic equations, for the reader’'s convenience we shortly

recall that representation theory, which is based on a
method introduced by Riemann. Readers not interested in

the construction of solutions to (1), (2) can directly start
with Theorem 3.

The paper is organized as follows: After the intro-
ductory section, in Section 2 we briefly recall the repre-
sentation theory for solutions of equation (1) using the
matrix Riemann kernel function. Then in Section 3 we
obtain controllability and observability results for systems
with non-constant coefficients using solutions of the ad-
joint equation. In Sections 4 and 5 we briefly address the
issue of control of the system by initial boundary values
and optimal control, respectively.

In the next section we introduce the Riemann kernel
function for equations of type (1).

2. Riemann Kernel and a Representation
Formula

Before introducing the Riemann kernel function, we prove
alemma concerning the solvability of an integral equation
of Volterra type. Let us first define the set of matrix-valued
functions
Spxin(J) == {U L T — Rk | U(s,b),

2

0 0 0
(S7t), aUt(S,t)7 mU(S,t)

%U

are piecewise continuous iif C I}.

Lemma 1. Let A(s,t,&,n) € Spxn(Z). Then the follow-
ing integral equation of Volterra type:

Ro(s,t,0,7)

—//&&%mﬂﬂﬂ@@%@zh @3

I(TF)(s,t,0,7)]|

< max

(s,t,€,m)EIXT

[ACs, ¢, &, n)ll

x max [|[F(&, )| |s—ol[t—]

S

< Cls—o||t—7| max [|F(&,n)], 4
< Cls=olt=| max [F(En)l. (@

and fork = 2,3,... we have
(T F)(s,t,0,7)|

Ck
<
= kD2

Equation (3) can now be written as

k k
s—o|"|t —1 max F s .
| ‘ ‘ | (fﬂ?)ez” (f 77)”

Ry =1, + TR,. %)

Then it follows from the Picard iteration (Arnol'd, 1980,

p. 212), settingR) = I,,, RE = I, + TRE™', k=
1,2,...,
l
=> 11, (6)
k=0
where 70 = id, and fork = 1,2,... : Tk = TTk-1,

Here id denotes the identity mapping the space of matrix-
valued functionsF'(¢,n) € R™ ™ continuous inZ to
R™*"-valued functions continuous ifi x Z.

For ¢ > 0 and m,! sufficiently large,m > [, to-
gether with (4), (6) we obtain the estimate

IRy — Rl = | 3 T

k=I+1

Z Ck|5—0| |75—7'|k ce
k=Il+1

Hence we infer the uniform convergence Bf, towards
Ry and thatR, is continuous oriZ x Z and solves (3).

The uniqueness can also be concluded in the usual
way, since any difference\ of two solutions of equa-
tion (3) solves the homogenous equatidn= T'A, and
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hence alsoA = T*A k = 2,3,.... From this, together  posed in (Vekua, 1967). We introduce the following inte-
with (4), we see thatA = 0. Furthermore, from (5), (6) gral equations:
we obtain

ai;tRé(57t’ o, 7') R]_(S,t,&) = A2(€7t) - /f R1(€17t7£)A2(£1at) dgla

-1 ()]
=Ry (s,t,0,7)A(s,t,5,1)

t
t Ro(s,t.m) = Ay (s,1) — / Ro(s,m1,m) Av (s, m1) dp.
n
+ [ B o) Als s i

Defining the integral operators

+/Ré_l(f,t,a,f)%/l(s,t,g,t) de

spr o2 (TyR)(5,4,6) = — [ Ru(Ert.€) As(r, 1) de
—i—/g/TRé 1(5’77’U’T)mA(Svt&n)dfdn. 1Ry /5 (& J(£, )

Taking the limit asi — oo, we infer thata BtRO is also and
piecewise continuous iff x Z. In a similar way, it can be
seen that? Ry and 2 R, are continuous.

t
ToRs)(s,t,n) := — | Ra(s,m,n)A1(s,m)dn,
Now we are ready to introduce the Riemann kernel (Tal2) (s ) /n (s, m)As(3m) Ay

function.

which map continuously differentiable functions into con-
tinuously differentiable functions, equations (9) can now
formally be written asR; = A + T1 Ry and Ry, =

Al + TQRQ.

Theorem 1. (Riemann kernel function)et Ay(s,t) €
R™*™ be piecewise continuous andl; (s,t), As(s,t) €
R™*"™ be continuously differentiable ofi. Then the fol-
lowing integral equation of Volterra type:

s Iterating (9) in a similar way as we did before, i.e.
R(s,t,0,7) + / R(&,t,0,7)A2(&,t) d€ calculating successively?) = A,, R, = Ay + TR
7 Ry = Ay, Rb=A, + TR}, 1=1,2,..., we obtain
t
+ / R(Sa n,o, T)Al(sv 77) d77

s pt 5 t 5 Z TJAQ S
- / / R(&,n,0,7) Ao(E,m) dé dy = I, (7) =0

(10)
o0
. . . J
has a unique continuous solutioR(s,t,0,7) € R™*" 2(s:8,m) = Z (T3 A1) (s, t,1)-
such that ;2 R(s, t,0,7) is piecewise continuous and =0
_a‘zR(s,t o,7), as well as 2 R(s, t,0,7), is continuous
inZ x1. The uniform convergence is obvious, since, as has been

done before in the proof of Lemma 1, we have performed a
This matrix-valued functionR(s, ¢, o, 7) € R**" is simple Picard-iteration procedure, and herRg R, are
called thematrix Riemann functioar thematrix Riemann  continuously differentiable functions and the unique so-
kernelof the equation lutions of (9). With these solutions we now determine a
matrix-valued functionR (s, t, o, 7) such that

52 9 o
_A AL Agr = 8
sar” " Aget ~Argpr — Ao =0 (8)

R(s,t,0,7) = Ry(s,t,0,7)

Proof of Theorem Ll.lterating equation (7) in a similar s

way as we have done with (3) yields a sequence of matrix- - / Ro(&,t,0,7)Ra(s,t,€) A€
valued functionsR (s, t, 0, 7), but it seems to require 7
an enormous effort to get appropriate estimates in order t
to obtain convergence. Therefore we follow the way pro- /TRO(S’ 1,0,7)Ra(s, t,m) dn. - (11)
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Inserting (11) into (7), while suppressing and 7, yields

In = Ro(S,t) — /SR(](f,t)Rl(S,t,f) d£
~ [ Rols.mBals, o)
s 3
+ [ [Roten - [Fotennmie e s
t
= [ Bol.mRale o) dn] Aa(é.0) a6
+ [ [Rotsn) = [ Ro(&mRa(sm. &) e
- /nRo(Sﬂh)Rz(Sﬂlﬂh)dm}fh(s,n) dn
s prt 13
- [ [ [roten = [ Ro@nmaien e aa

n
= [ Rolé m)Ra(ém.m) dm | do(€.m) e,

Together with (9) and (10), we then obtain, after a short

calculation,

u:&@wj//m@mm@mm@@w%m
s pt
—//%@WMM@&@M%M

- /:/:[Ro(fm) - /1;530(51,77)31(5’77751)(151

~ [ Rolé m)Ra(én.m) dm | do(€.n) de

Interchanging the order of integration in the last two
lines we finally obtain the following integral equation of
Volterra type for Ry:

RO(Sa ta a, T)

—/7%Mm@ﬂﬁw@m&m=u,aa
where o
A(s, t,&,m)
= Ro(&,t,m)A2(&,t) + Ru(s,m,§)Ai(s,1m)

+%@W—A&@m@%@mﬂ&

—/&@mMM@mNm
n

and, together witha‘z—;A = 0, we have A € S,,xn (7).
In order to establish Theorem 1, we need the existence and
uniqueness of the solution of this latter integral equation.
Setting A in (3) as defined in (12) and using Lemma 1,
we infer that R as defined in (11) is a continuous so-
lution of (7). Since Ry, R;, and R, are unique, we
also obtain the uniqueness d@t. Moreover, sinceR;

and R, are continuously differentiableZ R, and £ R

. 2 . . . .
are continuous an%Ro IS piecewise continuous, we

infer from (11) that also%R is piecewise continu-
ous. ]

The next step now is to prove some important prop-
erties of the matrix Riemann function.

Theorem 2. The matrix Riemann function is a solution of
the differential equation

82

0
@R( 7(R(Sat7077)141(8,f)>

t
s,t,0,7) + s

+ %(R(s, t,0,7)As(s,t))

— R(s,t,0,7)Ao(s,t) = 0, (13)

with det R(s,t,s,7) # 0, det R(s,t,0,t) # 0 and

i)gﬂwmmw+R@u@m@@w:Q
S

i) %Rt(s,t, $,7) + R(s,t,s,7)A1(s,t) =0,
.0

iii) a—gR(s,t,g,t) — As(&,t)R(s,t,&,t) =0,

. 0

IV) %R(Sv ta S, 77) - A1(57 n)R(S7 ta S, 77) = 07
V) R(s,t,s,t) = I,.

Proof. That R is a solution of theadjoint differential
equation (13) results from differentiating (7). Item (i) fol-
lows by settingt = 7 in (7) and differentiating the result
with respect tos. Analogously, we obtain (ii) and (v).

With the well-known Abel-Jacobi-Liouville formula
(Gantmacher, 1986, p. 470), we obtain from, e.g., (i)
and (v)

det R(s,t,s,7) = el trace (Al(s’")) d",
which yields the desired property. Analogously, from (i)
and (v) we obtain the second determinant. The remaining
two items require some more effort. For any continuous
matrix-valued functionX (s,t) € R™*", differentiable
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with respect tos for all ¢ € Z, together with (i) we de-  Proof. It is easy to check that the left-hand side, together

duce that with (13) and the definition of'(U), yields
Q(R(S,t,S,T)X(S,t)) 0 (RU) — RF(U)
ot 0sot
0
— R(s,t,s,7) =X (s,t) — A1(s,1) X (s,1) o 0 0 o 0
(61& ) 68tRU+8 RatU+8tR8 U
0
(s,t,8,7)+R(s,t,s,7)A1(s,t) ) X (s,t) = 0. 0 0 0

bt ) + RA1 U + RA; U <8t(RA2))
Replacing thereint by n and integrating the result with o
respect ton from 7 to ¢ together with (v) yields (%(RAl))U
R(s,t,s8,7)X(s,t) — [,X(s,7) and this exactly equals the term on the right-hand side

of (14). m

t

0
- /TR(S’ m57) L?TyX(S’ m)=Ax(s,mX(s, 77)} dn. The next identity yields an integrated version of (14).

Setti_ng nowX(s,7) := R(s,t,s,7) and applying again | ciima 3. Let U(0,7) € Sper(J) and let R(s, t, o, )
(v) yields be the matrix Riemann kernel of the differential equa-
tion (8). Then we obtain the identity

t
0= [ Rs.nsm)
T U(S,t) = R(Smto,S,t)U(Smto)

0 t
<[ g Bl ) = s, )Rt ) + [ R(so,7,51) [%U(so, 7) = A(s0,7)U (50, 7)] dr
to

Sincet, T € T are arbitrary, we infer that necessarily

+/R(07 t0757t) [%UU(U, tO) 7A2(0.7 tO)U(Uv tO):| do

0
R(57 1,8, T) |:87’I7R(8’ ta S, 77) - Al(sa n)R(Sa tv S, 77)} =0 s ot
+ / R(o,T,s, t)F(U(U7 T)) dodr, (15)
for all » € Z. Since R(s,t,s,n) is invertible, we ob- so’to

tain (iv). Analogously, we get (iii). [ |
) g 4 get (i) where (sg,t9) € J.

Having introduced the matrix Riemann function, we
can now use it to obtain a general representation formulap,gf. Interchanging the first pair of variablds, ¢) with
for all solutions to (1). the second pair(o,7) and integrating the identity (14)

from sy to s with respect toc and also fromt, to ¢

We start deriving an important identity. with respect tor yields for the left-hand side of (14)

Lemma 2. Let U(s,t) € Spxx(Z) and let the matrices srtog
Ap, A1, Ay be defined as before. Then with / (RU)do dr
oJ 1, 0007
0? 0 0 s pt
FU) = 5500 —AigeU = AegU — AU —//R(o, 7,8,t)F(U(0,7)) dodr
S0 to
and R as the matrix Riemann function, we obtain the 5
identity = / 6—(}2(0 t,s,t)U(0,t)) do
0? 0

5o (F0) - REW) = | (574 ri )0 [ 2 oo 0 o

9
Os
9
0

8 s prt
+ n |:(65R+RA2)U:| . (14) —/ t R(o, T, s,t)F(U(J,T)) do dr



= R(s,t,s,t)U(s,t) — R(so,t,s,t)U(s0,1) equation (1) inZ, i.e.

—R(s,to,s,t)U(s, to) + R(so,to,s,t)U(so,to) 52
OdooT

R(87 t’ 0—’ T)

s pt
—/ R(o,7,s,t)F(U(0,7)) dodr.
so to

= Ag(o,7)R(s,t,0,7) + A1 (0o, 7')g

ao_R(s’ t? 0—’ 7-)

For the right-hand side, we obtain

2R(s, t,o,7).

+ AZ(Gﬂ T) 67’

t
/(%R(S 7,5,1) +R(&T,S,t)Al(s,T))U(s,T) dr
| 2
Proof. Calculating 3%-R, 2R, 2R from (7) and
(5 defining
(—R 50,7, 8,t)+R(s0,T,5,t)A1(s0, ))U(So,T)dT
to

ot
¢(s,t,0,7)
50
+/ (8—R(U,t,s,t)—l—R(a,t,s,t)Ag(a, t))U(mt) do 92 9
. = aora7_R(s,t,0, T) — A1 (o, T)%R(Sﬂf,aﬂ')
— t t t t)A t to)do.
/5'0(8 R J 0% +R(U 0 ) 2(07 0))U(07 0) 7 _A2(0—77—)8£R(s7t70—77-)_AO(U7T)R(Sat7J7T)
T

Using now the properties of the Riemann kernel as

stated in Theorem 2. we obtain yields, together with Theorem 2, (iii), (iv) and (v),

U(s,t) — R(so,t,s,t)U(0,t) — R(s, to, s, t)U(s,to) o(s, t,o,7) = — /sgo(@t,a, T)Ao(&,t) dE

+ R(SOa t07 S, t)U(SOatO)

t

o - [etsman)as,m s

—/ R(U7T7S7t)F(U(O'7T)) dodr T
to

s pt
. + [ [etenonaoendean
—/—R(so,r,s,t)U(so,T)dT 7T

t
- / R(so,7 5, 1) A1 (0, 7)U (50, 7) dr
to

With Ry, Rs and (10), we perform again the transforma-
tion (11):

o(s,t,0,7) = @o(s,t,0,7)

S 8 R
_/SoasR(U’tO’S’t)U(U7tO)dU _/@O(f,t,J,T)Rl(S,t,f)df
s t
- /SOR(“’ fo, 5,8)da(e ) (0, ) do - [ests.n o) ats, . an,

= —R(sg,7,5,t)U(s0,7)|"

‘thg

which yields the integral equation f@s:

t
0
+ / R(s0,7.5,)(5-Uls0,7) = A1 (s0,7)U (s0,7) ) dr Go(s,t,0,7) = (Tpo) (8,1, 7, 7).
t

0

- R(Ja th S, t)U(Ua tO) p

|0‘iSO

By iterating this equation we obtainy(s,t,0,7) =
(T"™po)(s,t,o,7) for all n € N. Using the estimate (4)

s o — =
+/R(a7 fo, &t)(%U(U, to) — As (0, t0)U (o, to))do. for T, we see thatpy = 0 and hencep _.0.

50
This immediately yields the desired identity (15). m Now we can obtain a representation formula in much
the same way as for the one-dimensional continuous-time
case. This formula will then also enable us to derive sim-
ilar controllability criteria.

Remark 1. Notice that from Lemma 3 we can conclude
that the matrix Riemann function with respect to the sec-
ond pair of variables is a solution of the homogeneous
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Theorem 3. (i) Let u be a piecewise continuous function,
u(s,t) € R™, and letz € S,x1(J) be a solution of (1)
in J. Then

(s, t) =

/Ra to, s, t)(z1(0) — Az(o, to)z1(0)) do

.R(SO7 t07 S t)l’l(So)

+/tR(30,T,s,t)( 5(1) — Al(So,T).Z‘Q(T)) dr

s pt
+//R(O'7 7,8,t)B(o, T)u(o, ) do dr,
S0 to

x(o,tp),

(16)

where (So,to) S j, .’171(0')
x(80,7).

(ii) For any piecewise continuously differentiable func-
tions x; (resp. x2) in [so, s1] (resp. in [to,t1]), with
x1(sp) = x2(tp), and a piecewise continuous functian
u(s,t) € R™,in J, z in (16) is a solution of the dif-
ferential equation (1) (i.e.z € S,x1(J) and fulfils (1)
a.e.), with the initial-boundary values (2).

x2(T)

Proof. If = € S,,x1(J) is a solution of (1), then from the
identity (15), settingF'(z) = Bu, we infer the represen-
tation (16).

To show (ii), we first prove by direct computation
that = as represented by (16) is if, 1 and fulfils (1).
There we have to use Remark 1 and properties (iii), (iv)
and (v) of Theorem 2.

It remains to prove that:(s,¢) also has the desired
boundary values. From (16) we obtain

LC(So,t) = R(So,to, So,t)l'l(SO)

+ / Ri(s0,7, 50, 1) [a4(r)

0

Al(SQ,T)LL'Q(T)] dT,

which yields, after partial integration,

x(s0,t) = R(s0,%0,50,t)x1(50) + R(s0, T, s0,t)T2

ol

t
0
_ /to{aTR(so,T S0, 1)

+ R(307 T, 50, t)Al (307 T):| T2 (T) dr.

Using then (ii) and (v), from Theorem 2 we finally get
x(s0,t) = x2(t). Analogously, we obtainc(s,ty)
x1(8). [

Notice that (16) remains true if is in the space of
square integrable functiong? (7) and z, z;, z, are
in some appropriate Sobolev space, since the represent
tion operator is continuous. We used piecewise continu-
ous functions having in mind only technical applications.

av
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In some particular situations it is possible to apply a
simple transformation of (1) in order to obtain a simpler
form.

Remark 2. Let A;(s,t), Aa(s,t) € R"*" be piecewise
continuously differentiable o such that the integrabil-
ity conditions

oA,
0s

0As

(5,8) = ot

—(s,1),
17)

Al(S, t)AQ(U, t) = AQ(O’, t)Al(S, t)

hold for all o, s,t € [So, S1], t € [To,T1].
If V(s,t,s0,t0), (s,t,50,t0) € Z isthe solution of

0
%V = As(s, 1)V,
(18)

0
“vV=A
('%V 1(87 t)V
with V' (s, to, So,to) = I, then by the transformation
z=Vy (29)

eqgn. (1) with boundary values (2) is equivalent to

2
aaa y+ Vs, )(;Ag(s £) — As(s,t) A1 (s, 1)
- Ao(s,t)>V(s,t)y = Vs, 1) B(s, t)u(s,t) (20)
and
y(svtO) = (S tO) (5)7
y(s0,t) = V' (s0, t)xa(t), (21)
y(s0,t0) = 551(50) = z2(to).

Proof. First, notice that the required solution of (18) under
the assumption of (17) can be written as

V(S, ta S0, tO)

= exp (/SAQ(U, t) da) exp ( ttAl(so, T) dT). (22)

Inserting (19) into (1) together with (17) and (18), we ob-
tain
0? 0
0+ (5 A2 = AsAy = Ao ) Vy
0? 0
Vg (5
and hence (20). Clearly, from (19) we have (21). Since
) € R™*™ is regular inZ, we conclude the equiva-

Ay — Ay Ay — A0>Vy — Bu,

Ience.



dmcs

188

G. Jank

3. Controllability and Observability

The first controllability condition can now be obtained

similarly to the one-dimensional case by using the rep-

resentation formula (16).

Theorem 4. Let A, be piecewise continuous and
Ay, Ay be continuously differentiable iff. Let further-
more R denote the matrix Riemann function of (8). The
system (1) together with (2) is completely controllable in
J ifand only if

W = W(so,to,51,t1)

s1 pt1
- / / R(o,7,51,1)B(0,7)B" (0, 7)
so Jto

xR (0,71,51,t1)dodr > 0. (23)

Proof. From the representation (16) we conclude that for
the control
u(o,7) := B (0,7)R (0, 7,51,t1)z, z€R"

we have

x(s1,t1) = R(s0,t0,51,t1)21(50)

/ R 0‘ t(),Sl,tl)

x (21(0)

R(807T7 Slatl)
to

x (x5(7)

If W > 0, then with

— Az(o,tg)z1(0)) do

— A1(so, T)w2(7)) dT + W2

z=w! (m(sl,tl) — R(s0,t0, 81,%1)x1(50)

_ /SIR(U, to, s1,t1) (21 (o) — A2(0, to)z1(0)) do

S0

_ /th(Son'7 s1,t1) (zh (1) — A1 (s0, 7)z2(T)) dT)

to

e R"”

we see that the contrak = BT RT > steers the system
from x(sg,t0) = x1(s0) = z2(to) to z(s1,t1) for any
given x(s1, ¢1) and any boundary functions, (s), z2(t).
Hence the system is completely controllable.

If, on the other hand, the system is supposed to

be controllable, then for any givem(s), x2(t) and

z(s1,t1) € R™ or, equivalently, for any givert € R"
with

Z = x(s1,t1) — R(so0,t0,51,t1)x1(s0)

_ /SlR(U, to, s1,t1) (2 (o) — Az(0, to)21(0)) do

So

_ /t 1R(SO,T, 817t1)(I/2(T) - Al(So,T)IQ(T)) dr

there exists an admissible contral steering the system
to x(s1,t1), which is then equivalent to

S1 tl
z= / / R(o,7,51,t1)B(0, 7)u(o, 7)do dr.
so Jto

Since W is a symmetric and positive semi-definite ma-
trix, all we have to prove is thall/ is regular or thatiV’
has a kernel containing only the zero vector.

If & # 0 were in the kernel o’ (i.e. Wz = 0),
then

S1 t1
/ / # R(o,7,51,41)B(o, 7) BT (0,7)
S0 to

x RY(0,7,51,t1)&dodr

s1 pt1
:/ / |BTRT#|? dodr = 0
so Jto

and thereforeBTRTz = 0 a.e.

From controllability and our consideration above we
obtained a representation f@r using an appropriate con-
trol function u. Together with this definition of:, we get

s1 pt1
|z = 2T7 = / / #'RBudodr =0,
so Jto

a contradiction. This meanBn W = R" and, since in
generallW > 0, we haveW > 0. [ |

As a first example, we study the controllability of the
system (1) in the case of constant coefficients.

Theorem 5. (Kalman controllability)The system

82
0s0t

z(0,t) = xa(t), x1(0) = z2(0),

where Ag € R"*", B € R"*™ and x;, zo are piece-
wise continuously differentiable fog,¢ > 0, is com-
pletely controllable in[0,c0) x [0,00), i.e. completely
controllable for all s1,¢; > 0, if and only if

x = Aox + Bu, x(s,0) = z1(s),

rank (B, AgB, A2B, ..., Al"'B) =n.  (24)
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Proof. First, from (7) we determine the Riemann kernel Proof. From Remark 2 we infer that there exists a trans-
for the equation in Theorem 5, i.e. for a constant coef- formation matrixV' (s, t,0,0) = exp(a1t+ass)I, trans-
ficient Ag. Iterating equation (7) withRy = I,, and forming (1) into (20), which is in this case
Rit1(s,tyo,7) = I, —|—f f AoR(&,m, 0,7)dEdrT,

m=01,...yields 0 0
' ey~ (aely + Aoy = 55y — Ay
R,, = Z (;)214%(8 — o) (t— 7). = V~(s,t)Bu(s,t). (26)
j=0 )’

This equation is completely controllable if and only if the
After showing the convergence, we obtain the Riemann original system (1) is completely controllable.
kernel of (7) The matrix Riemann function of (26) is again

R(s,t,0,7) Z Is—o)(t—T). R(s,t,0,7) Z 1 AJsfa) t—T7). (27)

JZO j:O

We now infer controllability from Theorem 4. The For s1,¢1 > 0 we infer from Theorem 4 the complete
system is not controllable if and only if there exists controllability of (26) if and only if
(s1,t1) € [0,00) x [0,00) and 2 € R™ \ {0} such that
2TW(0,0,s1,t1)z = 0. SincezT RBBTRTx > 0, this W(0,0,s1,t1)

is equivalent toBT” RTx = 0, i.e. s1 gt
= / / R(O-v Tvslatl)v_l((L T)
0 0

(oo}
1 . .
——(o— 1) (T—tl)]BT(AOT)Jx:O.
s (4" xBBT (V1) "Yo,7)R" (0, 7)do dr
.. . S1 t
This implies = / / e~ M2 R(5 1 51 t)

BT(ATYz =0forallj=0,1,2,....
(Ao ) J x BBTR” (0,7,51,t1)dodr > 0.

Together with the Cayley-Hamilton theorem, this is equiv- As before, non-controllability is equivalent to the exis-

alentto BT tence ofx € R™\ {0} such that
BTAg“ e~ (T+aze) pT pT . 0,
rank . <n.
: which, together with (27), finally yields the desired result.
BT (AF)" "

Hence we obtain a contradiction. Since the maximal rank
of the above matrix equals, the theorem is proved.
[ ]

More general controllability criteria in the case of
constant coefficients are derived in (Gyurkovics and Jank,
2001; Kaczorek, 1996).

Next we derive general controllability criteria in the

Corollary 1. Let Ag € R™*", B R"™™, A = ay1,, case of non-constant coefficients.
A = anl,, ay,as € R, A= araol, +Ag. The system

, Theorem 6. Let R be the matrix Riemann function

0 0 0 of (8) and, furthermore, let7 be an interval such that
st Aoz + A%x + A%”" + Bu, R(so,to, s1,t1) # 0. Ifthere existsy, € R'*"\{0} such
that with y(s,t) = y(s,t, s1,t1) := yoR(s, ¢, s1,%1),

x(s,0) = x1(s), x(0,t) = xa(t),

. . . . . R(s0,t0,51,t1) = y(so,to, S1,1t 0,
where z1, xo are piecewise continuously differentiable YoR(s0,to; s1,11) = y(so, to, s1,11) #
for s,t > 0, is completely controllable if0, co) x [0, o) and (28)

if and only if y(s,t)B(s,t) = 0 forall (s,t) €T,

rank (B, AB,A’B,..., A" 'B)=n.  (25)  then the system (1) is not completely controllablesin
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Proof. Notice that with a solutionz € S,,x1 of (1),
from (15) by premultiplying this identity from the left-
hand side byy(s,t) and observing thay(s1,t1) = yo,
we see that

Yyox(s1,t1)

= y(s0,to, 51,t1)x(S0, t0)

t1
+\/ y(507T7513t1)

to

X [%x(soﬂ') — Al(SQ,T).'L‘(So,T)} dr

s1
+/ y(o,to, s1,t1)

S0

X [gx(a to) — As(o, to)x(a,to)} do

/ / 0,7, s1,t1)B(o, T)u(o, 7) do dr. (29)
If we now assume that the solution of (1) fulfils the

following boundary conditions:

JiA1(so,m) dn,,.

x(80,7) = xa(7) := €

and |
l’(J, tO) = xl(a) = 6150A2(§7t0)d§

where z (so) = x2(tg) = =0, then together withy B =

0 we obtain

yox(s1,t1) = y(so, to, 51, t1)xo = Yo R (S0, to, S1,t1)xo
for arbitraryz, € R™.

Choosingzy € R™ such thaty(sg, to, s1,t1)xo # 0
yields a contradiction if we intend to steer the system to
z(s1,t1) = 0. Hence the system is not completely con-
trollable. [ |

We say thaty € S;«.,(Z) is a solution of the adjoint
differential equation to (8) if it fulfils

a(zater a—( (s,t)A1(s,1))
gt( (s,t)As(s, t)) —y(s,t)Ao(s,t) =0 (30)

a.e., and hence if, e.gyo € R*", then y(s,t) =
y(s,t,0,7) := yoR(s,t,0,7) is a solution of the adjoint

equation (30). These solutions of the adjoint equation can

now be used to obtain sufficient conditions for complete
controllability in the case of non-constant coefficients.

Theorem 7. Let (1) be defined in the interval =
[So,S1] x [Tv,T1] and let R denote the matrix Riemann
function of (1) or (8), respectively. If for all nontriv-
ial solutions y of the adjoint equation (30) of the form
yoR(s,t,50,t0) = y(s,t), yo € RY*™\ {0} we have

OO),

for so > So,to > To, then there exists; > sg,t] >
to such that the system (1) is completely controllable in
‘-7 :[507 ST] X [thtﬂ'

yB 5_'5 0 onZIn [S(), OO) X [t(), (31)

Proof. First we prove that for alky > Sy, to > Ty, there
exists sj > sp,t; > to such thatyB # 0 on J for
all nontrivial solutionsy of the adjoint equation (30) that
can be represented in the forgs, t) = yoR(s, t, so, to),
wherey, € R1*",

Assume that this is wrong. Then there exist se-
quencess, — Si, t, — 11 asv — oo, and nontriv-
ial solutionsy, (s,t) = v, R(s,t, s0,t0) of the adjoint
equation withy, B = 0 on [sg, s,] % [to,t,]. Without
loss of generality we assumg, (so,%0)| = 1, and also
(by taking a subsequence if necessary)

lim yV(So,fo) =x9 € R™
V—0Q0
Sincey, (s,t) = yo, R(s,t, so, to), we conclude that

lim y,(s,t) =

V—00

(lim yo,.)R(s,t,50,t0)

V—00

= xoR(s,t, s0,t0) =: yo(s,t).

Henceyy(s,t) is a nontrivial solution of the adjoint equa-
tion, sincexy # 0. On the other hand, we have

yo(s,t)B(s,t) = lim y,(s,t)B(s,t)

vV—00

:07

for s > sg,t > to. This contradicts our assumption.
In the next step we prove

W(507t07 ST,tT) > 07

which, by Theorem 4, yields complete controllability.

In general, W (sy, to, s7,t;) > 0 and we have to
show that W is regular. Assume there is some €
RY*7\ {0} such thatal¥ = 0. Hence

st}
aWaT:/ / aR(o,T,5},t;)B(o,7)BT (0, 7)
to

xR(a,7,57,t])a’ dodr

// 0,7)B(0,7)B (0, 7)

xyT(o,7)dodr = 0.
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Therefore
CLR(O', T, ST,tT)B(O’, T) =0 on [8(),8?] X [to,f{].

This is again a contradiction. Thugy > 0 and by Theo-
rem 4 the system is completely controllable By, s;] x
[th tﬂ . u

Since Theorem 7 makes use only of particular solu-
tions of the adjoint differential equation (30), there is a
stronger sufficient controllability condition applying con-
dition (31) toall nontrivial solutions of the adjoint differ-
ential equation. Hence we obtain a controllability condi-
tion closer to the one-dimensional case.

Corollary 2. Under the assumptions of Theorem 7 and
if condition (31) holdgfor all nontrivial solutions of the
adjoint differential equation (30), there exist > sq
andt; > t, such that the system (1) is completely con-
trollable in 7 =[so, si] % [to, t1].

Next we discuss the observability of the system (1),
(2) together with a linear output. We shall introduce a no-
tion of observability analogously to that given in (Sontag,
1998, p. 263).

Definition 2. Let C be piecewise continuous on the inter-
val Z, C(s,t) € RF*™, Then we define the linear output
of the system (1), (2) by

y(s,t) = C(s,t)x(s,t), y(s,t) eRF,  (32)

where z(s,t) is a solution of (1), (2). Suppose that for
all (s1,t1) € Z and for all controlsu € S,,x1(Z N
(=00, $1] X (—00, t1]) forany two trajectories:, z of (1)
belonging to the same input, from

C(s,0)x(s,t) = C(s, 1) (s, 1),
(s,t) € TN (=00, 81] x (=00, 1]
it follows necessarily that
x(s,t) = x(s,t) in ZN(—o0,s1] x (—o0,t1].

Then the system (1), (2) with the output (32) is said to be
observablan 7.

Remark 3. Write & = z—Z. Then observability is equiv-
alent to the condition that

C(s,t)&(s,t) =0, (s,t) €ZN(—00,s1] X (—00,11]
implies
Z(s,t) =0 in TN (—00,s1] x (—o0,t1],

where z is any solution of the homogeneous system (1),
i.e. with u = 0.

101 JEIe

Hence observability is equivalent to the condition
that for all (s1,t1) € Z and for all nontrivial solutions
2 of (8) there holds

ot #£0
inZnN (—00751] X (—OO,tl].
Comparing this last remark with the controllability

criterion obtained in Theorem 7 and Corollary 2 yields a
necessary criterion for observability.

Theorem 8. If the system (1), (2) with the output (32) is
observable inZ, then the system of type (30)

82
0sot

T 0 0
— s =)= — AT (—s. —t) =
x — Aj (—s,—t) Sm A5 (—s,—1) t:z:

0
&Ag(—s, —t))x
= CT(—s,~t)v (33)

is completely controllable in-Z.

9
— (AT (=5, =0) + 5 AT (=5, -0) +

Proof. From Remark 3 we infer that for any nontrivial so-
lution # of (8) there holdsi” CT # 0 in ZN(—o0, s1] X
(—o0,t1]. Theny(s,t) := &(—s, —t) is a nontrivial so-
lution of
82
Jsot

v+ o (AT (=5, 1)) + o (vAT (5, ~1)

0
- y(Ag(_Sv _t) + %A{(_Sa _t)

)
+ &Ag(—s, —t)) = 0.

Since this is the adjoint homogeneous differential equa-

tion of (33), using Corollary 1 we infer the controllability
of (33). [ |

4. Initial-Boundary-Value Control

In this section we briefly indicate that for equations of
type (1) there is also a possibility of steering the system
by its initial-boundary values.

First we define the following operators mapping the
set of piecewise continuous functions into itself:

s1
Lyu ::/ R(o, tg, s1,t)u(o)do,
S0
¢
Lisu = /R(SO,T,sl,t)u(T) dr,
(34)
Loju = /R(o,to,s,tl)u(o)da,

0

t1
Losu := / R(5077757t1)u(7) dr.

to



amcs

G. Jank

Theorem 9. Consider the homogeneous system

O = Aoyt Ar(s.) St Ag(s,t) Dy (39)
@x— olS,1)x 1S, gm 2(S, awt

5. Optimal Control

In (Kaczorek, 1995; 1996), among other results, a solu-
tion to the minimum energy control problem for (1) was
obtained. We present a solution to the optimal control

and let furthermore two piecewise continuous functions problem for (1) where we relax the condition to meet ex-

(pl(t), ()02(8)7 to <t <ty sp <s<sp be given and
xo € R"™. If the operator

L L
11 12 ’ (36)
La1 Lo
where L1y, Lis, Loi, Loo, as defined in (34), is invert-
ible, then there exist initial-boundary values

z1(0) = z(o,ty), x2(7) = x(s0,7) (37)

with z1(sg) = x2(tp) = mo, such that the associated
solution of (35) given by (16) fulfils

z(s1,t) = ¢1(t), x(s,t1) = pa(s). (38)

Proof. From the representation formula (16), with= 0,
we see that

l'(S,t) - R(SOath Sat)‘rl(so)

+/SR(07 tOv S, t) (33/1(0')—142(0, tO)xl(O—)) do

0

+/tR(S(),T, s,t) (a4 (1) — A1 (s0, T)w2(7)) d7. (39)

0

Now let z; and x5 be determined as the solutions of the
following differential equations:

(o) — Az(o,to)x1(0) = ui(o), z1(s0) = xo, (40)

(7_) - AI(SO; T)‘TQ(T) == UZ(T)a x?(to) = X,

with uq, us to be determined next.

From (40), (39), (34) and using(s1,t) = ¢1(t),
x(s1,t) = @a(t), x(so,to) = xg, We obtain the integral
equation

p1(t) ) _ (R(so,to,s1,t)w0 ) _ (L Lz [ua
pa(s) R(so,t0,5,t1)70 Loy Loz ) \us
(41)
If (41) is solvable, then it determines,;, us in terms of

the initial point zo = z(s¢, o) and the prescribed termi-
nal dataz(sy,t), z(s,t1). So (40) determines the Goursat

actly a predefined endpoint(¢;,s;) and, furthermore,
impose quadratic costs also for the state. Therefore, in
this section we study an optimal control problem associ-
ated with (1) and with a quadratic performance criterion.
Here we prefer a Hilbert space approach where, beside
the spaces already used, we introduce the Hilbert space
H*(J),k € N of all RF-valued functions in7, square
integrable with the scalar product

(z,y) = 2" (s1,t1)y(s1,t1)

S1 t1
+ / / wT(a, Ty(o,7)dodr
S0 to

forall z,y € H*(J).

Definition 3. (i) Let R be the matrix Riemann function
of (1). Then

R:R" —>Hn(g7)7 Zo HR(SO7tO7'7')$U’

(ii) Let R be the matrix Riemann function of (1) and let
B, asin (1), be piecewise continuous gh Then

L:H™T) —H"(T),
OO
u— L(u) = / R(o,7,-,-)B(o,7)u(o, 7)dodr.
S0 to
(iii) Let Q(s,t) € R™*™ be piecewise continuous i,

Ki € R"*", Then
Q: H™(J) — H™(T),

Q(S’t)x(svt) (Svt) 7é (Slatl)
z(-, ) <(s,t)»—> {le(s,t) (5.1) = (51,t1)> .

(iv) Let T'(s,t) € R™*™ be piecewise continuous iff.
Then
T:H™JT)—H"™(T),
T(s,t)x(s,t) (s,t) # (s1,t1)
x(.,.).—><(s,t)»—>{0 (s,t):(sl,t1)> .

Moreover, for the matrix Riemann functioR and any
piecewise continuously differentiable function (o) €
R™ in [sg, 1] we set

)
o) ::/ R(o, 10, )« (0)

data needed to steer the system to the prescribed terminal 50

data. [ ]

— AQ(O’, to)Il(U)) do € Hn(j), (42)
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and for any piecewise continuously differentiable function Proof. Inserting (44) into (46) yields

xz2(7) € R™ in [to,t1] we set 9] — (Rxo+@1+@2+Lu,Q(Rxo+®1+@2+Lu)>
) -
O2(-,) == [ R(s0,7,--)(ah(7) + (u, T'u)
to - - -~
= (u, Tu)+(Lu, QLu) 4+ (Lu, Q(Rxo+©1+03))

— Al (807 T)LI?Q(T)) dr € Hn(j> (43) - ~
+ (Rxo 4+ ©1 + O2,QLu) + Jo

With this notation, for any control functiom piecewise . .~

continuous in7, the representation formula (16) can be = (u, (T + L*QL)u)

rewritten as 9, L O(Rzo + O1 + 69)) + Jo, (49)
2(-) = Rro+©1+ 02+ Lu, w0 €R". (44)  where .J, denotes the remaining part of the criterion,

Furthermore, we introduce the following quadratic perfor- Which does not depend om

mance criterion: This functional now admits a unique minimum in
1 H™(J) if and only if (47) holds. In that case the min-
J = §a;T(sl, t1)K1x(s1,t1) imum is given by (48) and this is indeed a piecewise con-

tinuous function. [ |

. 1/81/t1(xT(0, Qo 7)a(o, 7) Notice that (47) is fulfilled if, for instanceT (o, 7) >
2 Jso Jio 0, Q(o,7) > 0 for all (o,7) € J and K; > 0. This
follows immediately from

(u, (T + L*QL)u) = ((Lu)" K1 Lu) (s1, 1)

K = K » QT(Uv T) = Q(U’ T)v s1 ot
! ' +/ / (uT(cr, )T (o, 7)u(o, 7)
T"(0,7) = T(o,7) forall o,7 € J. (45) o o

+ul (o, 7)T (0, 7)u(o, 7')) do dr,

Lu)*QL , dodr >0
Using the definition of the scalar product and Defini- * (( wQ u)(a T)> 7

tion 3 (iii), we obtain forall w e H™(J) \ {0}.
AN T Next we calculate the adjoint operatdr* of L.
(. Qr) =" (s1, t) Kra(sr, 1) With w € H™(J), u € H™(J) and

+ /Sjl/tjlmT(a, 7)Q(0o,7)z(0, 7) do dT. (w, Lu) = (u, L*w),

we obtain

From (iv)wegets t <w,Lu>:/81/tl(wT(37t)
)= [ [ 0.0 o) dor 0 J

s t
X / / R(o,7,s,t)B(o, T)u(o,7)do d’r) dsdt
Hence we obtain for the quadratic performance criterion s0/to

2J = (z,Qz) + (u, Tu). (46) +wT(817t1)/Sl/th(a, 7, 81,t1)B(o, T)u(o, 7) do dr.
o Yto

Theorem 10. The functional.J in (46) together with the Interchanging the order of integration in the first part
constraint (44) admits a unique minimum among all ad- Yi€lds

missible controlsu € H™(7) if and only if /81/8( /tl[/th(s,t)R(a, s 0)B(o7)
T+L*QL>0 on H™(J). (47) so Jso N to bt
'I_'he _optimql control is then a piecewise continuous func- x u(o,T) dT} dt) do ds
tionin J given as
Uopt = —~(T+ L*QL) ' L*Q(Rxo + ©1 + ©3), (48) = /jl/gsda ds(/tt1 dT[/Ttle(S,t)R(O', T, 8,t)

where L* denotes the adjoint operator tb with respect
to the scalar product ifH™ (7). x B(o,m)u(o,T) dtD
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/ttldT /tldt/ do / (s,t)R(0,T,s,t)

x B(o,T)u(o,T) ds)

:/S:I/t:ldadTK/asl/Ttle(s,t)R(a,T,s,t)dsdt)

x B(o, m)u(o, 7')]

([l

x B(o,T)u(o, T)] )T

S1 t1 S1 ty
= / / u” (o, 7)B (0, T)(/ / RT(0,7,5,t)
so Jto o T

w(s,t)ds dt) dodr

_ <u,BT(',')/(.S)1/(It)IRT(-, s, w(s, t) dsdt>.

R(o,7,s,t)ds dt)

and

@ :H(T) — H"(T),

s1 pt1
v 0@ )= [ [ R 6 mae mee m dean

+ RT('7 y Slatl)le(Shtl)-

Proof. From ( 44) we getr — Lu = Rxo + O + 62 and
this, togetherW|th (48), yleIdTuopt = —L*Qz. Notice
that 7' is not invertible on all of ™ (.7 ), since, e.g., with

’E, (5 t) = 0 for (87t) 7& (817t1)7
) 1 for (s1,t),

we obtainT u= 0, whereas|u|| = 1.

Conversely, if u is piecewise continuous and if,
moreover, T~ (s, t) exists forall (s, t) € 7, thenTu =
0 implies Tu(s,t) = 0 for (s,t) # (s1,t1), and this
holds if and only ifu = 0 on J. Hence the restriction of
T to the set of piecewise continuous functions is invertible
and its inverse is/'~!. Let T—! exist for all (o,7) € J.

Hence, adding the transpose of the second part we obtainf "en for the optimal control we obtain

for w e H™"(J)
(L*w)(o, 1)

m//

+RT(J,T,817t1)w(31,t1)). (50)

(o,7,8,t)w(s,t)dsdt

Uops = —T 1L*Qu. (52)
Furthermore, using Definition 3 (iii) and (50), we obtain
~TY(o,7)BY (0,7)®(2)(0,7), (53)

Uopt (0, T) =

where z is a solution of (1), (2) or (44), i.e. of (51). No-
tice that in a similar way as in Section 2 it can be proved
that the integral equation (51) has a unique solution. It

Corollary 3. Under the assumptions of Theorem 10 and remains an open guestion if the operafrcan be repre-

with 7' being piecewise continuous off, T'(s,t) €
R™xm TT(s 1) = T(s,t), if T71(s,t) exists for all
(s,t) € J, then the optimal control is given by

Yo, 7)B (0,7)®(x) (0, T),
where z is the solution of the integral equation

33(8, t) = yO(Sa t)

Uopt (0, T) = =T~

S t
- / R(o,7,5,8)B(o,7)T"\(0,7)
soY to

x BT (o, 7)®(x)(0,7)do dr, (51)
with

yo(s,t) = R(s0,t0,8,t)x0o

+/SR(U, to, s, 1) (1:,1(0) — As(0,to)x1(0)) do

0

— A1(3077—)x2(T)) dT

+ / Rs0,7,5,1) (3(7)

0

sented in feedback form, henceuf,; can be written as
Uopt = —T-1BTKz.

6. Conclusions

For the system (1), (2) we obtain criteria for controlla-
bility for general, non-constant coefficients. Along with
the well-known necessary and sufficient conditions, where
one demands the positive definiteness of the “Gramian”
matrix (23), we also obtain a sufficient controllability cri-
terion by using solutions of the adjoint system.

Observability is defined in the usual way, i.e. that a
given input and a known linear output determine uniquely
the state. In Theorem 8 we then obtain a necessary condi-
tion for observability in terms of the controllability of an
associated system.

We also derive conditions to control the homoge-
nous systems by prescribed “Goursat” data. Finally, us-
ing a Hilbert-space approach, we solve the optimal control
problem with a quadratic performance criterion.



Controllability, observability and optimal control of continuous-time 2-D systems

&

All these results are based on a representation for-Kaczorek T. (1995)1 ocal controllability and minimum energy

mula for solutions of (1), (2) using the associated matrix

Riemmann function. For completeness, and also for the
reader’s convenience, in Section 2 we provide the reader

with all the necessary tools concerning the matrix Rie-
mann function.
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