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EXTERNALLY AND INTERNALLY POSITIVE SINGULAR
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Notions of externally and internally positive singular discrete-time linear systems are introduced. It is shown that a singular
discrete-time linear system is externally positive if and only if its impulse response matrix is non-negative. Sufficient
conditions are established under which a single-output singular discrete-time system with matrices in canonical forms is
internally positive. It is shown that if a singular system is weakly positive (all matricesA, B, C are non-negative),

then it is not internally positive.
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1. Introduction Consider the singular discrete-time linear system

Singular (descriptor) discrete-time linear systems were Exit1 = Az; + Bu;, (1a)

considered in many papers and books (Cobb, 1984; Dai,

1989; Kaczorek, 1993; 1998b; Klamka, 1991; Lewis, yi = O, (1b)

1984; 1986; Luenberger, 1977; 1978; Mertzios and Le- wherei € Z,. Herez; € R", v; € R™, y; € RP

wis, 1989; Ohtaet al, 1984). The properties of funda- are the state, input and output vectors, respectively, and

mental matrices of singular discrete-time linear systems £, A € R™*", B € R**™ (C € RP*", |t is assumed

were established and their solution was derived in (Le- that det £ = 0 and

wis, 1986; Mertzios and Lewis, 1989). The reachabil-

ity and controllability of singular and positive linear sys- det[Ez — A} # 0 )

tems were considered in (Cobb, 1984; Dai, 1989; Fanti for somez € C (the field of complex numbers). If (2)

et al, 1990; Ka(_:zorek, 1993, Klam_k_a, 1991; Om_aal., holds, then (Kaczorek, 1993; Lewis, 1984)

1984). The notions of weakly positive discrete-time and

continuous-time linear systems were introduced in (Ka- . e (i)

czorek, 1997: 1998a; 1998b). [Bz— A" =) @2 : 3)

In the present paper a new class of externally and in- T

ternally positive discrete-time linear systems will be intro- where p is the nilpotence index and thé;’s are the

duced. Necessary and sufficient conditions will be estab-fundamental matrices satisfying the relations (Kaczorek,

lished under which singular discrete-time linear systems 1993; Lewis, 1984)

are externally and internally positive. It will be shown that {I for i — 0
ori =0,

the singular weakly positive linear systemis notinternally  pg. _ A¢, |, — &, F—d, A =
! . ’ - 0 fori#0,

positive.

(4)

and E¢_, =0,®; =0 for ¢« < —u, I and 0 being the
identity and zero matrices, respectively.

The solutionz; to (1a) with admissible initial con-
Let Z, be the set of non-negative integeR?*™ bethe  ditions is given by (Kaczorek, 1993; Lewis, 1984)
set of n x m real matrices andR™ := R™*!. The set T
g;:;t:dnb;ez%mat;fgi\évltnﬂgggfgatwe entries will be z; = ®;Exg + I;) ®;_4_1Buy, (5)

2. Preliminaries
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and the outputy; is determined by the formula 3. Externally Positive Singular Systems
itpu—1 Definition 1. The singular system (1) is callexternally
y; = CP;Exg + Z C®;_j_1Bug. (6) positiveif for any input sequence:; € R, i € Z, and
k=0 the zero initial conditionzyg = 0 we havey; € Ri for
1€ 2.

Let gy € RP*™ k =1—p,2—p,...,0,1,... be the
impulse response of the system (1). Applying the super- Theorem 1. The system (1) is externally positive if and

position principle and substituting only if
1 for k=0, g EREX™ for i=1—p,...,0,1,.... 13)
=0 for k>0

Proof. The necessity follows immediately from Defini-
tion 1. To prove the sufficiency, note that fey = 0 and

gi=C® 4B for i=1—p,...,0,1,.... (7)  ur€RY, keZy, from(8)we obtain

and zy = 0 into (6), we obtain

1+pu—1

Using (7), we may write (6) in the form
9(7) Y ©) Yi = ZgifkukeRﬁ.
k=0

i+p—1
Yyi = C®iExo + Z i~k Uk- (8) since (13) holds. m
k=0
To simplify the notation, we shall assume that=
The transfer matrix of (1) is given by p=1and
T(z) = C[Ez — A]"'B. 9 [
(Z) [ z ] ( ) E = In(;l 8 c Rnxn’
From (3), (9) and (7) we obtain -
i I
© . © . 0 | Infl nxn
T(z) = Z C®; Bz~ (HY = Z g;jz 7. (10) A=| | | eRY™"m,
=—p Jj=1-p L a
From (10) it follows that the impulse response matgix a=lag ar -+ @y —10 - 0], (14)
can be found by expansion @f(z).
Using (4) it can be shown that (Mertzios and Lewis, 0
1989)
P for i >0 B=1 | €&
T T (11a) 0
0 for i <0 1
and C=[byp by -+ b, 1] € R*",
0 for i >0 Theorem 2.If the matricestl, A, B, C have the canon-
—®_EP; = =7 (11b) ical form (14),
D4 for ¢ < 0.

a; >0, i=01,...,7r—1
From (11a) we havab; = ®(Ad;), &y = PpAD, = and , (15)
®y(AdPy)? and b; >0, j=0,1,....,n—1,

®; = By(ADg)' for i > 1. (12a)  then
d,BeRY for k=—pu,1—p,..., 16
Similarily, from (11b) we obtain®_, = —®_ EFd_4, F + K K (16)
P 3= 1EP 5= (—éflE)z(I),l and P, € Ri;_xn for 7 € Z+, (17)

d_;j=(—P_E)Y oy for j>1. (12b) g; €REX™ for j=1—p,2—p,.... (18)
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Proof.If E, A and B have the canonical form (14), then

it is easy to show that

1
[Ez — Al.aB = = H,Bz!
P
—|—+HlBZ+HQB7
where
0 1
0
H,B = , , HyB= .
0 :
1 0

(19a)

(19b)

where W = [w;;] € R,

A¢0 = qMAHq + q,uflAqul =+ .-

&

y Wij = lE a;—1q;—; and
-1

(n—r)xr

4+ qoAH,

=A(quHy 1 +quHy o+ -+ qoHr_2)

of
e
0 | 0 0
— —d ) ‘ nxn 22
v
| |
77777777 | | gn—r
0 -0 5 ? 0
From (12a) and (22) we have
®; = Bo(ADg)" € R™ for i=1,2,.... (23)

From (A4) (see the Appendix) and (19) it follows that Using (7) and (16), we obtain

O BERY, k=—p,1—p,..
k=—p,1—p,..

From (A6) we have

.,r—1 since H;B € R",
Lr—landg, >0 for k=1,2,....

T
O, B=> a,_jOpip;BERL for k=0,1,...

Jj=1

(20)

since by (15) we have; > 0 for i =0,1,...,r — 1.

From (A4), (A8) and (A9) we get

Qg = quHg+qu-1Hg—1+ -+ qoH,_1

0
I,
0
0 qo
w q1
D n—r

c R’ixn,

(21)

gj:C‘I)j_lBeRﬂxm for ‘]:17111,727;1,7 .
(24)
|

4. Internally Positive Singular Systems

Definition 2. The system (1) is callethternally positive
if for any admissible initial conditions;, € R’} and all
input sequences; € R, i € Z, we havez; € R’
andy; € R forieZ,.

From the comparison of Definitions 1 and 2 it fol-
lows that if the system (1) is internally positive, then it is
always externally positive, but if the system (1) is exter-
nally positive, it may not be internally positive.

Theorem 3. The system (1) with (14) is internally positive
if relations (15) hold.

Proof. By Theorem 2, if (15) hold, thenp; € R}*"
for i € Zy and ®,B € RY for k = —p, 1 — p,....
Hence, using (5), we obtain; € R} for i € Z forany
zo € R} and allu; € RT'. Similarly, taking into account

that g; € RE*™ for j =1—p,2 —p,..., from (8) we
obtainy; € RY for i € Z. [ ]
Consider the system (1) with
I,_1 0 A B
E = POl ermn, A= |7 B=| Y,
0 As By
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where A; e R(»=Dxn A, ¢ R™*? By e R* 1, where
B; € R and C € R, From (1a) fori = 0 and (25)
we have 000 0
0 = Asxg + Baug. (26) ®2=1000/, ©1=100 17,
001 a —1 a
Equation (26) determines the set of admissible initial con-
ditions for a given input sequenag, i € Z,.. 101 a 0 a | (28)
. . . . (b = 0 , A(I) — 2 0 2 ,
Note that the assumption (2) implies that is not a 0 a2 aQ 0 “ “
zero row and the singularity of the system implies that at a® 0 a 000
least one entry ofd, is zero. ,
D, = By(AD), 0> 1.
From (26) for uy = 0 it follows that the equation
Az =0, 29 € R, 29 # 0 can be satisfied ifA, con- Using (7), we obtain
tains at least one positive entry and at least one negative
entry. Hence we have the following important corollaries: g—1 = CP_sB = by,
go = C(I),lB = b1 + bga,
Corollary 1. The singular system (1) with (25) is not in-
4 gularsystem (1) with (25) g1 = COB =by+ba+ba?,  (29)

ternally positive if A € R}*".

go = C®1B = bpa + b1a2 + b2a3,
Corollary 2. The singular weakly positive (Kaczorek,
1998a; 1998b) system (1) with (25) is not internally posi-

tive. From (28) and (29) it follows that for the system (1)
with (27), the conditions (16)—(18) are satisfied.

The transfer function of (1) with (27) has the form

gi =atg, i>2

5. Example boz? + b3+ b
P T(z) = C[Ez — A]"'B = % (30)
Consider the singular system (1) with Expansion of (30) yields
(1.0 0 0 0 T(2)=g-1z+go+ 9127 +goz 24,
E=]1010|, A=|0 0 1], where
|0 00 a -1 0
(27) g—1=">ba, go=0b1+ba, g1 =0bo+ba+ bzag(
[0 and g, =a*"'g; for k> 2.
B=|0|, C = [bob1bs] , . .
This result agrees with (29).
- By Theorem 1, the system (1) with (27) is externally
positive sinceg; > 0 for j = —1,0,1,.... By Theo-
anda >0, b, >0, i =0,1,2. Inthiscasen =3, r = rem 3, the system (1) with (27) is also internally positive.
1, u=n—r=2and
. 1 017 6. Concluding Remarks
[Ez— A]7! = 0o =z -1 The notions of externally and internally positive singular
—a 1 0 discrete-time linear systems have been introduced. It has
been shown that:
1 0 1 1. The singular discrete-time linear system (1) is exter-
_ 1 a 0 5 nally positive if and only if its impulse response ma-
z—a 5 trix g; € R™ for i > —pu.

az a—z =z
2. The singular system (1) with (14) is internally posi-
=D o2+ D 1 + Pzl + Dz 24, tive if the conditions (15) are satisfied.
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3. If the singular system (1) with (25) is weakly posi- Appendix
tive, then it is not internally positive.
) ] yp ) ) ) Lemma 1. Let

The consideration presented for single-input single-
output discrete-time linear systems can be easily extended p(2) : = det[Ez — A]
to multi-input multi-output singular discrete-time linear , 1
systems. =z —a,_12" " — - —a1z—ap, (Al)

An extension to singular continuous-time linear sys- [Ez — Alaa = Hyz? + - -+ Hi1z + Ho, (A2)
tems is also possible. A generalization of this approach gng
to singular two-dimensional linear systems (Kaczorek, . ad 1)
1993) will be considered in a separate paper. [Ez = Al = Z P2 : (A3)

i=—p
Then
oy 1 0 0 00 H,
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j=1

Proof. Using the well-known equalitylEz — Al.q =
(det[Ez — A]) [Ez— A]~!, and (A1), (A2) with (A3), we
can write

(Hgz" + Hy_129" ' + -+ Hyz + Hy)

— (Zr _ a’r_lzrfl

—_— . e . _alz_ao)
% (@ﬂizu—l + ‘I>17MZ“_2 4.
+ O+ Doz + Q12+ ) . (A7)

The comparison of the coefficients at the same powers of
2k for k=q,q—1,...,0 of (A7) yields

O, =H, Hy1=_,—a1d_,,
O, =Hy1+a,—1Hy,
Hy 5=, —a,1P1_; —a,2P_,,

Sy ,=H; o+a, 1P1 ,+a, 2P,
=Hyo+a,_1Hy 1+ (a2 +ar—2) Hy
=H; o+qH; 1+ qH,

and (A4), whereg;, is defined by (A5).
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Comparing the coefficients of (A7) at™ !, 272, ...,
we obtain

O, =a, 1P 1 +a, 2P 2+ + agPo,

<I)'r+1 =a,_1Pr +a, 2P, 1+ +ap®Py,
and the formula (A6). =

Lemma 2. Let H,, £k = 0,1,...

Then
EH, 1 +apl, for k=1,...,r—1,
AH, = FH,_ -1, for k=,
FEHyp_4 for k=r+1,...,q,
(A8)
—q(0
Ho = | ... €1 5
a()Iq
a© .— [ayag - ap_y —10 --- 0],
—_aM®
—ql+D) €it1
H;, = : fori=1,...,r—1,
a
ala—%)
i—1
(1)
a'”’ =10 -0 aj41 ap—1 —10 --- 0,
Jj—1

0 0 0
0 0 0 n—1t+1
Hi: 001 fori:r?"'an_27

,q be defined by (A2)
and let the matrices E,A have the canonical form (14).

T. Kaczorek
j—1
. —
a9 =10 0apay - ar_y —10 --- 0|,
j = 1) y 1 — 1)
0 0 0
Hoov=1¢9 ... 0 0" (A9)
0 0 1
Here e; is the i-th column of the identity matrixX,, and
a;, 1=0,1,...,r—1 are the coefficients of the polyno-
mial (Al).
Proof. Using the equality[Ez — A][Ez — Alaga =

I, det[Ez — A] and (A1), (A2), we may write
[Ez — A] [Hg2? + Hy—1297 " + -+ + Hyz + Hy
=1, (ZT —ap_12" V= agz — ao) . (Al0)

The comparison of the coefficients at the same powers of
z of (A10) yields

AHy = I,a9, AHy=FEHo+a1l,, - -,

AH,_ =FEH,_3+ ar_11y, AH, =FH,_; — I,

AH,., = EH,, ---, AH,=FEH,,, EH,=0.
It is easy to check that it satisfies the equalitydy, =
Inao.

Using the canonical form off and A, it is easy to
show that

[EZ — A]ad
[ mi1 mi2 0 0 1 i
ap ma2 0 0
aopz a1z + ag e 0 0 22
= apz? z(a1z + ao) 0 0 23
aoz" 3 2" a1z + ao) -p(z) O n-2
i aoz" ™2 2" 3(a1z + ao) —zp(z) —p(z) 2" i
=Hy2"+ Hy 127"+ -+ Hyz + H, (A11)
where my; = 27— ar,lz’“_Z — o= ay, M2 =
= 2" 2~ 12" — i —ay, Mo = z(2"7?% —
a,_12"73 — ... —ay), p(z) being defined by (Al).

The comparison of the coefficients at the same pow-
ersofz* for k =0,1,...,q of (All) yields (A9). m
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