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This paper introduces a new classifier design method that is based on a modification of the classical Ho-Kashyap procedure.
The proposed method uses the absolute error, rather than the squared error, to design a linear classifier. Additionally, easy
control of the generalization ability and robustness to outliers are obtained. Next, an extension to a nonlinear classifier by
the mixture-of-experts technique is presented. Each expert is represented by a fuzzyif-thenrule in the Takagi-Sugeno-Kang
form. Finally, examples are given to demonstrate the validity of the introduced method.
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1. Introduction

Pattern recognition is concerned with the classification of
patterns into categories. This field of study was devel-
oped in the early 1960s, and it plays an important role in
many engineering fields, such as medical diagnosis, com-
puter vision, character recognition, data mining, commu-
nication, etc. Two of the main textbooks on pattern recog-
nition are those written by Duda and Hart (1973), and Tou
and Gonzalez (1974).

There are two main categories of classification meth-
ods: supervised (discrimination) and unsupervised (clus-
tering) ones. In supervised classification we have a set of
data, called the training set, with class labels associated
with each datum. In the literature there are many classi-
fiers, including statistical, linear discriminant,k-nearest
neighbour, kernel, neural network, classification tree, and
many more (Duda and Hart, 1973; Ripley, 1996; Tou and
Gonzalez, 1974; Webb, 1999). But linear classifiers are of
special interest, due to their simplicity and easy expansi-
bility to nonlinear classifiers. One of the most powerful
classical methods of linear classifiers is the least mean-
squared error procedure with the Ho-Kashyap modifica-
tion (Ho and Kashyap, 1965; 1966). Two main disadvan-
tages of this approach are: (i) the use of the quadratic loss
function, which leads to a non-robust method, (ii) the im-
possibility of minimizing the Vapnik-Chervonenkis (VC)
dimension of the designed classifier.

The most important feature of the classifier is its gen-
eralization ability, which refers to producing a reasonable
decision for data previously unseen during the process of
classifier design (training). The easiest way to measure
the generalization ability is to use a test set that contains
data that do not belong to the training set.

From statistical learning theory, we know that in or-
der to achieve good generalization capability, we should
select a classifier with the smallest VC dimension (com-
plexity) and the smallest misclassification error on the
training set. This principle is called the principle of Struc-
tural Risk Minimization (SRM) (Vapnik, 1998; 1999).

In real applications, data from the training set are
corrupted by noise and outliers. It follows that classifier
design methods need to be robust. According to Huber
(Huber, 1981), a robust method should have the following
properties: (i) reasonably good accuracy at the assumed
model, (ii) small deviations from the model assumptions
should impair the performance only by a small amount,
(iii) larger deviations from the model assumptions should
not cause a catastrophe. In the literature there are many
robust loss functions (Huber, 1981). In this work, due to
its simplicity, the absolute error loss function is of special
interest.

The paper by Bellmanet al. (Bellmanet al., 1966)
was the starting point in the application of fuzzy set the-
ory to pattern classification. Since then, researchers have
found several ways to apply this theory to generalize the
existing pattern classification methods, as well as to de-
velop new algorithms (Abe S. and Lan, 1995; Bezdek and
Pal, 1992; Ishibuchiet al., 1999; Kuncheva, 2000a; Malek
et al., 2002; Marín-Blázquez and Shen, 2002; Nath and
Lee, 1982; Setnes and Babuška, 1999). There are two
main categories of fuzzy classifiers (Kuncheva, 2000b):
fuzzy if-then rule-based and nonif-then rule fuzzy clas-
sifiers. The second group may be divided into fuzzy
k-nearest neighbours (Kelleret al., 1985) and gener-
alized nearest prototype classifiers (GNPC) (Kuncheva
and Bezdek, 1999). Several approaches have been pro-
posed for automatically generating fuzzyif-then rules
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and tuning parameters of membership functions from nu-
merical data. These methods fall into three categories:
neural-network-based methods, with high learning abili-
ties, genetic (evolution)-based methods, with the Michi-
gan and Pittsburg approaches, and clustering-based meth-
ods. There are several methods that combine the above-
enumerated categories that have proved effective in im-
proving classification performance (Czogała and Łęski,
2000; Rutkowska, 2002). Recently, a new direction in
the fuzzy classifier design field has emerged: a combina-
tion of multiple classifiers using fuzzy sets (Bezdeket al.,
1998; Kuncheva, 2001; 2002), which may be included into
the nonif-then fuzzy classifier category. There are gener-
ally two types of the combination: classifier selection and
classifier fusion. In the first approach each classifier is an
‘expert’ in some local area of the feature space. In the
second approach all classifiers are trained over the whole
feature space. Thus, in this case, we have competition,
rather than complementing, among the fuzzy classifiers.
Various methods have been proposed for fuzzy classifier
design; however, in contrast to statistical and neural pat-
tern classifiers, both theoretical and experimental studies
concerning fuzzy classifiers do not deal with the analysis
of the influence of the classifier complexity on the gener-
alization error. Therefore, in this paper, the generalization
ability of a fuzzy classifier will also be discussed.

The goal of this work is twofold. First, we wish to
introduce a modification to the classical Ho-Kashyap pro-
cedure. Next, a chief aim is to propose an extension of this
method to the nonlinear case, using the mixture-of-experts
technique. Each expert is represented by a fuzzyif-then
rule in the Takagi-Sugeno-Kang form. The regions of the
experts’ work are obtained by the fuzzyc-means cluster-
ing method. The proposed method uses the absolute loss
function, resulting in robustness to outliers and a better
approximation of the misclassification error. Additionally,
this method minimizes the VC dimension of the designed
classifier. The reminder of this work is concerned with
two-class problems. The proposed method can be easily
generalized to a multi-class problem using the class-rest
and class-class methodologies (Tou and Gonzalez, 1974).

According to the characteristics of the fuzzy classi-
fiers presented above, the classifier discussed in this paper
falls into the fuzzyif-then rule classifier category. How-
ever, a new subcategory is proposed, where fuzzyif-then
rules are extracted automatically using a combination of
the fuzzy clustering method and a weighted support vec-
tor machine, which may be called the weighted-support-
vector-based fuzzy classifier. The weighted support vec-
tor machine leads to a quadratic-programming problem
which is characterized by a high computational burden
(Łęski, 2002). Thus, a computationally effective method
based on a modification of the Ho-Kashyap algorithm (Ho
and Kashyap, 1965) will be proposed. A nonlinearif-then

rule-based classifier may be also included into the combi-
nation of multiple classifiers using the fuzzy sets method-
ology with competition.

This paper is organized as follows: Section 2 de-
scribes design procedures for linear and nonlinear clas-
sifiers with generalization control. Section 3 presents
simulation results and discusses the classification of sim-
ple synthetic two-dimensional data and real-world high-
dimensional data. Finally, conclusions are drawn in Sec-
tion 4.

2. Classifier Design

2.1. Linear Case

The classifier is designed on the basis of a
data set, called the training set,Tr (N) =
{(x1, ϕ1), (x2, ϕ2), . . . , (xN , ϕN )}, where N is the
data cardinality, and each independent datum (pat-
tern) xi ∈ Rt has a corresponding dependent datum
ϕi ∈ {+1,−1}, which indicates the assignment to one of
two classes,ω1 or ω2:

ϕi =

{
+1, xi ∈ ω1,

−1, xi ∈ ω2.
(1)

Defining the augmented pattern vectorx′i =[
xT

i , 1
]T

, we seek a weight vectorw ∈ Rt+1 such that

g (xi) , wT x′i

{
> 0, x′i ∈ ω1,

< 0, x′i ∈ ω2,
(2)

where g(xi) is called the linear discrimination (or deci-
sion) function.

If the condition (2) is satisfied for all members of the
training set, then the data are said to be linearly separable.
For overlapping classes it is impossible to find a weight
vector w such that (2) is satisfied for all data from the
training set. If we multiply by−1 all patterns of the train-
ing set which are members of the classω2, then (2) can be
rewritten in the formϕiwT x′i > 0 for i = 1, 2, . . . , N .
Let X be theN × (t + 1) matrix

X ,


ϕ1x′T1

ϕ2x′T2
...

ϕNx′TN

 . (3)

Then (2) can be written down in the matrix formXw > 0.
To obtain a solution, the above system of linear inequali-
ties is replaced by the system of linear equalitiesXw = b,
where b > 0 is an arbitrary vector. We define the error
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vector ase = Xw−b. If the p-th component ofe is pos-
itive, i.e. ep ≥ 0, then thep-th pattern falls on the right
side of the separation hyperplane, and by increasing the
respective component ofb (bp), ep can be set to zero. If
the p-th component ofe is negative, then thep-th pat-
tern falls on the wrong side of the separation hyperplane,
and it is impossible to retain the conditionbp > 0 while
decreasingbp. Thus, the misclassification error can be
written in the form

I (w, b) =
N∑

i=1

U (−ei) , (4)

where U(·) denotes the unit step pseudo-function,
U(ei) = 1 for ei > 0, and U(ei) = 0 otherwise.
We should minimize the criterion (4), but due to its non-
convexity this optimization problem is NP-complete. To
make this optimization problem tractable, we approximate
the criterion (5) by a convex one

I (w, b) =
N∑

i=1

|ei| or I (w, b) =
N∑

i=1

(ei)
2
. (5)

The above approximations are possible due to the fact that
positive error values can be set to zero by increasing the
respective components ofb. The first criterion in (5) is
a better approximation of (4), but due to the simplicity of
the solution, we start from the second criterion (5).

Now, we seek vectorsw and b by minimizing the
criterion function

min
w∈Rt+1,b>0

I (w, b) , (Xw − b)T D (Xw − b)

+ τwT
n wn, (6)

wherewn is formed fromw, by removing its last compo-
nent. The matrixD = diag(d1, d2, . . . , dN ), wheredi is
the weight corresponding to thei-th pattern, can be inter-
preted as reliability attached to this pattern. The criterion
function (6) is the squared error weighted by coefficients
di with the second term related to the minimization of
the Vapnik-Chervonenkis dimension (complexity) of the
classifier. The parameterτ > 0 controls the trade-off
between the classifier complexity and the amount up to
which the errors are tolerated.

The most important idea in statistical learning the-
ory is the Structural Risk Minimization (SRM) induction
principle. It implies a trade-off between the quality of
approximation and the complexity of the approximation
function (Vapnik, 1998). The measure of the approxima-
tion function complexity (or capacity) is called the VC-
dimension. It is a purely theoretical quantity which mea-
sures the capacity of a learning machine. This capacity is a
determining factor in bounding the difference between the

training and generalization (testing) errors of the learning
machine. An analytic calculation of the VC-dimension
can only be performed for very few and simple learning
machines. Thus, the parameter values of the learning ma-
chine (τ in our case) were chosen as the values for which
the machine has the best generalization ability measured
by cross-validation on the test set.

Optimality conditions are obtained by differentiat-
ing (6) with respect tow and b, and setting the results
to zero:  w =

(
XT DX + τ Ĩ

)−1

XT Db,

e , Xw − b = 0,
(7)

where Ĩ is the identity matrix with the last element on the
main diagonal set to zero.

From the first equation of (7), we see that the vec-
tor w depends on the vectorb. The vectorb is called
the margin vector, because its components determine the
distance from the patterns to the separating hyperplane.
For a fixed w, if a pattern lies on the right side of the
hyperplane, the corresponding margin can be increased
to obtain the zero error. However, if a pattern lies on
the wrong side of the hyperplane, then the error is neg-
ative, and we may decrease the error only by decreasing
the corresponding margin value. But one way to prevent
b from converging to zero is to start withb > 0 and to
refuse to decrease any of its components. Ho and Kashyap
(1965; 1966) proposed an iterative algorithm for alter-
nately determiningw and b, where the components ofb
cannot decrease. Now, this algorithm can be extended to
our weighted squared error criterion with regularization.
The vector w is determined based on the first equation
of (7), i.e. w[k] = (XT DX + τ Ĩ)−1XT Db[k], where the
superscript[k] denotes the iteration index. The compo-
nents of b are modified by the components of the error
vector e, but only in the case when it results in an increase
in the components ofb. Otherwise, the components ofb
remain unmodified:

b[k+1] = b[k] + ρ
(

e[k] +
∣∣e[k]

∣∣) , (8)

whereρ > 0 is a parameter.

Note that forD = I (di = 1) and τ = 0 the original
Ho-Kashyap algorithm is obtained. Now, another method
for the selection of the parametersdi will be proposed.
Real data have noise and outliers. It follows that classifier
design methods need to be robust. It is well known from
the literature (Huber, 1981) that the minimum squared er-
ror procedure does not lead to robust methods. One of
the simplest techniques to obtain robust methods is to use
the minimum absolute error procedure. The absolute er-
ror criterion is easy to obtain by takingdi = 1/|ei| for all
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i = 1, 2, . . . , N , whereei is the i-th component of the er-
ror vector. But the error vector depends onw. So, we use
the vectorw from the previous iteration. This procedure
is based on the hypothesis that near the optimum, solution
sequential vectorsw[k] differ imperceptibly. The absolute
error minimization procedure for classifier design can be
summarized in the following steps:

1. Fix τ > 0, ρ > 0 and D[1] = I . Initialize b[1] > 0.
Set iteration indexk = 1.

2. Set w[k] = (XT D[k]X + τ Ĩ)−1XT D[k]b[k].

3. Determinee[k] = Xw[k] − b[k].

4. Set di = 1/|ei, for i = 1, 2, . . . , N , D[k+1] =
diag (d1, . . . , dN ).

5. Calculateb[k+1] = b[k] + ρ(e[k] + |e[k]|).

6. If ‖b[k+1] − b[k]‖ > ξ, then setk = k + 1 and go
to Step 2. Otherwise, stop.

Remark 1. Appendix shows that for0 < ρ < 1 and any
diagonal matrixD, the above algorithm is convergent. If
Step 4 of this algorithm is omitted, then a procedure for
the minimization of the squared error is obtained. In prac-
tice, a divide-by-zero error in Step 4 does not occur. This
results from the fact that some components of the vector
e tend to zero as[k] → ∞. But in this case convergence
is slow and the condition from Step 6 stops the algorithm.

2.2. Nonlinear Extension

In the previous subsection the linear discriminant function
g (x) = wT x′ that minimizes the absolute (or squared)
error as well as the classifier complexity has been de-
scribed. Now, we propose an extension of this classifier
using c linear discriminant functionsgi (x) = w(i)T x′,
i = 1, 2, . . . , c. The input spaceRt is softly partitioned
into c regions. If we denote byuik the membership of
the k-th datum from the training set to thei-th region,
then the criterion (6) takes the form

I
({

w(i)
}

,
{

b(i)
})

=
c∑

i=1

(
Xw(i)T − b(i)

)T

D(i)
(

Xw(i)T − b(i)
)

+ τw(i)T
n w(i)

n , (9)

where

D(i) = diag
(
ui1/

∣∣e(i)
1

∣∣, ui2/
∣∣e(i)

2

∣∣, . . . , uiN/
∣∣e(i)

N

∣∣)
and

e
(i)
k = w(i)T x′k − b

(i)
k .

The vector b(i) denotes the margin vector for thei-th
classifier.

Now, for a fixed partition of the input space, rep-
resented byuik, i = 1, 2, . . . , c, k = 1, 2, . . . , N , the
minimization of the criterion (9) can be decomposed into
c minimization processes of the criterion (6) forD(i) of
the above-mentioned form. To obtain a partition of the
input space, each of the two classes (ω1 and ω2) from
the training set is first clustered by the fuzzyc-means
algorithm (Bezdek, 1982). There are two approaches to
represent the obtained clusters: (i) the use of the orig-
inal fuzzy c-means membership functions (Setnes and
Babuška, 1999), (ii) the use of a parameterized approx-
imation of clusters obtained by fuzzyc-means (Runkler
and Bezdek, 1999). Both the approaches have advantages
and disadvantages. The original fuzzyc-means member-
ship function decreases monotonically around the cluster
centre, but increases in regions distant from other clus-
ter centres. This effect comes from the use of the proba-
bilistic constraint that the memberships of a datum across
clusters must sum up to one (Krishnapuram and Keller,
1993). The fuzzyc-means membership functions are also
non-symmetric due to a non-uniform distribution of clus-
ter centres. Usually, in the second approach to represent
data clusters, symmetric Gaussian membership functions
are used (Czogała and Łęski, 2000; Kimet al., 1997; Łęski
and Henzel, 2001; Rutkowska, 2002).

The use of Gaussian membership functions leads to
simplicity in further calculations and a possibility to in-
terpret the obtained system as a radial-basis neural net-
work. It is an open problem which approach leads to bet-
ter accuracy in fuzzy modelling. However, for simplicity,
in further deliberations, each cluster is represented para-
metrically by a Gaussian membership function with centre
v(i)(j) and dispersions(i)(j), wherej ∈ {1, 2} is a class
index, andi ∈ {1, 2, . . . , c} is a cluster index. Thep-th
component ofs(i)(j) represents the dispersion of the data
which belong to thei-th cluster of thej-th class, along
the p-th axis in the input space. If we denote the elements
of fuzzy partition matrices byu(1)

ik and u
(2)
ik for the ω1

and ω2 classes, respectively, the parameters of Gaussian
membership functions can be obtained as

v(i)(j) =

Nj∑
k=1

u
(j)
ik xk

Nj∑
k=1

u
(j)
ik

(10)

and

s(i)(j) =

Nj∑
k=1

u
(j)
ik

[
xk − v(i)(j)

](·2)
Nj∑
k=1

u
(j)
ik

, (11)
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where the superscript ‘(·2)’ denotes the component-by-
component squaring.

After clustering, we search forc nearest pairs of
clusters which belong to different classes. Each cluster
belongs only to one pair. In searching for the nearest cen-
tre (prototype) of clusters, the norm‖v(i)(1) − v(j)(2)‖1,
i, j = 1, 2, . . . , c is used. Let=(1) and =(2) denote the
sets of prototypes not used in searching for the nearest
pairs for theω1 and ω2 classes, respectively.= denotes
the set of ordered pairs of cluster centres from different
classes. An algorithm for determining the nearest pairs of
clusters can be summarized in the following steps:

1. Set= = ∅, =(1) = =(2) = {1, 2, . . . , c}, k = 1.

2. Determine min
i∈=(1), j∈=(2)

‖v(i)(1) − v(j)(2)‖1

=
∥∥v(η1(k))(1) − v(η2(k))(2)

∥∥
1
.

3. Set= = = ∪ {(η1 (k) , η2 (k))},
=(1) = =(1) \ {η1 (k)},
=(2) = =(2) \ {η2 (k)}, k = k + 1.

4. If k < c, then go to Step 2, otherwise stop.

The symbol ‘\’ denotes the set-theoretic subtraction and
ηj (k) denotes the permutation function for thej-th class.

The fuzzy set-theoretic union of the nearest pairs of
clusters definesc fuzzy sets. These sets form a fuzzy
partition of the input space, and for thei-th set we have

A(i) =
(
A

(η1(k))(1)
1 ∩A

(η1(k))(1)
2 ∩. . .∩A

(η1(k))(1)
t

)
∪
(
A

(η2(k))(2)
1 ∩A

(η2(k))(2)
2 ∩. . .∩A

(η2(k))(2)
t

)
, (12)

where A
(ηj(k))(j)
p is the fuzzy set representing thep-th

component of theηj (k)-th cluster for thej-th class. Us-
ing the algebraic product as thet-norm and the maximum
operator as thes-norm (Czogała and Łęski, 2000) yields
the membership function

A(i) (x) = max

exp

−1
2

t∑
p=1

(
xp − v

(η1(k))(1)
p

s
(η1(k))(1)
p

)2
,

exp

−1
2

t∑
p=1

(
xp − v

(η2(k))(2)
p

s
(η2(k))(2)
p

)2
 . (13)

Finally, the memberships needed in (9) are obtained
as uik = A(i) (xk). For all i = 1, 2, . . . , c the algorithm
described in Subsection 2.1 leads to a linear classifier with
parametersw(i). These classifiers can be represented as a
set of fuzzyif-thenrules in the Takagi-Sugeno-Kang form
(Czogała and Łęski, 2000):

IF x is A(i), THEN y = gi (x) = w(i)T x′,

i = 1, 2, . . . , c. (14)

The overall output for each datumxk is obtained by
the weighted average (Czogała and Łęski, 2000):

yk =

c∑
i=1

A(i) (xk) w(i)T x′k
c∑

i=1

A(i) (xk)

{
> 0, xk ∈ ω1,

< 0, xk ∈ ω2.
(15)

The above classifier can be also named a mixture-
of-experts classifier. It is assumed that different experts
(classifiers,if-thenrules) work best in different regions of
the input space. The integrating unit, described by (15),
called the gating network, acts as a mediator among the
experts.

3. Numerical Experiments and Discussion

In all experiments the values ofb[1] = 10−6 and
ρ = 0.98 were used. The iterations were stopped
as soon as the Euclidean norm in a successive pair
of b vectors was less than10−4. The fuzzy c-
means clustering (FCM) algorithm was applied with the
weighted exponent equal to 2. For initialization a ran-
dom partition matrix was used, and the iterations were
stopped as soon as the Frobenius norm in successive
pairs of partition matrices was less than10−6. All
experiments were run in the MATLAB environment.
Benchmark databases were obtained via the Internet
— ftp://markov.stats.ox.ac.uk/pub/PRNN
andhttp://www.stats.ox.ac.uk/pub/PRNN/ .

3.1. Simple Synthetic Two-Dimensional Data

The purpose of this experiment was to compare the classi-
cal and proposed methods of classifier design. The simu-
lations were performed for data generated by Ripley (Rip-
ley, 1996). These data consist of patterns having two fea-
tures and assigned to two classes. Each class has a bi-
modal distribution obtained as a mixture of two normal
distributions. The class distribution was chosen to allow
the best-possible error rate of about 8%. The training
set consists of 250 patterns (125 patterns belong to each
class), and the testing set consists of 1000 patterns (500
patterns belong to each class).

The parameterτ was in the range from 0 to 10
(step 0.1), and the number ofif-then rules (experts) was
changed from 2 to 10. After the training stage (the clas-
sifier design on the training set), the generalization ability
of the classifier was determined as the error rate on the test
set. For each combination of the above parameter values,
the training stage was repeated 25 times for different ran-
dom initializations of the FCM method. Table 1 shows the
lowest error rate for each number ofif-thenrules.
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Table 1. Minimal error rate obtained for
the testing part of databases.

c
Synthetic two-class problem Pima Indians diabetes

Error rate τ Error rate τ

2 9.0% 4.6 19.57% 5.0

3 8.6% 4.6 19.27% 5.3

4 8.5% 1.6 19.57% 7.3

5 8.2% 1.4 19.57% 3.0

6 8.6% 0.5 17.77% 5.6

7 8.7% 0.5 18.97% 2.4

8 8.6% 5.0 18.67% 2.8

9 8.5% 2.7 19.57% 8.1

10 8.7% 0.7 19.57% 5.6

The best generalization (the lowest error rate on the
testing set), equal to 8.2%, is obtained for 5if-then rules
and τ equal to 1.4. For other numbers ofif-thenrules, we
also have an optimum of the generalization ability, but it
is worse than that obtained for 5if-then rules. It is very
interesting that for increased numbers ofif-then rules the
generalization ability slightly decreases. This provides ev-
idence that the classifier is not overtrained. The discrim-
ination curve (the continuous line) of the classifier with
the best generalization ability for 2 and 5if-thenrules are
shown in Figs. 1 and 2, respectively. In these figures the
linear classifiers (experts) are plotted as dotted lines, and
the prototypes of classesω1 and ω2 are marked with tri-
angles and squares, respectively. The parameter values of
the classifier, i.e., the number ofif-then rules and param-
eter τ , were chosen as the values for which the machine
has the best generalization ability, measured by the cross-
validation on the test set. Thus, in this examplec = 5 and
τ = 1.4 were chosen for the final classifier. For the num-
ber of if-thenrules greater than 5, the learning problem is
underdetermined because the classifier complexity is too
large. We also see that for the number ofif-thenrules less
than 5, the learning problem is overderdetermined because
the classifier complexity is too small.

For oneif-then rule (the linear case), the error rate
10.2% was obtained forτ = 5.1. For comparison, the
nearest-prototype classifier with optimization based on
deterministic annealing (Milleret al., 1996) leads to an
error rate equal to 8.6% for 12 prototypes, and the neuro-
fuzzy classifier (ANNBFIS) (Czogała and Łęski, 2000)
leads to an error rate of 8.8% for 2if-the rules. In (Tip-
ping, 2001) it is reported that the ‘state-of-the-art’ support
vector machine classifier has the error rate 10.6% and the
relevance vector machine classifier leads to the error rate
equal to 9.3%. Table 2 shows the generalization ability of
the classifiers for the synthetic two-class problem.
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Fig. 1. Testing set for Ripley’s two-class problem with
the classification curve for 2if-thenrules.
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Fig. 2. Testing set for Ripley’s two-class problem with
the classification curve for 5if-thenrules.

3.2. Real High-Dimensional Data

The main goal of the experiments here was to examine
the usefulness of the proposed method in constructing a
classifier for real-world high-dimensional data. The data
were collected by the US National Institute of Diabetes
and Kidney Diseases. According to the criteria of the
Expert Committee on the Diagnosis and Classification of
Diabetes Mellitus, a population of women who were at
least 21 years old was tested for diabetes. The women
are Pima Indians (living near Phoenix, Arizona). For each
woman the following personal data were collected: the
number of pregnancies, plasma glucose concentrations in
the fasting plasma glucose test, diastolic blood pressure
(mm Hg), tricep skin fold thickness (mm), body mass in-
dex (weight in kg/(height in m)2), diabetes pedigree func-
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Table 2. Comparison of the generalization ability of classifiers for Ripley’s synthetic two-class problem.

Classifier Reference Generalization ability

if-thenrule based on the Ho-Kashyap method this paper 91.8%

nearest prototype with deterministic annealing (Miller et al., 1996) 91.4%

ANNBFIS (Czogała and Łęski, 2000) 91.2%

relevance vector machine (Tipping, 2001) 90.7%

modified Ho-Kashyap classifier this paper 89.8%

support vector machine (Tipping, 2001) 89.4%

Table 3. Comparison of the generalization ability of classifiers for the Pima Indians diabetes dataset.

Classifier Reference Generalization ability

if-thenrule based on the Ho-Kashyap method this paper 82.23%

relevance vector machine (Tipping, 2001) 80.4%

linear logistic discrimination (Ripley, 1996) 80.2%

support vector machine (Tipping, 2001) 79.9%

linear discrimination (Ripley, 1996) 79.8%

ANNBFIS (Czogała and Łęski, 2000) 78.0%

backpropagation neural network (Ripley, 1996) 77.9%

learning vector quantization (Ripley, 1996) 77.9%

Lagrangian support vector machine (Mangasarian and Musicant, 2000) 78.12%

combined classifiers using fuzzy sets (Kuncheva, 2002) 77.5%

Bayes point machine (Herbrichet al., 2001) 68.0%

tion (the function of the number and location in the pedi-
gree tree of common ancestors up to the second degree
relatives suffering from diabetes mellitus), and the age in
years. Out of 768 collected records 376 were incomplete.
Ripley divided randomly the complete records into a train-
ing set of the size 200 and a test set of the size 332 (Ripley,
1996). The performance of several classical pattern recog-
nition methods was then tested. The obtained error rate (in
percent) was as follows: linear discrimination – 20.2%,
projection pursuit regression – 22.6%, linear logistic dis-
crimination – 19.8%, backpropagation neural network –
21.1%, learning vector quantization – 21.1%. The La-
grangian support vector machine (Mangasarian and Mu-
sicant, 2000) leads to an error rate equal to 21.88%.

For the proposed algorithm, the parameterτ was in
the range from0 to 10 with step 0.1, and the number of
if-then rules (experts) was changed from 2 to 10. Ta-
ble 1 shows the lowest error rate for each number ofif-
then rules. From this table we see that the best general-
ization, equal to 17.77%, is obtained for 6if-then rules
andτ = 5.6. It is also seen that the worst result for the
proposed classifier is better then the best result obtained
for the classical method, i.e. linear logistic discrimination.
As in the previous subsection, for increased numbers of
if-thenrules, the generalization ability slightly decreases.

For comparison, the support vector machine classi-
fier (Tipping, 2001) leads to the error rate equal to 20.1%
for 109 support vectors and the relevance vector machine
classifier leads to an error rate of 19.6% for 4 relevance
vectors. The Bayesian point machine classifier has the er-
ror rate equal to32.0% (Herbrichet al., 2001). The tech-
nique based on a combination of multiple classifiers us-
ing fuzzy sets leads to the error rate equal to 22.5% using
the average-and-majority vote fusion method (Kuncheva,
2002). The neuro-fuzzy classifier (ANNBFIS) (Czogała
and Łęski, 2000) leads to the error rate 21.0% for 2if-the
rules. Table 3 shows the generalization ability of the clas-
sifiers for the Pima Indians diabetes dataset.

4. Conclusions

In this work, a new nonlinearif-thenrules-based classifier
design method has been introduced. This method consti-
tutes a modification of the classical Ho-Kashyap method-
ology, which uses an absolute loss function, rather than a
quadratic one. This results in a better approximation of
the misclassification error and robustness against outliers.
Additionally, the proposed method minimizes the Vapnik-
Chervonenkis dimension, which results in easy control of
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the generalization ability of the classifier. An extension
to nonlinear classifier design using a mixture of experts
was also shown. This method establishes a new subcat-
egory in the partition of fuzzy classifier design methods,
i.e. fuzzyif-thenrules-based with rules extracted automat-
ically by using a connection of a fuzzy clustering method
and a weighted support vector machine. This method can
also be viewed as the competition-combination of multi-
ple classifiers using the fuzzy set methodology.

Two numerical examples were given to illustrate the
validity of the presented method. These examples show
the usefulness of the new method in the classification
of both synthetic and real-world high-dimensional data.
For these databases the results obtained by the proposed
method are better compared with the methods reported in
the literature. The new classifier consistently outperforms
the state-of-the-art classifier “support vector machine” on
both synthetic and real-world benchmark datasets.
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Appendix

The first equation of (7) can be rewritten in the form
XT De = −τ Ĩ w . Thus, for τ > 0, all elements of
the error vector cannot be zero. This is true in either
linearly separable or nonseparable cases. If we define

X† , (XT DX + τ Ĩ)−1XT D and e[k]
+ , e[k] + |e[k]|, then

using (7) and (8) yields:e[k+1] = e[k] + ρ(XX† − I)e[k]
+

and w[k+1]
n = ĨX †(b[k] + ρe[k]

+ ) = w[k]
n + ρ̃IX †e[k]

+ .
Substituting the above results into (6) givesI [k+1] =
I [k]+2ρe[k]T D(XX†−I)e[k]

+ +ρ2e[k]T
+ (XX†−I)T D(XX†−

I)e[k]
+ + 2τρw[k]T

n ĨX †e[k]
+ + τρ2e[k]T

+ X†T ĨX †e[k]
+ . From

the first equation of (7) we havẽIX T De[k] = −τw[k]
n .

From this and the equality2ρe[k]T D(XX† − I)e[k]
+ =

ρe[k]T
+ D(XX† − I)e[k]

+ , after some simple algebra,

we obtain I [k+1] − I [k] = ρ(ρ − 1)e[k]T De[k]
+ +

ρ2e[k]T
+ X†T (XT DX + τ Ĩ)X†e[k]

+ − 2ρ2e[k]T
+ DXX†e[k]

+ .

SinceX†T (XT DX+τ Ĩ)X† = DXX†, the second and third
terms simplify to−ρ2e[k]T

+ DXX†e[k]
+ .

Thus I [k+1] − I [k] = ρ(ρ − 1)e[k]T De[k]
+ −

ρ2e[k]T
+ DXX†e[k]

+ . The matrix DXX† is symmetric and
positive semidefinite. It follows that the second term is
negative or zero. For0 < ρ < 1 the first term is nega-
tive or zero. Thus the sequenceI [1], I [2], . . . is monoton-
ically decreasing. For both linearly separable and nonsep-
arable cases, convergence requires thate[k]

+ tend to zero
(no modification in (7)), whilee[k] is bounded away from
zero, sinceXT De = −τ Ĩw .
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