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Many researches have been interested in the approximation properties of Fuzzy Logic Systems (FLS), which, like neural
networks, can be seen as approximation schemes. Almost all of them tackled the Mamdani fuzzy model, which was shown to
have many interesting approximation features. However, only in few cases the Sugeno fuzzy model was considered. In this
paper, we are interested in the zero-order Multi-Input–Multi-Output (MIMO) Sugeno fuzzy model with Beta membership
functions. This leads to Beta Fuzzy Logic Systems (BFLS). We show that BFLSs are universal approximators. We also
prove that they possess the best approximation property and the interpolation characteristic.

Keywords: Beta function, universal approximation property, best approximation property, interpolation property, Sugeno
fuzzy model, MIMO systems

1. Introduction

Fuzzy logic systems (FLSs) were introduced in order to
approximate a decision or a control function with a given
accuracy (Bouchon-Meunier, 1995; Kosko, 1993; Mam-
dani and Assilian, 1975; Mendel, 1995; Sugeno and Kang,
1988; Teranoet al., 1992; Zadeh, 1965). In fact, when the
system to be controlled is too complex, it is difficult and
often impossible to model its behaviour using mathemat-
ical equations (Jang, 1993; Jang and Sun, 1995; Nguyen
and Kreinovich, 1992; Nguyenet al., 1996; Takagi and
Sugeno, 1985; Yenet al., 1995). In this case, it is easier to
describe system behaviour via fuzzy linguistic fuzzy rules.
With these fuzzy rules and fuzzy logic concepts, one can
construct a functionf : U ⊂ Rn −→ V ⊂ Rp that
models the system behaviour so it is natural to relate the
construction of FLSs to the theory of function approxima-
tion (Kosko, 1992; Laukonen and Passino, 1994; Lewiset
al., 1995).

As we all know, FLSs comprise four main compo-
nents, which are, the fuzzifier, the fuzzy rule base, the
fuzzy inference engine and the defuzzifier. The main dif-
ference between the Mamdani and Sugeno fuzzy systems
lies in the consequents of fuzzy rules, which are fuzzy sets

for the former and crisp values for the latter. Defuzzifica-
tion is defined as the step which produces a crisp output
for our FLS from the fuzzy set that is the output of the
inference block. As was mentioned in (Mendel, 1995),
many defuzzifiers were proposed in the literature. How-
ever, there is no scientific base for any of them (i.e. no
defuzzifier was derived from a first principle such as max-
imization of fuzzy information or entropy). Consequently,
defuzzification is an art rather than a science. Because
we are interested in engineering applications of FL, one
criterion for the choice of a defuzzifier is computational
simplicity. For a Sugeno fuzzy model, the consequence of
each fuzzy rule is a constant, and defuzzification in such a
model is made using the centre-of-gravity method, i.e. the
gravity centre of all singletons is calculated.

Note that the main candidates for defuzzifiers are the
following:

• the maximum defuzzifier,

• the mean-of-maxima defuzzifier,

• the centroid defuzzifier,

• the height defuzzifier, and

• the modified height defuzzifier.
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However, with this big choice of defuzzifiers, we see
that there are many options of Mamdani fuzzy logic sys-
tems to choose from. This demonstrates the richness of
Mamdani FLSs.

In this paper, we consider the zero-order Sugeno
model, which can be seen as a Mamdani model with a sin-
gleton consequence. Many researchers proved that Mam-
dani fuzzy systems are universal approximators (Castro
and Delgado, 1996; Dickerson and Kosko, 1996; Gorrini
et al., 1995; Hartaniet al., 1996; Wang, 1992; Wang and
Mendel, 1992; Wanget al., 1997; Zeng and Singh, 1994;
1995), but few of them were interested in the Sugeno
fuzzy model. Recently, Ying (1998) proved that the
Sugeno fuzzy model with a linear rule consequence is a
universal approximator. In this paper, we are interested in
the Sugeno fuzzy model of the zeroth order. The advan-
tage of such a model is that it is simpler than the one con-
sidered by Ying (1998): the consequence of each fuzzy
rule is a constant and there is no need for a defuzzifica-
tion step to construct such a system. Another important
point which affects the behaviour of FLSs is the type of
membership functions for input variables. Different types
of membership functions were proposed (Alimi, 1997b),
such as triangular functions (Pedrycz, 1994), normal peak
functions (Wanget al., 1997), pseudo trapezoid functions
(Zeng and Singh, 1994; 1995), or functions using trans-
lations and dilations of one fixed function (Maoet al.,
1997), etc.

In this paper, we consider MIMO Beta Fuzzy Logic
Systems (BFLS) (Alimi, 2000; Alimiet al., 2000), which
are FLSs in which Beta functions are used as member-
ship functions of the input variables. BFLSs were actively
studied in the few last years (Alimi, 1997a; 1997c; 1997d;
1998a; 1998c; 2000; 2002; Alimiet al., 2000; Hassineet
al., 2000; Masmoudiet al., 2000) and they showed robust
and interesting properties compared with other FLSs (Al-
imi, 1998b). The results of this paper are extensions of our
previous work on SISO FLSs to the MIMO case (Alimi,
2000; Alimi et al., 2000).

The organization of this paper is as follows: in the
second section, we introduce Beta fuzzy sets. In Section 3,
we deal with the property of universal approximation and
give the essential definitions and properties needed for the
study of this property. Multi-Input-Multi-Output (MIMO)
BFLSs are shown in Section 4 to have the following prop-
erties:

1. basic approximation,

2. uniform approximation,

3. uniform convergence, and

4. universal approximation.

The best approximation property that seems more
practical is introduced in Section 5. We will prove that

BFLSs satisfy this property. Finally, in Section 6 we show
that the BFLSs possess the interpolation property.

2. Beta Fuzzy Logic Systems

2.1. Mathematical Model of an FLS

A Multi-Input-Single-Output (MISO) FLS can be seen as
a functionf : U ⊂ Rn −→ V ⊂ R, whereU is the input
space,V is the output space, andn > 1. As was shown
by Lee (1990), a MIMO fuzzy system can always be sep-
arated into a group of MISO fuzzy ones, so it is sufficient
to study MISO fuzzy systems and the results concerning
MIMO ones can be easily deduced.

In this paper, we adopt the zero-order Sugeno fuzzy
model with multiplication as at-norm. Then a fuzzy sys-
tem is given by

f :
U ⊂ Rn −→ V ⊂ R,

~x 7−→

∑
(i1,i2,...,in)∈I

n∏
j=1

µAj
ij

(xj)∑
(k1,k2,...,kn)∈I

n∏
l=1

µAl
kl

(xl)
y(i1,i2,...,in),

(1)
where
• ~x = (x1, x2, . . . , xn) is the input variable,

• I is the set{(i1, i2, . . . , in) | 1 ≤ ij ≤ Nj ; 1 ≤ j ≤
n}.

• N =
∏n

j=1 Nj is the number of fuzzy rules of the
form

R(i1,i2,...,in) : if
(
~x is ~Ai

)
then

(
y = y(i1,i2,...,in)

)
,

• y(i1,i2,...,in) are constants inV which represent the
consequences of the fuzzy rulesR(i1,i2,...,in), and

• ~Ai = (A1
i1

, A2
i2

, . . . , An
in

) are linguistic terms char-
acterized by their membership functionsµAj

ij

(xj).

From (1) we see that FLSs can be considered as lin-
ear combinations of the functions

B(i1,i2,...,in)(~x) =

n∏
j=1

µAj
ij

(xj)∑
(k1,k2,...,kn)∈I

n∏
l=1

µAl
kl

(xl)
, (2)

so we can introduce the following definition:

Definition 1. Fuzzy Basis Functions(FBFs) are defined
by

B(i1,i2,...,in)(~x) =
µA(i1,i2,...,in)(~x)∑

(k1,k2,...,kn)∈I

µA(k1,k2,...,kn)(~x)
, (3)
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where (i1, i2, . . . , in) ∈ I, and

µA(i1,i2,...,in)(~x) =
n∏

j=1

µAj
ij

(xj), (4)

~x = (x1, x2, . . . , xn).

With the use of this notation, the output of an FLS is
given by

f(~x) =
∑

(i1,i2,...,in)∈I

B(i1,i2,...,in)(~x)y(i1,i2,...,in). (5)

2.2. Beta Functions

Beta functions (Johnson, 1970) were proposed as mem-
bership functions of the input variables (Alimi, 1997e;
1998b; 2000; 2002; Alimiet al., 2000). This subsection
is devoted to the introduction of Beta functions and their
main properties.

Definition 2. (Beta functions in the one-dimensional case)
Considera, b ∈ R satisfying a < b, and letp, q > 0. In
the one-dimensional case, a Beta function is given by

β(x) =


(x− a

c− a

)p(b− x

b− c

)q

if x ∈]a, b[,

0 otherwise,
(6)

where

c =
pb + qa

p + q
. (7)

We can see that a Beta function depends on four pa-
rameters, which gives it a great flexibility, permitting to
reproduce most common shapes of membership functions
(see Fig. 1). In the remainder of this paper, we shall write

β(x) = β(x; p, q, a, b). (8)

Any Beta functionβ(x) is characterized by the fol-
lowing properties:

1. β(x) is continuous onR.

2. β(a) = β(b) = 0, c ∈]a, b[ and β(c) = 1.

3. For all x ∈]a, b[, we get

β′(x) =
[
pb + qa− (p + q)x

(x− a)(b− x)

]
β(x). (9)

4. We have the following relationship betweenp, q, a,
b, and c:

p

q
=

c− a

b− c
. (10)

Fig. 1. Examples of Beta functions in one dimension.

Definition 3. (Beta functions in the multidimensional
case) In the multidimensional case, a Beta function is
given by

β(~x) =


n∏

i=1

βi(xi) if ~x ∈
n∏

i=1

]ai, bi[,

0 otherwise,

(11)

where ~x = (x1, x2, . . . , xn) and βi(xi) =
βi(xi; pi, qi, ai, bi) is a one-dimensional Beta func-
tion.

Fig. 2. Bivariate Beta function.

Definition 4. A Beta Fuzzy Logic Systemis an FLS given
by (1) where the Beta functions are chosen as membership
functions of the input variables.
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3. Universal Approximation

Let U be a bounded set ofRn and (C(U), ‖ · ‖∞) be the
set of all functions fromU to R, which are continuous
with respect to the uniform norm (i.e. the norm given by
‖f‖∞ = supx∈U |f(x)| for every f in C(U)).

Definition 5. A subsetA of C(U) has theuniversal ap-
proximation propertywith respect to the norm‖ · ‖∞ if
for every ε > 0 and for everyf in C(U) there exists
g in A such that‖f − g‖∞ < ε. In other words,A is
dense in(C(U), ‖ · ‖∞).

Recently, Alimi (1997e; 1998b) proved that ifU is a
compact set ofRn, then the family of functions fromU
to R such as

f(~x) =
N∑

i=1

fi(~x)βi(~x) (12)

is dense in (C(U), ‖ · ‖∞), i.e. for every continuous
function g on a compact set there exists a functionf
given by (12) that approximatesg arbitrarily well, where
N is an arbitrary integer, thefi’s are polynomials in
x1, x2, . . . , xn and theβi’s are N multidimensional beta
functions. The proof, based on the Stone-Weierstrass the-
orem (Stone, 1937; 1948), consists in showing that this
family is a non-empty subalgebra ofC(U) which sepa-
rates points and contains the identity functionf(x) = 1.
However, this result is not always useful, because in prac-
tice we need to design an FLS explicitly, i.e. to determine
the number of fuzzy rules, to know the membership func-
tions of the input variables and to fix the consequence of
each fuzzy rule, etc.

In this paper, we propose a constructive approach to
the design of BFLSs, and we need to recall some defi-
nitions and properties that can be found in (Glorennee,
1996; Zeng and Singh, 1994; 1995).

Definition 6. Let U be a bounded interval ofR. A
pseudo-trapezoid-shaped functionPT (x; a, b, c, d, h) is
a continuous function onU given by

PT (x; a, b, c, d, h) =



I(x) if x ∈ [a, b[,

h if x ∈ [b, c[,

D(x) if x ∈]c, d],

0 if x ∈ U\[a, d],

(13)

where a, b, c and d are points ofU such thata ≤ b ≤
c ≤ d, a < d and h is a positive real number.I is a
strictly increasing function on[a, d[, which is greater than
or equal to zero, andD is a strictly decreasing function
on ]c, d], which is also greater than or equal to zero.

While h = 1, instead of PT (x; a, b, c, d, 1), we
shall write PT (x; a, b, c, d). In this casePT is said to
be a normal pseudo-trapezoid-shaped function. Figure 3
shows three examples of pseudo-trapezoid-shaped func-
tions, which are a triangular function, a trapezoid function
and a Beta function.
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three examples of pseudotrapezoid functions 

Fig. 3. Three examples of pseudo-trapezoid-shaped functions.

Definition 7. Let A be a fuzzy set defined onU ⊂ Rn.
A normal subsetof A is the set

M(A) =
{
~x | ~x ∈ U andA(~x) = 1

}
. (14)

Definition 8. A fuzzy set A defined on the universe of
discourseU , is said to benormal if 0 ≤ A(x) ≤ 1 for
every x ∈ U .

Definition 9. (The order between normal fuzzy sets) Let
A and B be two normal fuzzy sets defined onU ⊂ R.
We write A > B if and only if M(A) > M(B). Recall
that M(A) > M(B) ⇐⇒ ∀x ∈ M(A), ∀y ∈ M(B) :
x > y.

Figure 4 shows an example of two triangular func-
tions A and B satisfyingA < B.

Definition 10. A function f defined on a subsetU =∏n
j=1 Uj of Rn is said to be apseudo-trapezoid-shaped

product function if f(~x) =
∏n

j=1 PTj(xj), where each
PTj is a pseudo-trapezoid-shaped function defined on
Uj .

Definition 11. Fuzzy sets(Ai)1≤i≤N are said to form a
complete partitionof U if for every ~x ∈ U there exists
i ∈ {1, . . . , N} such thatAi(~x) > 0.

Definition 12. Fuzzy sets(Ai)1≤i≤N are said to becon-
sistent in U if the following condition is satisfied: If
Ai(~x0) = 1 for ~x0 ∈ U , then Aj(~x0) = 0 for every
i 6= j.
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Fig. 4. Two fuzzy setsA and B such thatA < B.

4. Approximation Properties of MIMO
BFLSs

We suppose that the universe of discourse isU = U1 ×
U2×· · ·×Un where eachUj is a compact interval ofR.
Multi-input–multi-output Beta fuzzy logic systems have
the following approximation properties (for proofs, see
Appendix):

Proposition 1. Let [A(i1,i2,...,in)](i1,i2,...,in)∈I be fuzzy
sets defined onU =

∏n
j=1 Uj . Suppose that their mem-

bership functions are given by

A(i1,i2,...,in)(~x) =
n∏

j=1

Aj
ij

(xj), (15)

which are pseudo-trapezoid-shaped product functions.
Then the functions(A(i1,i2,...,in))(i1,i2,...,in)∈I are nor-

mal, consistent and complete inU if and only if Aj
1,

Aj
2, . . . , A

j
Nj

are in Uj for every j ∈ {1, 2, . . . , n}.

Proposition 2. Let (B(i1,i2,...,in))(i1,i2,...,in)∈I be fuzzy
basis functions given by

B(i1,i2,...,in)(~x) =
β(i1,i2,...,,in)(~x)∑

(k1,k2,...,kn)∈I

β(k1,k2,...,kn)(~x)
.

(16)
ThenB(i1,i2,...,in)(~x) =

∏n
j=1 Bj

ij
(xj), where

Bj
ij

(xj) =
βj

ij
(xj)

Nj∑
ij=1

βj
ij

(xj)

, (17)

ij = 1, . . . , Nj and j = 1, 2, . . . , n.

Theorem 1. Let U = [A,D] be the universe of dis-
course, and let[βi(x; pi, qi, ai, bi)]1≤i≤N be a family of
Beta functions such thatA = c1, ci ≤ ai+1 < bi ≤ ci+1,
for every i ∈ {1, . . . , N − 1} and D = cN , where
ci = (pibi + qiai)/(pi + qi). Then this family satisfies
the following conditions:

• P1 : (βi)1≤i≤N are pseudo-trapezoid-shaped,

• P2 : (βi)1≤i≤N are normal,

• P3 : (βi)1≤i≤N are consistent in the universe of dis-
courseU ,

• P4 : (βi)1≤i≤N are complete,

• P5 : β1 < β2 < · · · < βN .

Figure 5 shows a Beta function family satisfying
PropertiesP1–P5.
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A Beta function family satisfying the properties of the theorem

Fig. 5. Beta function family satisfying the
conditions of Theorem 1.

Theorem 2.Let U = [A1, D1]× [A2, D2] · · ·× [An, Dn]
and [β(i1,i2,...,in)]1≤ij≤Nj ;1≤j≤n be a Beta multidimen-
sional function family such that

β(i1,i2,...,in)(~x) =
n∏

j=1

βj
ij

(xj), (18)

whereβj
ij

(xj) = β(xj ; p
j
ij

, qj
ij

, aj
ij

, bj
ij

), and each family

(βj
ij

)1≤ij≤Nj satisfies the following conditions:

• Aj = cj
1,

• cj
ij
≤ aj

ij+1 < bj
ij
≤ cj

ij+1 for all ij ∈ {1, . . . ,

Nj − 1},

• Dj = cj
Nj

.
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Then (β(i1,i2,...,in))1≤ij≤Nj ;1≤j≤n are product pseudo-
trapezoid-shaped, normal, consistent and complete, and
satisfyβj

1 < · · · < βj
Nj

for all 1 ≤ j ≤ n.

Remark 1. In the following, g(~x) will denote the control
or the decision function to be approximated onU and
f(~x) will be the function representing the BFLS. In what
follows, we shall also assume that PropertiesP1–P5 are
satisfied.

Let us now introduce the notation and definitions to
give compact forms to our formulae. Thus, set

U j
ij

=


[aj

1, b
j
1[ if ij = 1,

]aj
ij

, bj
ij

[ if 2 ≤ ij ≤ Nj − 1,

]aj
Nj

, bj
Nj

] if ij = Nj .

(19)

Let Ij
ij

be the function defined fromU j
ij

to INj ,
where INj is the set of subsets of{0, 1, . . . , Nj + 1}
such that

Ij
ij

(xj) =


{ij − 1, ij} if xj ∈]aj

ij
, bj

ij−1[,

{ij} if xj ∈ [bj
ij−1, a

j
ij+1],

{ij , ij + 1} if xj ∈]aj
ij+1, b

j
ij

[,
(20)

for all ij = 1, . . . , Nj and j = 1, . . . , n.

Lemma 1. Under the assumptions of Theorem 2, we have

Uj =
Nj⋃

ij=1

U j
ij

(21)

and
U =

⋃
(i1,...,in)∈I

U(i1,i2,...,in), (22)

where

U(i1,i2,...,in) = U1
i1 × U2

i2 × · · · × Un
in

. (23)

Lemma 2. Let IUj
be the function defined fromUj to

INj
such that

IUj (xj) = Ij
ij

(xj) if xj ∈ U j
ij

. (24)

ThenIUj is a well-defined function, and so is the function
IU defined fromU to IN1 × · · · × INn

by

IU (~x) = IU1(x1)× · · · × IUn
(xn). (25)

Theorem 3. (The basic approximation property)Under
the assumptions of Theorem 2 we have that for every~x ∈
U

|g(~x)− f(~x)|

=
∣∣∣g(~x)−

∑
(i1,i2,...,in)∈IU (~x)

B(i1,i2,...,in)(~x)y(i1,i2,...,in)

∣∣∣
=
∣∣∣g(~x)−

∑
i1∈IU1 (x1)

∑
i2∈IU2 (x2)

· · ·
∑

in∈IUn (xn)

( n∏
j=1

Bj
ij

(xj)
)
y(i1,i2,...,in)

∣∣∣
≤ max

(i1,i2,...,in)∈IU (~x)

{
|g(~x)− y(i1,i2,...,in)|

}
. (26)

Theorem 4. (The uniform approximation properties)Un-
der the assumptions of Theorem 2, if we write

ε(i1,i2,...,in) = sup
~x∈supp(β(i1,i2,...,in))

∣∣g(~x)− y(i1,i2,...,in)

∣∣
(27)

where {(i1, i2, . . . , in)} ∈ I, supp(β(i1,i2,...,in))
being the support of β(i1,i2,...,in) and ε =
max(i1,i2,...,in)∈I ε(i1,i2,...,in), then

‖g − f‖∞ ≤ ε. (28)

Theorem 5. (The uniform convergence property)
Let ~a(i1,i2,...,in) = (a1

i1
, a2

i2
, . . . , an

in
), ~b(i1,i2,...,in) =

(b1
i1

, b2
i2

, . . . , bn
in

) and

δ(i1,i2,...,in) =
∥∥~b(i1,i2,...,in) − ~a(i1,i2,...,in)

∥∥, (29)

where‖ · ‖ is any norm onRn, and

δ = max
(i1,i2,...,in)∈I

δ(i1,i2,...,in). (30)

For every (i1, i2, . . . , in) ∈ I, if

inf
~x∈supp β(i1,i2,...,in)

g(~x) ≤ y(i1,i2,...,in)

≤ sup
~x∈supp β(i1,i2,...,in)

g(~x), (31)

then
lim
δ→0

‖g − f‖∞ = 0, (32)

where

f(~x) =
∑

(i1,i2,...,in)∈I

B(i1,i2,...,in)(~x)y(i1,i2,...,in). (33)
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Theorem 6. (The universal approximation property)Let
g(~x) be a continuous function defined onU and let ε >
0 be a fixed number. Then there is a BFLS given by the
function f , such that

‖g − f‖∞ ≤ ε. (34)

5. Best Approximation Property

In this section, we shall deal with the essential definitions
needed for the study of the best approximation property
(Rudin, 1974; Yosida, 1974), and then we shall prove that
BFLSs possess this property.

Definition 13. Let A be a subset of(C(U), ‖·‖∞), where
U ⊂ Rn.

• We define the distance of an elementf ∈ C(U) to
A by

d(f,A) = inf
g∈A

‖f − g‖∞. (35)

• An elementf0 ∈ C(U) is said to be abest approxi-
mation from f to A if

d(f,A) = ‖f − f0‖∞. (36)

• A subsetA of C(U) is said to be anexistence set
if for every f ∈ C(U) there is an elementf0 ∈ A
such that‖f − f0‖∞ = d(f,A). In this case we say
that A has thebest approximation property.

• A subsetA of (C(U), ‖ · ‖∞) is aTchebycheff setif
for every f ∈ C(U) there is a unique elementf0 ∈
A such that‖f − f0‖∞ = d(f,A).

To study the best approximation property, we will
use the following characterizations, which can be found
in (Rudin, 1974).

Lemma 3. Let A be a subset of(C(U), ‖ · ‖∞). If A is
an existence set, then it is closed.

Lemma 4. Every closed, bounded subset of a finite di-
mensional linear subspace is compact.

Lemma 5. If A is a compact set of(C(U), ‖ · ‖∞), then
A is an existence set.

5.1. BFLSs Are Best Approximators with Respect
to ‖·‖∞∞∞

Poggio and Girosi (1990) proved that multilayer percep-
trons of the backpropagation type do not have the best ap-
proximation property. If we consider such a network with

m hidden units, then the functions that it can compute be-
long to the following set withσ being a sigmoid function:

σm =
{

f ∈ C(U) |

f(~x) =
m∑

i=1

ciσ(~x · · · ~wi + θi);

ci, θi ∈ R and ~wi ∈ Rn
}

. (37)

It was proved thatσm is not closed so it cannot be an ex-
istence set (Girosi and Poggio, 1990). On the other hand,
the same authors proved that RBF neural networks are
best approximators (Girosi and Poggio, 1990). The prin-
cipal question is as follows: Do BFLSs satisfy the prop-
erty of best approximation? The answer is positive and to
prove it, we need the following lemmas.

Lemma 6. Under the assumptions of Theorem 2, the set
BN of functions fromU to R such that

f(~x) =
∑

(i1,i2,...,in)∈I

B(i1,i2,...,in)(~x)y(i1,i2,...,in) (38)

wherey(i1,i2,...,in) ∈ R is an N -dimensional linear sub-
space ofC(U), whereN =

∏n
j=1 Nj .

Lemma 7. Let f be an element ofC(U) \ BN . Then the
set

A =
{
g ∈ BN | ‖f − g‖∞ ≤ ‖f‖∞

}
(39)

is a compact set of(C(U), ‖ · ‖∞).
Now we will outline the main result of this section.

Theorem 7.The setBN of BFLSs satisfying the assump-
tions of Theorem 2 has the best approximation property.

In the next section, we will see that if we are looking
for the best approximation in a Hilbert space, then it is
unique.

5.2. Existence and Unicity of the Best
Approximation in L2(U)

L2(U) is the space of all functions defined fromU to R,
which satisfy

‖f‖2 =
(∫

U

|f(t)|2 dt
) 1

2
< +∞, (40)

endowed with the scalar product

〈f |g〉 =
∫

U

f(t)g(t) dt. (41)

L2(U) is a Hilbert space.
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Theorem 8.The setBN of BFLSs satisfying the assump-
tions of Theorem 2 is a Tchebycheff set with to the norm
‖·‖2, i.e. for everyf ∈ L2(U) there is a uniquef0 ∈ BN

such that

‖f − f0‖2 = inf
g∈BN

‖f − g‖2. (42)

6. Interpolation Property

In the previous sections we have shown that for every
continuous function defined on a compact set ofRn, we
can construct a BFLS approximating it arbitrarily well.
We have also proved that there is a best approximator to
any continuous function in the setBN of BFLSs with
N fuzzy rules. In this section, we consider a contin-
uous function f defined on U and taking the values
y1, y2, . . . , yN at N distinct points x1, x2, . . . , xN of
U . We are interested in finding a BFLS modelled byg
that also satisfiesg(xi) = yi for every i ∈ {1, 2, . . . , N}.

Case 1: n=1

Because thexi’s are all distinct, we can arrange them so
that x1 < · · · < xn. Let

di = min
(xi+1 − xi

3
,
xi − xi−1

3

)
, (43)

ai = xi − di and bi = xi + di. Consider the function

βi(x) =


4

(bi − ai)2
(x− ai)(bi − x) if x ∈ [ai, bi],

0 otherwise.
(44)

Then βi(xi) = βi(ai+bi

2 ) = 1 and βi(xj) = 0 for all
j 6= i.

The function

g(x) =
N∑

i=1

yi
βi(x)

N∑
j=1

βj(x)
(45)

satisfiesg(xi) = yi for all i = 1, 2, . . . , N.

Case 2: n≥2

Let ~xj = (xj
1, . . . , x

j
n), 1 ≤ j ≤ N be N distinct

vectors ofRn. For eachxj
i define the one-dimensional

Beta functions(βj
i ) satisfying the following hypothesis:

• If xj
i = xk

i , thenβj
i = βk

i andβj
i (x

j
i ) = βj

i (x
k
i ) = 1.

• If xj
i 6= xk

i , then βj
i (x

k
i ) = 0.

Let

βj(~x) =
n∏

i=1

βj
i (xi) (46)

for every ~x = (x1, . . . , xn) ∈ Rn. Then βj(~xj) = 1
and βj(~xk) = 0 for every k 6= j. Because we know
that ~xk 6= ~xj , we can find i0 ∈ {1, . . . , n} such that
xk

i0
6= xj

i0
and βj

i0
(xk

i0
) = 0. In consequence,βj(~xk) =∏n

i=1 βj
i (x

k
i ) = 0.

The BFLS modelled by

g(~x) =
N∑

i=1

yi
βi(~x)

N∑
j=1

βj(~x)
(47)

satisfiesg(xi) = yi for all i ∈ {1, . . . , N}. This leads to
the following result:

Theorem 9. (BFLSs possess the interpolation property)
Let f be a continuous function defined onU , (U =∏n

j=1[Aj , Dj ] is a compact set ofRn) such thatf(xi) =
yi for all i ∈ {1, 2, . . . , N} where thexi’s are N dis-
tinct points of U and yi ∈ R. Then there is a BFLS
g ∈ BN such that

g(xi) = f(xi) for all i ∈ {1, 2, . . . , N}. (48)

7. Conclusion

The study of the approximation properties of Beta fuzzy
logic systems (BFLS) is an indispensable theoretic foun-
dation for the users of such systems. In this paper we have
proved that BFLSs have the following properties:

1. Basic approximation property. It gives an idea of the
approximation mechanism by BFLSs.

2. Uniform approximation property. This property en-
ables us to check if the designed BFLS has the de-
sired approximation accuracy and suggests an idea
to improve the approximation accuracy of our BFLS.

3. Uniform convergence property. It shows that we can
improve the approximation accuracy of BFLSs by di-
viding the input space into finer fuzzy regions, which
can be achieved by increasing the number of mem-
bership functions of the input variables.

4. Universal approximation property. From this property
we conclude that for every functiong which is con-
tinuous on a compact set, there is an explicitly de-
signed BFLS which approximatesg with an arbi-
trary given degree of accuracy.
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5. Best approximation property. This property is of
paramount interest, because in practice we fix the
number of rulesN and we look for a best approxi-
mator to the control function in the set of BFLSs with
N fuzzy rules.

6. Interpolation property. It ensures that we can interpo-
late any continuous functiong defined on a compact
set with a BFLS. The number of fuzzy rules is equal
to the number of points at which the values ofg are
known.

Our future work will concern the development of efficient
learning algorithms for BFLS.
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Appendix

In this appendix we give the proofs of all lemmas, proposi-
tions and theorems except Theorem 9, for which the proof
is included in the paper.

Proof of Proposition 1.We have

max
~x∈U

A(i1,i2,...,in)(~x) =
n∏

j=1

(
max
xj∈Uj

Aj
ij

(xj)
)
. (49)

Thus fuzzy sets(A(i1,i2,...,in))(i1,i2,...,in)∈I are normal if

and only if Aj
ij

are also normal for allij = 1, 2, . . . , Nj

and j = 1, 2, . . . , n. From the equation

A(i1,i2,...,in)(~x) =
n∏

j=1

Aj
ij

(xj) (50)

we haveA(i1,i2,...,in)(~x) > 0 if and only if Aj
ij

(xj) > 0
for every j ∈ {1, 2, . . . , n}.

We can easily see that the completeness of the fuzzy
sets (A(i1,i2,...,in))(i1,i2,...,in)∈I is equivalent to that of

Aj
1, A

j
2, . . . , A

j
Nj

for every j ∈ {1, 2, . . . , n}.
Let us show thatA(i1,i2,...,in), (i1, i2, . . . , in) ∈ I

are consistent inU if and only if Aj
1, A

j
2, . . . , A

j
Nj

are
consistent inUj for every j ∈ {1, 2, . . . , n}.

First suppose thatAj
1, A

j
2, . . . , A

j
Nj

are consistent
in Uj for every j ∈ {1, 2, . . . , n}. Let ~x0 =
(x0

1, x
0
2, . . . , x

0
n) be a fixed element ofU such that

A(i1,i2,...,in)(~x0) = 1. Then Aj
ij

(x0
j ) = 1 for every j ∈

{1, 2, . . . , n}. From the consistency ofAj
1, A

j
2, . . . , A

j
Nj

;

j ∈ {1, 2, . . . , n} we deduce thatAj
kj

(x0
j ) = 0 for all

kj 6= ij , j ∈ {1, 2, . . . , n}. In consequence,

A(k1,k2,...,kn)(~x0) =
n∏

j=1

Aj
kj

(x0
j ) = 0 (51)

for every (k1, k2, . . . , kn) 6= (i1, i2, . . . , in).
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Conversely, suppose thatAj
i0

(x0
j ) = 1 for a fixed

j. We know that (A(i1,i2,...,in))(i1,i2,...,in)∈I are nor-

mal if and only if so areAj
1, A

j
2, . . . , A

j
Nj

for all j ∈
{1, 2, . . . , n}. Thus we can findx0

k such thatAk
1(x0

k) =
1 for k = 1, . . . , j − 1, j + 1, . . . , n.

Let ~x0 = (x0
1, . . . , x

0
j , . . . , x

0
n). Then we

have A(1,...,1,i0,1...,1)(~x0) = 1. We deduce that
A(1,...,1,ij ,1...,1)(~x0) = 0 for all ij 6= i0 and, conse-

quently, Aj
ij

(x0
j ) = 0 for all ij 6= i0.

Proof of Proposition 2.We can easily verify that

∑
(i1,i2,...,in)∈I

n∏
j=1

βj
ij

(xj) =
n∏

j=1

Nj∑
ij=1

βj
ij

(xj). (52)

Then

B(i1,i2,...,in)(~x) =

n∏
j=1

βj
ij

(xj)∑
(i1,i2,...,in)∈I

β(i1,i2,...,in)(~x)

=

n∏
j=1

βj
ij

(xj)

n∏
j=1

( Nj∑
ij=1

βj
ij

(xj)
)

=
n∏

j=1

(
βj

ij
(xj)

Nj∑
ij=1

βij
(xj)

)

=
n∏

j=1

Bij (xj). (53)

Proof of Theorem 1.[P1 + P2]: βi is pseudo-trapezoid-
shaped and normal. Letx ∈]ai, bi[. We haveβ′i(x) =
0 ⇐⇒ x = ci = pibi+qiai

pi+qi
and ci = pibi+qiai

pi+qi
∈]ai, bi[.

Moreover,βi is monotonically increasing on]ai, ci[ and
monotonically decreasing on]ci, bi[.

We know that if βi(pibi+qiai

pi+qi
) = 1, then

βi is pseudo-trapezoid-shaped, normal, and
βi(x; pi, qi, ai, bi) = PT (x; ai, ci, ci, bi)

[P3]: Consistency: βi(x) = 1 ⇐⇒ x = ci and
bi−1 ≤ ci ≤ ai+1, so that ci ∈ supp(βi) and ci /∈
supp(βj) for every i 6= j. In consequence,βj(x) = 0
for every i 6= j.

[P4]: Completeness: Letx ∈ [A,D]. If x ∈ [A, b1[
then β1(x) > 0 and β2(b1) > 0 because we know that
a2 < b1. If x ∈]ai, bi[ then βi(x) > 0. If x ∈]aN , D]
then βN (x) > 0 and βN−1(aN ) > 0.

[P5]: M(βi) = {ci}, since we know thatci < ci+1,
so βi < βi+1.

Proof of Theorem 2.The proof of this theorem is evident
while using Proposition 1 and Theorem 1.

Proof of Lemma 1.Let us prove thatUj ⊂ ∪Nj

ij=1U
j
ij

. The
other inclusion is trivially satisfied.

Let xj be an element ofUj . Since the fuzzy
sets βj

1, β
j
2, . . . , β

j
Nj

are complete inUj , we can find

ij ∈ {1, . . . , Nj} such that βj
ij

(xj) > 0, so xj ∈
supp(βj

ij
) = U j

ij
. In consequence,Uj = ∪Nj

ij=1U
j
ij

.

We will now prove that U ⊂
∪(i1,...,in)∈IU(i1,i2,...,in). Let ~x = (x1, x2, . . . , xn) ∈
U = U1 × · · · × Un. Then xj ∈ Uj for all
j ∈ {1, . . . , n}. By the above result, there exists
ij such that xj ∈ U j

ij
, i.e. ~x ∈ U(i1,i2,...,in). In

consequence,U ⊂ ∪(i1,...,in)∈IU(i1,i2,...,in).

Proof of Lemma 2.If xj ∈ U j
ij

and xj /∈ U j
k for all

ij 6= k, thenIUj (xj) is well defined. Ifxj ∈ U j
ij
∩U j

k for

somek 6= ij then, due to the inequalitiesaj
ij

< bj
ij−1 <

aj
ij+1 < bj

ij
, we havek = ij +1 or k = ij−1. Hence the

value of Ij
k(xj) is the same as the value ofIj

ij
(xj) in the

two cases. In consequence,IU is a well-defined function.

Proof of Theorem 3.We have

|g(~x)− f(~x)|

=
∣∣∣g(~x)−

∑
(i1,i2,...,in)∈I

B(i1,i2,...,in)(~x)y(i1,i2,...,in)

∣∣∣
=
∣∣∣g(~x)−

N1∑
i1=1

· · ·
Nn∑

in=1

B(i1,i2,...,in)(~x)y(i1,i2,...,in)

∣∣∣
=
∣∣∣g(~x)

−
N1∑

i1=1

· · ·
Nn∑

in=1

B1
i1(x1) · · ·Bn

in
(xn)y(i1,i2,···,in)

∣∣∣, (54)

whereBj
1(xj), B

j
2(xj), . . . , B

j
Nj

(xj) are given by (17).

For every ~x = (x1, x2, . . . , xn) ∈ U there is i1
such thatx1 ∈ Ui1 , so we have one of the following three
cases:

1. x111∈[aiii111 , biii111−−−111]

We haveB1
i1

(x1) + B1
i1−1(x1) = 1 and B1

j1
(x1) =

0 for every j1 6= i1 and j1 6= i1 − 1, j1 ∈
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{1, 2, . . . , n1}, so

N1∑
i1=1

· · ·
Nn∑

in=1

B1
i1(x1) · · ·Bn

in
(xn)

=
∑

j1∈{i1−1,i1}

N2∑
i2=1

· · ·
Nn∑

in=1

B1
i1(x1) · · ·Bn

in
(xn). (55)

2. x111 ∈ [bi111−1,aiii111+++111].

In this caseB1
i1

(x1) = 1 and B1
j1

(x1) = 1 for every
j1 6= i1, so

N1∑
i1=1

N2∑
i2=1

· · ·
Nn∑

in=1

B1
i1(x1) · · ·Bn

in
(xn)

=
N2∑

i2=1

· · ·
Nn∑

in=1

B1
i1(x1) · · ·Bn

in
(xn). (56)

3. x111∈[aiii111+++111, biii111 ].

For B1
i1

(x1) + B1
i1+1(x1) = 1 and B1

j1
(x1) = 0 for

every j1 6= i1 and j1 6= i1 − 1, j1 ∈ {1, 2, . . . , n1},
we have

N1∑
i1=1

· · ·
Nn∑

in=1

B1
i1(x1) · · ·Bn

in
(xn)

=
∑

j1∈{i1,i1+1}1

N2∑
i2=1

· · ·
Nn∑

in=1

Bi1(x1) · · ·Bin
(xn). (57)

Accordingly,

N1∑
i1=1

· · ·
Nn∑

in=1

B1
i1(x1) · · ·Bn

in
(xn)

=
∑

j1∈IU1 (x1)

N2∑
i2=1

· · ·
Nn∑

in=1

B1
j1(x1)B2

i2(x2)· · ·Bn
in

(xn). (58)

Using the same method, we can also prove that

N2∑
i2=1

· · ·
Nn∑

in=1

B2
i2(x2) · · ·Bn

in
(xn)

=
∑

j2∈IU2 (x2)

N3∑
i3=1

· · ·
Nn∑

in=1

B2
j2(x2) · · ·Bn

in
(xn). (59)

All these equalities give

|g(~x)− f(~x)|

=
∣∣∣g(~x)−

N1∑
i1=1

· · ·
Nn∑

in=1

B(i1,...,in)(~x)y(i1,...,in)

∣∣∣
=
∣∣∣g(~x)−

∑
i1∈IU1(x1)

· · ·
∑

in∈IUn

( n∏
j=1

)
Bj

ij
(xj)y(i1,...,in)

∣∣∣
=
∣∣∣ ∑

i1∈IU1(x1)

· · ·
∑

in∈IUn (xn)

( n∏
j=1

Bj
ij

(xj)
)

×
(
g(x1, x2, . . . , xn)− y(i1,...,in)

)∣∣∣
=
∣∣∣ ∑
(i1,i2,...,in)∈IU(~x)

B(i1,i2,...,in)(~x)
[
g(x1, x2, . . . , xn)

− y(i1,...,in)

]∣∣∣
≤ max

{
|g(~x)− y(i1,i2,...,in)| | (i1, i2, . . . , in)

∈ IU (~x)
}
. (60)

Proof of Theorem 4.We know thatsuppβ(i1,i2,...,in)
⊂ U ,

which yields

sup
~x∈U

|g(~x)− f(~x)|

= sup
~x∈U

∣∣∣g(~x)−
∑

(i1,i2,...,in)∈IU(~x)

B(i1,i2,...,in)(~x)y(i1,...,in)

∣∣∣
≥ sup

suppβ(i1,i2,...,in)

∣∣∣g(~x)

−
∑

(i1,i2,...,in)∈IU(~x)

B(i1,i2,...,in)(~x)y(i1,...,in)

∣∣∣
= ε(i1,i2,...,in). (61)

Thus sup~x∈U |g(~x)− f(~x)| ≥ ε.

On the other hand, we know that for every~x ∈
U there is (i1, i2, . . . , in) ∈ I such that ~x ∈
suppβ(i1,i2,...,in)

. This implies

|g(~x)− f(~x)|

=
∣∣∣g(~x)−

∑
(i1,i2,...,in)∈IU (~x)

B(i1,i2,...,in)(~x)y(i1,...,in)

∣∣∣
≤ ε(i1,...,in) ≤ ε. (62)
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Proof of Theorem 5.All the norms onRn are equivalent,
so we can use the infinity norm‖ · ‖∞ i.e. the norm given
by ‖~x‖∞ = max{|xi| | i = 1, 2, . . . , n} for every ~x ∈
Rn.

Let δ(i1,...,in) = ‖~b(i1,...,in)−~a(i1,...,in)‖∞ and δ =
max{δ(i1,...,in) | (i1, . . . , in) ∈ I}. Hereg is continuous
on the compact setU , so it is uniformly continuous. For
every ε > 0 there isδ(ε) > 0 such that|g(~x)−g(~x′)| <
ε for every ~x and ~x′ satisfying‖~x− ~x′‖∞ < δ(ε).

Let m(i1,i2,...,in) = inf~x∈suppβ(i1,i2,...,in)
g(~x) and

M(i1,i2,...,in) = sup~x∈suppβ(i1,i2,...,in)
g(~x). We know

that g is continuous on suppβ(i1,i2,...,in)
. Hence

we can find ~xm = (xm
1 , xm

2 , . . . , xm
n ) and ~xM =

(xM
1 , xM

2 , . . . , xM
n ) ∈ suppβ(i1,i2,...in)

such that
g(~xm) = m(i1,i2,...,in) and g(~xM ) = M(i1,i2,...,in).

On the other hand,suppβ(i1,i2,...in)
= [a1

i1
, b1

i1
] ×

[a2
i2

, b2
i2

] × · · · × [an
in

, bn
in

], so xm
j , xM

j ∈ [aj
ij

, bj
ij

] for
every j = 1, 2, . . . , n. We have

‖~xm − ~xM‖∞ = max
1≤j≤n

{
|xm

j − xM
j |
}

≤ max
1≤j≤n

{
|bij

− aij
|
}

= ‖~b(i1,...,in) − ~a(i1,...,in)‖∞. (63)

Let ε > 0 be a fixed real number, and letδ < δ(ε).
We also know thatm(i1,i2,...,in) ≤ g(~x) ≤ M(i1,i2,...,in)

and m(i1,i2,...,in) ≤ y(i1,i2,...,in) ≤ M(i1,i2,...,in). Then
|g(~x) − y(i1,i2,...,in)| ≤ M(i1,i2,...,in) − m(i1,i2,...,in) for
every ~x ∈ suppβ(i1,i2,...,in)

.

From the uniform continuity of g we deduce
that ‖~xm − ~xM‖∞ ≤ δ < δ(ε) and |g(~x) −
y(i1,i2,...,in)| ≤ g(~xM ) − g(~xm) < ε for ev-
ery x ∈ suppβ(i1,i2,...,in)

. In other words,
supx∈suppβ(i1,i2,...,in)

|g(~x)− y(i1,i2,...,in)| ≤ ε.

From Theorem 4 we conclude that

sup
x∈U

|g(~x)− f(~x)| ≤ ε. (64)

Proof of Theorem 6.U = [A1, D1] × [A2, D2] × · · · ×
[An, Dn] is the universe of discourse. Letδj(N) =
(Dj −Aj)/(N − 1) and xij

(N) = Aj + (ij − 1)δj(N),
where ij ∈ {0, 1, . . . , N + 1}. Then Aj = x1j

(N) <
x2j (N) < · · · < xNj (N) = Dj .

We construct the following membership functions:

• β1j
(x, N) = β(x; p, p, x0j

, x2j
) restricted to

[Aj , Dj ],

• βij (x,N) = β(x; p, p, xij−1, xij+1) for every ij ∈
{2, . . . , N − 1},

• βNj
(x,N) = β(x; p, p, xNj−1, xNj+1) restricted to

[Aj , Dj ],

wherep is a strictly positive real number.

The consequent of each fuzzy rule is

y(i1,i2,...,in)(N) = g
(
xi1(N), xi2(N), . . . , xin(N)

)
.

(65)

Then m(i1,i2,...,in) ≤ y(i1,i2,...,in)(N) ≤ M(i1,i2,...,in),
where

m(i1,i2,...,in) = inf
~x∈supp(β(i1,i2,...,in))

g(~x), (66)

M(i1,i2,...,in) = sup
~x∈supp(β(i1,i2,...,in))

g(~x), (67)

β(i1,i2,...,in)(~x) =
n∏

j=1

βj
ij

(xj). (68)

Using Theorem 5, we deduce that

lim
N→∞

sup
x∈U

|g(~x)− fN (~x)| = 0, (69)

where

fN (x) =
∑

(i1,i2,...,in)∈I

B(i1,i2,...,in)(x,N)y(i1,i2,...,in)(N),

(70)

B(i1,i2,...,in)(x,N) =
β(i1,i2,...,in)(x,N)∑

(i1,i2,...,in)∈I

β(i1,i2,...,in)(x,N)
.

(71)

Proof of Lemma 3.It is clear thatBN is a sublinear space
of C(U). (B(i1,i2,...,in))(i1,i2,...,in)∈I is a generating fam-
ily of BN . To prove thatdimBN = N , we will only
prove that (B(i1,i2,...,in))(i1,i2,...,in)∈I are linearly inde-
pendent.

Suppose that∑
(i1,i2,...,in)∈I

B(i1,i2,...,in)(~x)y(i1,i2,...,in) = 0. (72)

For every~x ∈ U let us show thaty(i1,i2,...,in) = 0.
Let (k1, k2, . . . , kn) be a fixed index inI.

From Proposition 2 we have

B(k1,k2,...,kn)(ck1 , ck2 , . . . , ckn
) =

n∏
j=1

Bj
kj

(ckj
), (73)

where

Bj
kj

(ckj
) =

βj
kj

(ckj
)

Nj∑
ij=1

βj
ij

(cij
)

. (74)
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ThenB(k1,k2,...,kn)(ck1 , ck2 , . . . , ckn
) 6= 0 because

βj
kj

(ckj ) = 1 and B(i1,i2,...,in)(ck1 , ck2 , . . . , ckn) =
0 for every (i1, i2, . . . , in) 6= (k1, k2, . . . , kn). So
y(k1,k2,...,kn) = 0.

Proof of Lemma 4. It is clear that A is closed and
bounded. SinceBN is finite dimensional,A is compact.

Proof of Theorem 7.The proof consists in showing that
BN is an existence set. Consider a fixed elementf0 of
C(U). Then the closest point tof0 in BN is in the set
{g ∈ BN | ‖g − f0‖∞ ≤ ‖f − f0‖∞}, where f is an
arbitrary fixed element ofC(U), which is a compact set
by Lemma 4, and the result follows.

Proof of Theorem 8.Let d = infg∈BN
‖f − g‖2. If d =

0 then f ∈ BN . In fact, BN is a linear subspace of a
finite dimensionN , so it is closed and the result is then
proved. If d > 0, then let Bn be the closed ball with
centref and radiusd + 1/n, wheren is a non-negative
integer. The setPn = Bn ∩ BN is convex and closed,
because it is the intersection of two sets which are convex
and closed (BN is finite dimensional, so it is convex and
closed). Moreover,Pn is non-empty. The elementf0

looked for is in the setP = ∩n∈N?Pn.

We will show that P is non-empty and reduced to
one point. Leta and b be two elements ofPn and m =
(a + b)/2. Then m is also an element ofPn because it
is convex.

The parallelogram equality gives

2‖f −m‖2
2 +‖b−a‖2

2 = 2
(
‖b−f‖2

2 +‖f −a‖2
2

)
. (75)

The three quantities‖f −m‖2
2, ‖f − a‖2

2 and ‖f − b‖2
2

are betweend2 and d2 + 1/n2, so

‖a− b‖2
2 ≤

4
n

(
1
n

+ 2d). (76)

We then conclude that the diameter ofPn tends to
0 as n → ∞. Then (Pn)n is a sequence of closed em-
bedded, non-empty sets whose diameters tend to 0. More-
over, it is in BN , which is complete, so their intersection
is non-empty and reduced to a unique pointf0.
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