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Many researches have been interested in the approximation properties of Fuzzy Logic Systems (FLS), which, like neural
networks, can be seen as approximation schemes. Almost all of them tackled the Mamdani fuzzy model, which was shown to
have many interesting approximation features. However, only in few cases the Sugeno fuzzy model was considered. In this
paper, we are interested in the zero-order Multi-Input—Multi-Output (MIMO) Sugeno fuzzy model with Beta membership
functions. This leads to Beta Fuzzy Logic Systems (BFLS). We show that BFLSs are universal approximators. We also
prove that they possess the best approximation property and the interpolation characteristic.
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1. Introduction for the former and crisp values for the latter. Defuzzifica-
tion is defined as the step which produces a crisp output
Fuzzy logic systems (FLSs) were introduced in order to for our FLS from the fuzzy set that is the output of the
approximate a decision or a control function with a given inference block. As was mentioned in (Mendel, 1995),
accuracy (Bouchon-Meunier, 1995; Kosko, 1993; Mam- many defuzzifiers were proposed in the literature. How-
dani and Assilian, 1975; Mendel, 1995; Sugeno and Kang, ever, there is no scientific base for any of them (i.e. no
1988; Teranet al, 1992; Zadeh, 1965). In fact, when the  defuzzifier was derived from a first principle such as max-
system to be controlled is too complex, it is difficult and imization of fuzzy information or entropy). Consequently,
often impossible to model its behaviour using mathemat- defuzzification is an art rather than a science. Because
ical equations (Jang, 1993; Jang and Sun, 1995; Nguyenye are interested in engineering applications of FL, one
and Kreinovich, 1992; Nguyeat al, 1996; Takagi and  criterion for the choice of a defuzzifier is computational
Sugeno, 1985; Yeat al, 1995). In this case, itis easierto  simplicity. For a Sugeno fuzzy model, the consequence of
describe system behaviour via fuzzy linguistic fuzzy rules. each fuzzy rule is a constant, and defuzzification in such a
With these fuzzy rules and fuzzy logic concepts, one can model is made using the centre-of-gravity method, i.e. the
construct a functionf : U € R — V C RP that  gravity centre of all singletons is calculated.
models the system behaviour so it is natural to relate the
construction of FLSs to the theory of function approxima-

tion (Kosko, 1992; Laukonen and Passino, 1994; Lewis
al., 1995). e the maximum defuzzifier,

As we all know, FLSs comprise four main compo- @ the mean-of-maxima defuzzifier,
nents, which are, the fuzzifier, the fuzzy rule base, the 4 the centroid defuzzifier,
fuzzy inference engine and the defuzzifier. The main dif-
ference between the Mamdani and Sugeno fuzzy systems
lies in the consequents of fuzzy rules, which are fuzzy sets e the modified height defuzzifier.

Note that the main candidates for defuzzifiers are the
following:

¢ the height defuzzifier, and
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BFLSs satisfy this property. Finally, in Section 6 we show

However, with this big choice of defuzzifiers, we see that the BFLSs possess the interpolation property.

that there are many options of Mamdani fuzzy logic sys-
tems to choose from. This demonstrates the richness of

Mamdani FLSs. 2. Beta Fuzzy Logic Systems
In this paper, we consider the zero-order Sugeno ]
model, which can be seen as a Mamdani model with a sin-2-1- Mathematical Model of an FLS

gleton consequence. Many researchers proved that Mam Multi-Input-Single-Output (MISO) FLS can be seen as
dani fuzzy systems are universal approximators (CaStroafunctionf .U CR" — V C R, whereU is the input

and Delgado, 1996; Dickerson and Kosko, 1996; Gorrini space,V is the output space, and > 1. As was shown

et al, 1995; Hartanket al,, 1996; Wang, 1992; Wang and b
§ _ i " by Lee (1990), a MIMO fuzzy system can always be sep-
Mendel, 1992; Wangt al, 1997; Zeng and Singh, 1994; arated into a group of MISO fuzzy ones, so it is sufficient

1995), but few of them were interested in the Sugeno to study MISO fuzzy systems and the results concerning
fuzzy model. Recently, Ying (1998) proved that the MIMO ones can be easily deduced
Sugeno fuzzy model with a linear rule consequence is a '

universal approximator. In this paper, we are interested in
the Sugeno fuzzy model of the zeroth order. The advan-
tage of such a model is that it is simpler than the one con-
sidered by Ying (1998): the consequence of each fuzzy UcCR" — VCR,
rule is a constant and there is no need for a defuzzifica-

In this paper, we adopt the zero-order Sugeno fuzzy
model with multiplication as @-norm. Then a fuzzy sys-
tem is given by

tion step to construct such a system. Another important n

point which affects the behaviour of FLSs is the type of ai ()

membership functions for input variables. Different types Z i=1 ”jn Yirsimin)s

of membership functions were proposed (Alimi, 1997b), AR > T pa (z1) e

such as triangular functions (Pedrycz, 1994), normal peak (k1,kz,kp)ell=1

functions (Wanget al, 1997), pseudo trapezoid functions (1)

(Zeng and Singh, 1994; 1995), or functions using trans- where

lations and dilations of one fixed function (Maat al, o ¥'= (x1,22,...,%,) is the input variable,

1997), etc. o Iisthe set{(iy,iy,...,i,) |1 <i; < Njj1<j<
In this paper, we consider MIMO Beta Fuzzy Logic n}.

Systems (BFLS) (Alimi, 2000; Alimet al., 2000), which e N =[], N, is the number of fuzzy rules of the

are FLSs in which Beta functions are used as member-  ¢orm =~

ship functions of the input variables. BFLSs were actively ~

studied in the few last years (Alimi, 1997a; 1997c¢; 1997d,; Ry inyin) 1T (TiSA) then(y = (i, ia,.in))s

1998a; 1998c¢; 2000; 2002; Alineit al, 2000; Hassinet
al., 2000; Masmoudet al., 2000) and they showed robust

. X X - ® Y, is,...in) @re constants i’ which represent the
and interesting properties compared with other FLSs (Al- Plplgiai

a i ) consequences of the fuzzy rulé;, ;, . ;.), and
imi, 1998b). The results of this paper are extensions of our . L oo
previous work on SISO FLSs to the MIMO case (Alimi,  ® Ai = (4;,, 47,,..., A7 ) are linguistic terms char-
2000; Alimi et al, 2000). acterized by their membership funct|op§v;_ (x;).
The organization of this paper is as follows: in the From (1) we see that FLSs can be considered as lin-
second section, we introduce Beta fuzzy sets. In Section 3,ear combinations of the functions
we deal with the property of universal approximation and n
give the essential definitions and properties needed for the L B (z5)
study of this prope_rty. Mu!ti-lnput-MuIti-Output (MIMO) B, ig,...in) (T) = j=1 Jn o
BF_LSS are shown in Section 4 to have the following prop- 3 I1 o (z7)
erties: (k1,k2,....kn )€ 1=1 !
1. basic approximation, so we can introduce the following definition:
2. uniform roximation . : '
u ) orm approximation, Definition 1. Fuzzy Basis Functiong-BFs) are defined
3. uniform convergence, and by
4. universal approximation.

. A ¢
The best approximation property that seems more By is.....in) (@) = 5 Cavipin) , (3)

L . i . 4 T
practical is introduced in Section 5. We will prove that (khk%___7kn)ell Atk kot ()
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where (i1, 2, ... ,1,) € I, and

l’(‘A(il,iQ,_”,in)(f) = HMAZ{,(‘%J‘)’ (4)
=1’

T= (xlvxZ,"'7xn)'

With the use of this notation, the output of an FLS is
given by

f(@) =

>

(41,82, sin ) ET

B(il,iQ,...,in)(f)y(il,z‘g,.“,z'n)~ %)

2.2. Beta Functions

Beta functions (Johnson, 1970) were proposed as mem-

bership functions of the input variables (Alimi, 1997e;
1998b; 2000; 2002; Alimet al, 2000). This subsection
is devoted to the introduction of Beta functions and their
main properties.

Definition 2. (Beta functions in the one-dimensional case
Considera, b € R satisfyinga < b, and letp,q > 0. In
the one-dimensional case, a Beta function is given by

T —a\P/b—x\9
if
B(z) = (c—a) (b—c) itz €a, b (6)
0 otherwise
where .
o= P ra @)
p+q

We can see that a Beta function depends on four pa-
rameters, which gives it a great flexibility, permitting to

. . 1
reproduce most common shapes of membership functions

(see Fig. 1). In the remainder of this paper, we shall write

B(x) = B(x;p,q,a,b). (8)

Any Beta functiong(z) is characterized by the fol-
lowing properties:
1. B(z) is continuous orR.
2. B(a) = B(b) =0, c €]a,b] and G(c) = 1.
3. For all z €]a, b], we get

_ [pb+qa—(p+q)x

/
4. We have the following relationship between q, a,
b, and ¢:
p_c74a (10)
q b—c¢c
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Fig. 1. Examples of Beta functions in one dimension.

Definition 3. (Beta functions in the multidimensional
cas§ In the multidimensional case, a Beta function is
given by

B@) =< i bl (11)
0 otherwise
where & = (z1,29,...,2,) and pBi(z;) =
Bi(x; piyqiyai,b;) is a one-dimensional Beta func-

tion.
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Fig. 2. Bivariate Beta function.

Definition 4. A Beta Fuzzy Logic Systesian FLS given
by (1) where the Beta functions are chosen as membership
functions of the input variables.
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3. Universal Approximation

Let U be abounded set &™ and (C(U), || - ||«) bethe
set of all functions fromU to R, which are continuous

While h = 1, instead of PT(z;a,b,c,d, 1), we
shall write PT(x;a,b,c,d). In this casePT is said to
be a normal pseudo-trapezoid-shaped function. Figure 3
shows three examples of pseudo-trapezoid-shaped func-

with respect to the uniform norm (i.e. the norm given by tions, which are a triangular function, a trapezoid function

[flloc = sup ey | f ()] forevery f in C(U)).

Definition 5. A subsetA of C(U) has theuniversal ap-
proximation propertywith respect to the nornj - ||, if
for every e > 0 and for everyf in C(U) there exists
g in A such that||f — g]lc < €. In other words, A is
dense in(C(U), | - |loo)-

Recently, Alimi (1997e; 1998b) proved thatif is a
compact set ofR™, then the family of functions front/
to R such as

N
F@) =Y fi(@)B8:(F) (12)
i=1
is dense in(C(U),| - ||«), i.e. for every continuous

function g on a compact set there exists a functign
given by (12) that approximateg arbitrarily well, where
N is an arbitrary integer, thg;’s are polynomials in
r1,Zo,...,2T, andthes;’s are N multidimensional beta

and a Beta function.

1

0.9 q

0.8 q

0.7 q

0.6 q

0.5 q

0.4 q

0.3 q

0.2 q

01 q

0 I I I
-1 0 1 2 3 4 5

Fig. 3. Three examples of pseudo-trapezoid-shaped functions.

functions. The proof, based on the Stone-Weierstrass theDefinition 7. Let A be a fuzzy set defined oti C R™.
orem (Stone, 1937; 1948), consists in showing that this A normal subsebf A is the set

family is a non-empty subalgebra @f(U') which sepa-
rates points and contains the identity functiftz) = 1.

However, this result is not always useful, because in prac-
tice we need to design an FLS explicitly, i.e. to determine
the number of fuzzy rules, to know the membership func-

M(A)={Z| 7 e UandA(Z) = 1}. (14)

Definition 8. A fuzzy set A defined on the universe of
discourseU, is said to benormalif 0 < A(z) < 1 for

tions of the input variables and to fix the consequence of V€Y % € U.

each fuzzy rule, etc.

Definition 9. (The order between normal fuzzy Jdist

In this paper, we propose a constructive approach to 4 and B be two normal fuzzy sets defined di C R.
the design of BFLSs, and we need to recall some defi-we write A > B if and only if M(A) > M(B). Recall
nitions and properties that can be found in (Glorennee, that M(A) > M(B) <= Vx € M(A), Yy € M(B) :

1996; Zeng and Singh, 1994; 1995).

Definition 6. Let U be a bounded interval oR. A
pseudo-trapezoid-shaped functid?l'(z; a, b, c,d, h) is
a continuous function o/ given by

I(z) if z€la,b]
h if xe€l[b,
PT(z;a,b,¢,d, h) = (13)
D(z) if = €]c,d],
0 if zeU\[a,d],

where a, b, ¢ and d are points ofU such thata < b <

¢ <d, a < d andh is a positive real numberl is a
strictly increasing function otfa, d[, which is greater than
or equal to zero, and) is a strictly decreasing function
on |c, d], which is also greater than or equal to zero.

T > .
Figure 4 shows an example of two triangular func-
tions A and B satisfying A < B.

Definition 10. A function f defined on a subsel/ =
H;;l U; of R™ is said to be aseudo-trapezoid-shaped
productfunction if f(Z) = H?:l PT}(x;), where each
PT; is a pseudo-trapezoid-shaped function defined on
Uj.

Definition 11. Fuzzy sets(4;)1<i<n are said to form a
complete partitiorof U if for every ¥ € U there exists
i €{1,...,N} such thatA4;(Z) > 0.

Definition 12. Fuzzy sets(4;)1<;<n are said to beon-
sistentin U if the following condition is satisfied: If
Ai(Zo) = 1 for &y € U, then A;(Z,) = 0 for every

i # .
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Fig. 4. Two fuzzy setsA and B such thatA < B.

4. Approximation Properties of MIMO
BFLSs

We suppose that the universe of discoursé/is= U; x

Uz x --- x U, where eaclU; is a compact interval oR.
Multi-input—multi-output Beta fuzzy logic systems have
the following approximation properties (for proofs, see
Appendix):

Proposition 1. Let [A¢, 4y, i) (61 ,ia,....in)er D€ fUZZY
sets defined o/ = [[;_, U;. Suppose that their mem-
bership functions are given by

Ay ignnin) (&) = ] AL (), (15)
j=1

which are pseudo-trapezoid-shaped product functions.

Then the functiong A, i,.....i.)) (61 ,iz,....in)el @r€ NOI-
mal, consistent and complete & if and only if A7,
Al ,Aj\,j arein U; foreveryj € {1,2,...,n}.

Proposition 2. Let (B, i,.....in)) (61,is,....in)er D€ fUZZY
basis functions given by

B(iria,.... in) (Z)

Blkr ko) ()
(k1,k2,....kn)€EI

Biy ig,...rin) (T) =

4 (16)
Then B, i,,..i,)(%) = [1j_, B, (z;), where
. B (x;)
B (2)) = 5" (17)
]
Z_:l ﬂij (z;)
ij = 1,...,Nj andj:1,2,...,n.

& o

Theorem 1. Let U = [A, D] be the universe of dis-
course, and let3;(x; pi, ¢i, a;, bi)]1<i<n be a family of
Beta functions such thatl = ¢y, ¢; < a;41 < b; < ¢4,
for everyi € {1,...,N — 1} and D = cyn, where
¢i = (pibi + qia;)/(pi + ¢;). Then this family satisfies
the following conditions:

e P : (8;)1<i<n are pseudo-trapezoid-shaped,

e P : (Bi)i<i<n are normal,

e P3: (83;)1<i<n areconsistentin the universe of dis-
courseU,

e P,: (Bi)1<i<n are complete,
o P5: (1 << - <PBN.

Figure 5 shows a Beta function family satisfying
PropertiesP,—Ps.
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Fig. 5. Beta function family satisfying the
conditions of Theorem 1.

Theorem 2.Let U = [A1, D1] x [Ag, Da] - - - X [Ay, Dy]
and [B(;, i,....imy]1<i,<N,;1<j<n be a Beta multidimen-
sional function family such that

n

Bl ig,.nyin) (T) = H 5{7 (@),

j=1

(18)

where ﬁfj (z;) = ﬁ(:cj;p{j , q{j,a{j , bgj), and each family
(ﬂgj)lgijgNj satisfies the following conditions:

< c?jH forall i; € {1,...,

3

o Aj=d,
<

o 0177 S azj+1 < bg,.
N; -1},

[ ] Dj :Cij'
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Theorem 3. (The basic approximation propert{nder

Then - : i .1<i<pn are product pseudo- .
(B . in) 150, <N 1550 P P 4the assumptions of Theorem 2 we have that for eveey
U

trapezoid-shaped, normal, consistent and complete, an
satisfy 5] < --- < ﬁ{vj forall 1 <j <n.

l9(@) ~ (@)
Remark 1. In the following, g(Z) will denote the control
or the decision function to be approximated éh and = ‘g(i‘) - Z By sigein) @)Y(i1 imin)
(@) will be the function representing the BFLS. In what (i1 iz, rin ) EIy (Z)
follows, we shall also assume that Propertigs-P; are

satisfied. —l@- >

Let us now introduce the notation and definitions to ir€ly, (z1) i2€1u, (v2)
give compact forms to our formulae. Thus, set
Z ( H ng (xj))y(il,ig,...,in,)

[a’{7 bjl[ If ’LJ = 17 ineIUn (3«'71) j=1
Ul = al b if 2<i;<N;j—1, (19) .
J ] .J .][ J J < - max o {|g(3;) ~ Y(iria,e.in) } (26)
Jay, by, if i = N;. (et ) STV
Let I/ be the function defined front// to Iy,, ~ 'heorem 4.(The uniform approximation properties-
where Iy, is the set of subsets of0,1,..., N; + 1} der the assumptions of Theorem 2, if we write
such that . -
E(irsiz,ensin) = (BSUP ‘g(f) - y(z‘l,iQ,...,z‘n)|
) ) . . . TESUPP(B(iy ,ig,...,in)
{i —1,4;3 it xj €lal b ], ’ (27)
I (x)) = {i;} it ;e bl yal ] \t/)vhere {r(]z'l,ig, e yin)} f e I, supp(ﬁ(g,ig ,,,,, i)
o , - - eing the support of 3, ,, ..y and ¢ =
i+ 1} df i €la? b’ 192;:5tn
{ZJ,Z] + } X, G]azﬁ-la zj[7 (20) AX (i) ig,... in)EL E (11,02, yin)? then
forall i; =1,...,N; andj=1,...,n. lg — flloo <e. (28)

Lemma 1. Under the assumptions of Theorem 2, we have
Theorem 5.  (The uniform convergence property)

N Let d(i,ip,.in) = (a}l,al227...7a?n), birsin,sin) =
U; = U of (21) (b}, b2,...,b" ) and
i;=1
O(irsizsin) = |[B(irsizsosin) = Glirsinsimy ||, (29)
and
U= | Uisein)s (22)  where| - || is any norm orR", and
(i15enyin)ET §=  max 5(1.171.2_’_”72.")_ (30)
where (i1 yiz,nryin)ET

For every (iy,io,...,i,) € I, if
Utiriainy = UL X U2 x5 U, (23) y (i, iz )
inf T) < Yiir o i
. . ZESUPP By in,... in) 9E) < Yo tarsin)
Lemma 2. Let Iy, be the function defined frorfy; to
Iy, such that < sup 9(¥), (31)

TESUPP B(iy ig,....in)

Iv, (x;) = I} (x;) if @; € U} (24)  then
: : : : . lim [|g — flloc =0, (32)
Then Iy, is awell-defined function, and so is the function 6—0
Iy defined fromU to Iy, x --- x Iy, by where
Ig(Z) = Iy, (x1) X -+ % Iy, (). (25) F@ =" Y Blyisin) EYiirsiannin) (33)

(i1,d2,...,0n) €T
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Theorem 6. (The universal approximation propertlygt m hidden units, then the functions that it can compute be-

g(Z) be a continuous function defined @h and lete > long to the following set withs being a sigmoid function:
0 be a fixed number. Then there is a BFLS given by the
function f, such that o™ = {f eCc(U) |

lg— flls <& (34)

FE) = cio(&-- - + 6;);
i=1

5. Best Approximation Property ci,0; € R and w; € ]R”}. (37)

In th|S SeCtion, we Sha” deal W|th the essential deﬁnitions It was proved thab—m iS not C|Osed SO |t cannot be an ex-
needed for the study of the best approximation property jstence set (Girosi and Poggio, 1990). On the other hand,
(Rudin, 1974; Yosida, 1974), and then we shall prove that the same authors proved that RBF neural networks are
BFLSs possess this property. best approximators (Girosi and Poggio, 1990). The prin-
cipal question is as follows: Do BFLSs satisfy the prop-
Definition 13. Let A be a subset ofC(U), || || ), Where erty of best approximation? The answer is positive and to

UcCR". prove it, we need the following lemmas.

e We define the distance of an elemefitc C(U) to )

A by Lemma 6. L_Jnder the assumptions of Theorem 2, the set
d(f, A) = gigg 1 = glloe. (35) By of functions fromU to R such that

e Anelementf, € C(U) is said to be dest approxi- f(@) = o Z Biia,.evin) (@)Y(ir i) (38)

mation from f to A if (isiz,-.sin) €1
B wherey;, i,.....i,) € R is an N-dimensional linear sub-
d(f; A) = If = folloe- (36) space ofC(U), where N = []/_, N;.

e A subsetA of C(U) is said to be arexistence set  Lemma 7. Let f be an element of (U) \ By. Then the
if for every f € C(U) there is an elemenf, € A set
such that|| f — follco = d(f,.A). In this case we say A= {g €BN|If —glloo < Hflloo} (39)

that A has thebest approximation property

o AsubsetA of (C(U), | |le) is aTchebycheff set
for every f € C(U) there is a unique elemenfy €

A such thatf — folle = d(f,.A). Theorem 7.The setBy of BFLSs satisfying the assump-

To study the best approximation property, we will tions of Theorem 2 has the best approximation property.

use the following characterizations, which can be found In th t secti il that if looki
in (Rudin, 1974). n the next section, we will see that if we are looking

for the best approximation in a Hilbert space, then it is
unique.

is a compact set ofC(U), || - ||co)-
Now we will outline the main result of this section.

Lemma 3. Let A be a subset ofC(U), || - ||lo)- If A is
an existence set, then it is closed.
5.2. Existence and Unicity of the Best

. . . 2
Lemma 4. Every closed, bounded subset of a finite di- Approximationin L*(U)

mensional linear subspace is compact. L?(U) is the space of all functions defined frofn to R,

_ which satisfy
Lemma 5. If A is a compact set ofC(U), || - ||«), then

A is an existence set.

Il = ([ 1507 a)" <+ (@0)

5.1. BFLSs Are Best Approximators with Respect endowed with the scalar product
to ||/l
Poggio and Girosi (1990) proved that multilayer percep- (flg) = /Uf(t>9(t) dt. (41)

trons of the backpropagation type do not have the best ap-
proximation property. If we consider such a network with L?(U) is a Hilbert space.
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Theorem 8.The set3y of BFLSs satisfying the assump-

tions of Theorem 2 is a Tchebycheff set with to the norm

]|z, i.e. foreveryf e L2(U) there is a uniquef, € By
such that

I1f = folla = inf Nf =gl (42)

6. Interpolation Property

In the previous sections we have shown that for every

continuous function defined on a compact seffdf, we
can construct a BFLS approximating it arbitrarily well.

We have also proved that there is a best approximator to

any continuous function in the sdBy of BFLSs with

N fuzzy rules. In this section, we consider a contin-
uous function f defined onU and taking the values
Y1,Y2,--.,yny at N distinct points zq,xs,...,xy Of

U. We are interested in finding a BFLS modelled by

that also satisfieg(z;) = y; foreveryi € {1,2,...,N}.
Case l:n=1

Because ther;’s are all distinct, we can arrange them so
thatzy < --- < z,. Let

d; = min (”””1 — T il ) (43)

3 ’ 3

a; = x; — d; andb; = z; + d;. Consider the function

4 .
fu(a) m(xfai)(bi—z) if © € [a;, by,
0 otherwise
(44)
Then B;(z;) = Bi(%£%) = 1 and B;(z;) = 0 for all

The function

N
=Yy bi)

(45)

<.

'MZ

satisfiesg(z;) = y; forall i =1,2,...,N.

Case 2: n>2

Let &7 = («,...,2J), 1 < j < N be N distinct

b) n )
vectors of R™. For eachz’! define the one-dimensional

Beta functions(ﬁ{) satisfying the following hypothesis:
= ff andp] (a]) = 5 (af) = 1
o If z) # a¥ then ! (z¥) = 0.

o If le = xf, thenﬂg

B(@) =[] 8] (xi)
=1
for every # = (z1,...,z,) € R™ Then 3;(#) = 1
and BJ(” ) = 0 for every k # j. Because we know
that " 7é #7, we can findigp € {1,...,n} such that
ak # x}, and Bl (zk)=0.1n consequence@j (z*) =
[T, 6l (af) =
The BFLS modelled by

N 4
=) i bi(@)

i=1

(46)

(47)

satisfiesg(z;) = y; forall : € {1,...,
the following result:

N}. This leads to

Theorem 9. (BFLSs possess the interpolation property)
Let f be a continuous function defined dii, (U =
[Tj-.[A;, D;] is a compact set oR™) such thatf (z;) =
y; forall i € {1,2,..., N} where thez;'s are N dis-
tinct points of U and y; € R. Then there is a BFLS
g € By such that

g(z;) = f(z;) forall i € {1,2,...

N} (48)

7. Conclusion

The study of the approximation properties of Beta fuzzy
logic systems (BFLS) is an indispensable theoretic foun-
dation for the users of such systems. In this paper we have
proved that BFLSs have the following properties:

1. Basic approximation property. It gives an idea of the
approximation mechanism by BFLSs.

2. Uniform approximation property. This property en-
ables us to check if the designed BFLS has the de-
sired approximation accuracy and suggests an idea
to improve the approximation accuracy of our BFLS.

3. Uniform convergence property. It shows that we can
improve the approximation accuracy of BFLSs by di-
viding the input space into finer fuzzy regions, which
can be achieved by increasing the number of mem-
bership functions of the input variables.

4. Universal approximation property. From this property
we conclude that for every functiog which is con-
tinuous on a compact set, there is an explicitly de-
signed BFLS which approximateg with an arbi-
trary given degree of accuracy.
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5. Best approximation property. This property is of

paramount interest, because in practice we fix the

number of rulesN and we look for a best approxi-
mator to the control function in the set of BFLSs with
N fuzzy rules.

6. Interpolation property. It ensures that we can interpo-
late any continuous functiop defined on a compact

set with a BFLS. The number of fuzzy rules is equal

to the number of points at which the valuespfare
known.

Our future work will concern the development of efficient
learning algorithms for BFLS.
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Appendix

In this appendix we give the proofs of all lemmas, proposi-
tions and theorems except Theorem 9, for which the proof
is included in the paper.

Proof of Proposition 1We have
max Ay y....i) (F) = H (max A7 (). (49)
J:

Thus fuzzy setS A, i,.....in)) (i1 is,....in)er are normal if

and only if A{j are also normal foralf; =1,2,..., N;
andj =1,2,...,n. From the equation
Alir g,y (&) = ] AL (2)) (50)
j=1

we haveA, ;, .. (&) > 0 if and only if A{j (z;) >0
foreveryj € {1,2,...,n}.

We can easily see that the completeness of the fuzzy
SetS (A(iyiz,...in)) (irsin,....in)el 1S €Quivalent to that of
A{,A%,...,Ag\,j foreveryj € {1,2,...,n}.

Let us show thatA;, ;, . .y, (i1,92,...,in) € T

are consistent inJ if and only if A, A2, ..., A?Q, are
consistentinU; foreveryj € {1,2,...,n}. '
First suppose thatd?, A7, .. .,A{Vi are consistent

in U; for every j € {1,2,...,n}. Let i
(29,29,...,2%) be a fixed element ofU such that

n

Ay ign....in)(To) = 1. Then Al (z9) = 1 for every j €

i Jopd i .
{1,2,...,n}. From the con5|stency_oA1,A2,...,ANJ_,
j € {1,2,...,n} we deduce thatdj (z}) = 0 for all
k; #1i;, 7 € {1,2,...,n}. In consequence,

A iy (@) = [[ AL 2 =0 (52
j=1

for every (k1, ko, ..., kyn) # (i1,42,...

yin)-
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Conversely, suppose thaﬁ0 (x?) = 1 for a fixed [Ps]: M(B;) = {ci}, since we know that; < ¢;1,
j. We know that (A(il7142,____71'")')(,17127 .in)el @re nor- SO (3; < Bit1- [ ]
mal if and only if so areA], A},..., A% forall j €
{1,2,...,n}. Thus we can fmdro such thatA’“(a:k) - Proof of Theorem 2The proof of this theorem is evident
lfork=1,...,5—1,j+1,. while using Proposition 1 and Theorem 1. ®
Let & = (x%...,x?,...,x%). Then we
have A1, 1401..1)(@%) = 1. We deduce that Proof of Lemma 1Let us prove that; CUZ ’ U] . The
Aa,10..1)(@) = 0 forall i; # iy and, conse- other inclusion is trivially satisfied.
quently, AZJ_( 2) =0 forall i; # io. n Let z; be an element ofU;. Since the fuzzy
sets 3, 62,...,,6’]\, are complete inU;, we can find
Proof of Proposition 2We can easily verify that i; € {1,...,N;} such thatﬂJ (z;) > 0, s0z; €
" n N supp(ﬂfj) U} . In consequence/; = Ulv_lUJ
oo A @) =1]>.8 (). (52 We wil  now prove that U C
(1582, in)€lj=1 Jj=1i;=1 U(il,...,i”)EIU(il,ig,...,in)- Let ¥ = ($1,$2,...,$n) &
Then = Uy x -+ x U, Thenz; € U; for aII_
j € {l,...,n}. By the above result, there exists
g i; such thatz; € U/, ie. & € Uy, 4y,.4,)- IN
B . ) (_’f) _ jl;Il /81j (I]) Consequencdj C U(ila--]~>in)€IU(i1,i2 11111 7477,) | |
(2, in) Z ﬂ(i17i27~--7’in)(f) . i
(i1,22,..vin ) ET Proof of Lemma 2.If z; € Uy and z; ¢ Uj for all
no i; # k, then Iy, (x;) is well defined. Ifz; € U7 U, for
_jl;ll By () somek # i; then, due to the inequalities] < b/ | <
noo N al ., <Vl ,wehavek = i;+1 or k = i;—1. Hence the
1T ( 5 ﬂlj(x])> @541 J J
=1 Nz Y value oij(xj) |sthesameasthevaluea$§ z;) inthe
. two cases. In consequenck; is a well- defined function.
o B(g) »
B H N;
i=1 Bi, (x;) Proof of Theorem 3We have
1]-:1

. 9(®) — £()
= B, (x;). (53) "
1 - ¥

j:1 - g('r) - B(il,i%nwin)(‘f)y(ilvi%'u;in)
(il,iz,...,i7L)€I
[ ]

N;

Proof of Theorem 1[P, + P]: j; is pseudo-trapezoid- - Z Z By igeeesin) (B)Y (i yin,..yin)

shaped and normal. Let €a;,b;[. We have3}(z) = =l 2a=1

_ _ pibitaqia; _ pibit+qia;

0= x= cl—% andcl_%e]a“bz[ _o(2)

Moreover, 8; is monotonically increasing otu;, ¢;[ and

monotonically decreasing ofa;, b;][. ) :

ibi+qia; _ n

We know that if §;(2ct4)  — 1, then =D Y Bl(@) B (#0)Yi i) |, (B4)
B; is  pseudo-trapezoid-shaped, normal, and i1=1 in,=1
5i($§piv(haazabz) PT(%,GHCZ,C“b ) . ) .

[P3]: Consistency: Bi(z) = 1 <= z = ¢; and  Where Bi(z;), By(z;),..., By, (x;) are given by (17).
bi-1 < ¢ < a1, SO thate; € supp(f;) and ¢; ¢ For every & = (x1,22,...,%,) € U there isi;
supp(3;) for everyi # j. In consequenced;(z) = 0 such thatz; € U;,, so we have one of the following three
for every i # j. cases:

[P4]: Completeness: Let € [A, D). If z € [A,b4]
then 3 (z) > 0 and $2(b;) > 0 because we know that 1. @1 €las,, by, 1]
az < by. If z €la;,b;[ then B;(z) > 0. If = €lay, D] We have B} (z1) + B}, _,(z1) = 1 and Bj (z) =
then By (z) > 0 and By_1(an) > 0. 0 for every j; # i and j; # i1 — 1, j1 €
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1,2 77,1} SO

Z Z B} (1) BP (x,)

i1=1 in=1

Y S B ) B (o). (59

j1€{ii—1,i1}i2=1 ip=1

2.1 € [bil—l’ail+1]'

In this caseB; (x1) = 1 and B}, (x;) = 1 for every

J1 # 11, SO
N; No
2.0 Z B}, B} (z4)
i1=1142=1 in=1
Nso N,
=3 - > " Bl(x)-- B (z).  (56)
ig=1 in=1

3. :I:1€[a,,;1+1, b,;l].
For B} (z1) + B“H(acl) =1 and Bj (x1) = 0 for

everyjl #dpandj; #i1 — 1, j1 € {1,2,...,n1},
we have

N1 Nn

i1=1 in=1

Ny N,
S S-S Bi(w)---Bi(xa). (57)

j1€f{i1,i1+1}1i2=1 ip=1

Accordingly,

Ny N,
Z Z Bill(ﬂfl)"'BZ(SUn)

=1  in=1

= Z iBl (21)BE (22) - BY (x,). (58)

h€ly, (1) i2=1 in=1

Using the same method, we can also prove that

N2 N,
Z Z Bzzz(@)'“BZ(xn)

ig=1 in=1

S Y Y Y BB 69

J2€ly, (x2) i3=1 in=1

All these equalities give

l9(Z) — f(Z)]
= Z Z B (415esin)

(117 ;Zn)
11=1 1n=1
n
— 7 ]
=lg(@ - > Sy (H) (TG
1€y, (a1) in€ly, J=1
n
_ J )
= E , E (HBzJ(xJ))
11€1y, (2q) in€ly, (rn) J=1

X (g($17$27 ey In) - y(il,...,in))‘

= ’ Z B(il’i27~~7in)(f)[g(x17$2)"'7xn)

(ilgi2a~~»in)€IU(5ﬁ)

< max {|9(F) = Y(irin,..im)| | (11,52, i)

€ Iy(D)}. (60)

Proof of Theorem 4We know thatsupps,
which yields

f(@)]

=§up‘g(f)— > Blivisein) @Yirin)

zey (31,82, s0n ) ElU ()

sup |g(&) —
reU

> s |el@)
Suppﬁ(il Vi

- Y Bliisein) @Y, i)
(11,82, in) €Iy (z)

= € (1,02, yin) " (61)
Thus supzcy |9(Z) — f(Z)] > e.

On the other hand, we know that for evefy €

U there is (i1,is,...,in) € I such thatZ e
suppg, . . This implies

1111111

l9(Z) — f(2)]
- ‘g(f) o Z By in..in) @)Y (ir o)
(91,82, s0n ) €IU (F)

< E(ig,in) S E (62)
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Proof of Theorem 5All the norms onR™ are equivalent,
S0 we can use the infinity norifi- ||, i.e. the norm given
by ||Z|lcc = max{|z;| | ¢ = 1,2,...,n} forevery Z €

Let 6¢iy,....in) = 1B, i) —5(11,...,%).”00 an_d5 =
max{d¢, . 4, | (i1,...,i,) € I'}. Hereg is continuous
on the compact sel/, so it is uniformly continuous. For

everye > 0 thereisd(e) > 0 such that|g(Z) — g(Z')| <
¢ forevery ¥ and 7’ satisfying||Z — &' ||c < d(¢).

Let m(il,iz’m,in) = infmesuppﬁ( ..... . )g(f) and
M(il 92,..00n) - SquesuPpﬁ(il.iQ in) g(f) We knOW
that g is continuous on SUPPg, L Hence
we can find Z,, = (27", 25, ...,2") and &y =
(M 2 2M) € SUppg, such that
9(Zm) = My ia,..in) @NA G(Tar) = M, iy, i)

On the other handsupps, = lal ,bj] x
[zgvbi] ' [?vbz] SOJ:]? ;VI [Z’bz]for
every j = 1,2,.. n. We have

= = _ M
& = Earlloe = max {7 — [}
< g {1, o,
= Hb(i1,~~7in) - d(i1y~~-7i7z)“w' (63)

Let ¢ > 0 be a fixed real number, and lét< J(e).
We also know thatm (i1sizsyin) < g( ) < M(zl,ig,.,.,in)
and My ,ia,.. Zn) < y(“@’ in) S M(zl, i2yeeyin)® Then

|g( ) Y(i1,izyeenin) M(h,%z,mﬂn) _m(21a7127"'xin) for
everyx € suppﬁ(z1

01,825, in)’
From the uniform continuity ofg we deduce
that ||xm — Zulle < & < d(e) and |g(F) —

Y(iv,ia,..., | < 9<3?M) - 9(5771) < ¢ for ev-
ery « e SUpPg, In other words,
SupIESUppﬁ . ‘g<f) = Y(ir iz, Zn)| <e.

(i1,i9,-.yin

From Theorem 4 we conclude that

sup |¢(7) — f(D)] <e. (64)
zeU
]
Proof of Theorem 6U = [Ay, D;] X [A3,Dg] X -+ X
[A,,D,] is the universe of discourse. Le};(N) =

(D — A;)/(N —1) and z;, (N) = A; + (i; — 1)6;(N
where i; € {0,1,...,N+1} ThenA = x1,(N)
.%‘Qj(N) < - <£L’N].(N) :Dj.
We construct the following membership functions:
e Bz, N) =
[Aj7Dj]'
o Bi,(x,N) = pB(x;p,p,xs;,—1,2;,41) foreveryi; ¢

(2....,N —1},

~—

N

B(x;p, p,xo,,x2,) restricted to

. ﬂN(zL‘N)
[4;, Dj],

where p is a strictly positive real number.

B(x;p,p, TN, —1,TN,+1) Testricted to

The consequent of each fuzzy rule is

y(il,ig,“.,in)(N) = g(le (N)7 Liqy (N)a sy Ly, (N)) .
(65)
Then mi, iy i) < Yiyinein)(N) < My iy, i)
where
M3y ig,.nsin) = inf Z), (66
(1 ,2,000s8m) fGSUPP(ﬁ(il,iQ,...,in,))g( ). (68)
My ia,.in) = sup g(¥), (67)
Zesupp(B(iy ig,....in))
Bir o) @ = [ [ 4, (2)) (68)
j=1
Using Theorem 5, we deduce that
hm sup |g(Z) — fn(D)| = (69)
N—oo gy
where
fN(x) = Z B(il;i27-~~;in)(x7N)y(il,i27~~~,i7),)(N)7
(il,iz,...,in)el

(70)
ﬂ(il,ig,...,in) (x, N)

D ﬁ(il,iQ,.,.,iﬂ,)(m,N).
(i1,i2,...,in) €T
(71)

By ig,...inmy (@, N) =

Proof of Lemma 3lt is clear thatB is a sublinear space
of C(U). (B(iyia,....in)) (i1 in,....in)el 1S @ generating fam-
ily of By. To prove thatdim By = N, we will only
prove that (B, 4,.....in)) (iv,is,....in)er are linearly inde-
pendent.

Suppose that

Z Bliyig,...sin) @)Y (ir in,...in) = 0

(11,8250 0yin ) €T

(72)

ForeveryZ € U let us show thaty;, ,,....i,) = 0.
Let (ki,ko,...,k,) be afixed indexinl.

From Proposition 2 we have

By kareokon) (Chys Chys 5 Chy) = HBij (cx;), (73)
j=1
where )
. ,8‘7 (Ck.)
B (cx,) = . (74)
Z ( ci;)

i;=1

€& s
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Then B(k],kz,m,kn)(ckuckza Ceey Ckn) 7& 0 because

5@(%) = 1 and B, iy,....in) (Chys Chys -5 Ch, ) =
0 for every (iy,ig,....in) # (ki ko,...,kn). SO
Y(krkayroskn) = 0- m

Proof of Lemma 4. It is clear that A is closed and
bounded. Sincd3y is finite dimensional, A is compact.
]

Proof of Theorem 7.The proof consists in showing that
By is an existence set. Consider a fixed elemgéntof
C(U). Then the closest point tgy in By is in the set
{9 € Bx | llg = folle < [If = follo}, where f is an
arbitrary fixed element of (U), which is a compact set
by Lemma 4, and the result follows. =

Proof of Theorem 8Let d = inf,ep, ||f — gll2. If d =

0 then f € By. Infact, By is a linear subspace of a
finite dimensionV, so it is closed and the result is then
proved. If d > 0, then let B,, be the closed ball with
centre f and radiusd + 1/n, wheren is a non-negative
integer. The setP,, = B,, N By is convex and closed,

because it is the intersection of two sets which are convex

and closed 8 is finite dimensional, so it is convex and
closed). Moreover,P, is non-empty. The elemenf,
looked for is in the setP = N, en+ P, .

We will show that P is non-empty and reduced to
one point. Leta and b be two elements of?,, andm =
(a+b)/2. Thenm is also an element of,, because it
is convex.

The parallelogram equality gives
205 = mi3+ ol = 2(lb—f13+ 11~ al3). (75)

The three quantitie§ f — m/|3, || f — al|3 and || f — b||3
are betweeni? and d% + 1/n?, so

4 1
la — b3 < g(ﬁ‘*‘zd)- (76)

We then conclude that the diameter Bf, tends to
0 asn — oo. Then (P,), is a sequence of closed em-
bedded, non-empty sets whose diameters tend to 0. More-
over, it is in B, which is complete, so their intersection
is non-empty and reduced to a unique pojfigt ]
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