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Any successful company must react quickly to changing trends in the market. New products should be designed and
manufactured quicker and cheaper than counter partners do. A shorter design time provides a distinct competitive advantage.
The paper describes two approaches towards designing interdisciplinary mechatronic systems: the first is visual modelling
with the UML, the second is physical modelling with Modelica.
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1. Introduction

UML (unified modelling language) is widely used in de-
signing complex and reliable computer science. In mecha-
tronics it provides means for capturing system require-
ments and for the visual modelling and design of sys-
tems on a high level of abstraction. Modelica is a freely
available language for object oriented physical modelling.
It may be used for modelling and prototyping a medium
level of abstraction, as described in Sections 4 and 5.

Information transfer plays an important role in the
operation of mechatronic systems. This can be easily pre-
sented on UML diagrams. The terminology and notation
of visual modelling with UML can be adopted as a com-
mon high-level object oriented language for the design of
mechatronic systems and as a documentation tool in every
design phase (Mrozek, 2002b; Mrozek, 2002c; Mrozek,
2002a). An advantage of UML over other tools is that it
reveals gaps and inconsistencies in the specification of re-
quirements, at very early stages of the design. UML pro-
vides the ease of modelling, understanding and modifica-
tion of graphical diagrams of mechatronic systems. It inte-
grates the best practices of object oriented development.

Designers may transfer already defined subsystems
and other elements between different UML diagrams and
reuse them. This accelerates the work progress and helps
to keep all parts of the project in a consistent manner
(Boochet al., 1999; Bruegge and Dutoit, 1999; Douglas,
1998b; Douglas, 1998a; OMG, 2003). UML is supported
by all major CASE (computer aided system engineering)
tool vendors. Using UML notation, an experienced devel-
oper may design systems with fewer defects and quicker.

The shorter design process (the time from the idea to
the market) and better product quality provides a distinct
competitive advantage. This is important, as a successful
company should react quickly to changing demands of the
market.

Many companies switch from paper blueprints to a
digital representation of future products. Successful ex-
amples include some modern cars and the Boeing 777
plane (Sinhaet al., 2000). A weak point of the com-
puter aided design process is the lack of widely accepted,
integrated multidisciplinary software and hardware envi-
ronments for successful design, testing, prototyping, im-
plementation and validation. Instead, a sequential design
approach is traditionally used: mechanical design at the
beginning, then the system is extended with sensors, ac-
tuators and non-mechanical subsystems. They are inte-
grated during modelling, simulation and the prototyping
phase, when the control system is designed and tuned
(Gawrysiak, 2002; Uhlet al., 1999).

2. Computer Aided Design in Mechatronics

An important objective of CAD (computer aided design)
in mechatronics is the integration of different disciplines
by the unification of the design process. This helps to in-
clude mutual interactions of subsystems of different na-
ture and to unify the documenting of all actions and results
obtained at each stage of the project. Some other factors
of using proper CAD/CAM (computer aided manufactur-
ing) and CASE tools are:

• cutting down cost and time needed to design and of-
fer new products on the market,
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• the integration of different subsystems and technolo-
gies at an early stage of the design,

• using virtual models (a code in a computer mem-
ory) and special electronic hardware for prototyping;
this includes HiL simulation, described in (Uhlet al.,
2000; Uhlet al., 2000),

• the compatibility of the design process with PDM
(product data management) tools (Uhl andŚliwa,
1996).

A mechatronic system integrates mechanical, elec-
trical and electronic subsystems with a microprocessor
based control subsystem. An interdisciplinary approach
means equal significance of all subsystems during the de-
sign, regardless of its physical nature. This is difficult
if standard design tools are used, but essential to achieve
good results. Traditionally,

• specialised CAD/CAM tools are used to design me-
chanical, electrical and other subsystems in different
domains. They are effective in their own domain and
weak or inapplicable in others,

• the control subsystem is modelled and designed
with multipurpose software packages such as MAT-
LAB/SIMULINK (Mrozek and Mrozek, 2001).
They are not directly applicable to the modelling of
mechanical and electronic subsystems if the needed
parts are not included in accompanying libraries
or extensions (e.g. SIMULINK toolkits, SimMech,
etc.). A novel approach is to use physical modelling
with Modelica at this stage of design.

It is proved in practice that the mechatronic approach
is successful in designing interdisciplinary products, even
if the effective integration of activities in different disci-
plines is difficult. The development process consists of
a set of partially ordered steps which lead to a desired
target. The sequential approach always fixes the project
status before switching from one discipline specific de-
sign tool to another. Then a special arrangement is needed
to exchange project data between the tools used. The
known solutions are extra software tools, protocols and
interfaces for data exchange. The main disadvantage is
that the above tools often work in the off-line mode only.
In other words, multi-criteria optimisation (essential in
mechatronic design) is very difficult to implement, as the
parameters imported from other packages are fixed dur-
ing some steps of optimisation. Nevertheless, many inter-
disciplinary products such as VCRs recorders, compact
disk players or the ABS (anti-lock brake system) were
successfully designed and introduced on the market (Uhl,
2002; Uhlet al., 2000).

3. Using UML Diagrams in Mechatronic
Design

UML was originally developed in response to a call for
a proposal for a standardized object modelling language.
Then it was improved many times until UML version 1.3
was accepted by the OMG (object management group
(OMG, 2003)) as the proposal for a standard in the year
1999. New UML versions are under development.

UML was introduced as a language for the modelling
of information systems but can be used to describe all el-
ements of mechatronic systems on different levels of ab-
straction. Many attempts were made to extend UML ap-
plicability in areas beyond computer science. McLaughlin
(McLaughlin and Moore, 1998) was probably the first to
apply the UML approach to a process control problem that
contains a conveyor belt transport subsystem. Using the
UML for real-time systems is presented also in (Douglas,
1998b; Douglas, 1998a; Real-time Studio, 2003).

Any complex system can be represented by a set of
carefully chosen models. A single model is not sufficient
to describe real system. Use case and class diagrams (they
are described later) are probably used in all UML sup-
ported projects. The choice of other diagrams to be cre-
ated depends on how a problem is attacked.

3.1. Design is Part of the Product Life Time

The designing of mechatronic systems is an important part
of the product life time (Fig. 1). It is an iterative process,
as designers often jump back one or more steps to redesign
or tune what they have done before. Design starts with an
idea of the product and includes requirement specification,
conceptual and detail design, prototyping and testing, im-
plementation and validation, production, exploitation and
recycling of products. Redesigning the model of a prod-
uct (the model is prepared on a computer screen as UML
diagrams) is supported with the CASE software. The best-
known packages are Rational Rose (Rational Rose, 2003)
and RtS (Real-time Studio, 2003). Using the UML helps
to find and correct errors and omissions in requirement
specification in a very early phase of the design, when
models on a high level of abstraction are prepared. Some
CASE tools offer simulation and animation of UML mod-
els. This helps to verify if all requirements are fulfilled.
Simulation is even more realistic if some extra tools (e.g.
Altia FacePlate for RtS (Real-time Studio, 2003)) are used
to build a virtual operator console with animated dials and
gauges.

Later CAD/CAM and CAE tools are used in a de-
tailed design of subsystems. The parameters from detailed
design are used in simulation models. Modelica, MAT-
LAB, SIMULINK and other software are used to build
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Fig. 1. Designing is an iterative process, an important part of the product life time.
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Fig. 2. UML diagrams are supposed to be built in predefined order. Other
(domain specific) tools are used for detailed design and prototyping.
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Fig. 3. Use case diagram for an automatic toaster.
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Fig. 4. Class diagram for the automatic toaster.
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models for virtual and HIL (hardware in the loop) simula-
tion. Simulation is used to tune and verify the behaviour
of the designed product at a prototyping stage, before its
physical model is prepared.

3.2. Suggested Order of Building Different UML
Diagrams

A starting point of the design is requirement elicitation
(Fig. 2). The main tools used for requirement elicitation
are use cases and scenarios. A use case diagram describes
the functional behaviour of the system as seen by an ex-
ternal user (an actor). Scenarios and use case diagrams
(Fig. 3) are prepared with the help of a client or a user of
the future system.

The next step is to analyse use cases and scenarios
to identify objects. This leads to a preliminary version
of class and object diagrams. Later, objects and classes
are used to build other diagrams. Class diagram may be
redesigned if a new object, new method or new attribute
is needed to build other diagrams. The sequence of ac-
tions described in scenarios is graphically presented on
a sequence (Fig. 5) or a collaboration diagram (Fig. 6).
Both are called interaction diagrams. All states that an
object may go through are presented on a statechart dia-
gram (Fig. 7 and 8). It describes the dynamic behaviour in
response to events and fulfilled conditions. Parallel activ-
ities may be shown on the activity diagram (Fig. 9). The
system architecture diagram (Fig. 10) should be used in
mechatronic design instead of UML implementation dia-
grams. It is supported by RtS (Real-time Studio, 2003), a
CASE tool from Artisan. Next steps, at a medium level of
abstraction, are presented in Sections 4 and 5.

3.3. An Actor and a Use Case Diagram

The actor is a human user, another system, sensor or any-
thing located outside the actual system that will interact
with the system. When the actor (e.g. ‘user’ in Fig. 3)
communicates with the system, this means that the actor
sends messages to the system or receives messages from
the system. The actor is depicted as an icon of a man.
Defining actors is essential to set up a border between the
system under development and its external environment.
Actors are used in use case, sequence and collaboration
diagrams.

A single use case is a named oval on the use case di-
agram, e.g. ‘adjust_heating_time’. A use case diagram is
a collection of use cases and actors (Fig. 3). A use case
captures the subsystem functionality as a ‘black box’ seen
from the point of view of an external user (e.g. ‘user’).
As the internal structure of the use case is completely hid-
den, it has the highest level of abstraction among UML
diagrams. The use case diagram helps to understand how

the system should work. It describes different kinds of
behaviour of the system and shows how it interacts with
external actors.

Preparing use case diagrams is an important task, as
the original problem description may be incomplete and
some requirements may be in conflict with others. Both
the client and members of the design staff should under-
stand use cases. The user should verify if all the required
functionality of the future system is included in the use
case diagram and if all actors do communicate with the
respective use cases.

Any extra requirements which are not shown in use
cases or scenarios may be included as constrains (restric-
tions or rules applied to various elements of the model).
This is especially useful in real-time systems, where tim-
ing constraints for the latency of messages and processing
time limits for operations should be followed. The OCL
(object constraint language(OMG, 2003)), pseudocode,
annotations or a text (inside a notes icon) can be used to
show constrains in UML models.

3.4. Scenarios and Tests

Scenarios are instances of use cases. A scenario is a sys-
tematic description of the sequence of messages sent be-
tween the actors and the system. Following the scenario
describes how an actor prepares toast:

Actor puts a fresh piece of toast into the
toaster and moves it down with a slider.
The toast goes down and the electric heater
is switched on. Actor adjusts the heating
time by turning a knob on the toaster’s side.
When the heating time is elapsed, the heater
is switched off and the toast jumps out of the
toaster. The toast is ready to eat.

There is large number of possible scenarios corre-
sponding to a single use case. It is important to prepare
few non-trivial scenario including exception handling and
error recovery, e.g.,if something goes wrong, power can
be switched off manually and the toast is released imme-
diately.

Use cases and scenarios are useful for preparing tests
for the system. Tests should be prepared at an early stage
of the design. Otherwise, the members of the design team
may prefer to choose tests reflecting properties of the ac-
tual system under design and the client may expect to in-
clude properties, which extends the agreeable requirement
specification.

3.5. Class and Object Diagram

The class and object diagram shows the internal structure
of a system. It defines the system structure by identifying
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Fig. 5. Sequence diagram for the automatic toaster.
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Fig. 6. Collaboration diagram for the automatic toaster.
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Fig. 7. Statechart diagram for the automatic toaster.
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Fig. 8. Statechart diagram for the movement of a welding gun in a robotized arc welding system.
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objects, defining their classes and relationships that exist
between classes. Figure 4 shows the final version of the
class diagram for the automatic toaster (Mrozek, 2002c).

Use cases and scenarios should be analysed to find
objects, their names, responsibility, activities and parame-
ters. One can identify objects as physical devices, sensors,
actuators, interfaces, etc. If objects are known, a prelimi-
nary version of the class diagram can be built quite easily.
The name of a class is given in the upper compartment of
a rectangular icon, e.g. ‘timer’. The values of the object’s
variables and parameters are kept in the attribute field, in
the middle compartment, e.g. ‘time_to_release’. Methods
(services and responsibilities of a class) are given in the
bottom compartment, e.g. ‘start_timer’. Then if sequence,
collaboration or any other diagrams is build or changed,
new classes may be defined, or the existing classes may
be updated. As a result, other diagrams, which use af-
fected classes, may become invalid. CASE tools support-
ing UML programming (e.g. Rational Rose, 2003; Real-
time Studio, 2003) will try to modify automatically all
other diagrams to keep them consistent. If automatic up-
date of diagrams is not possible, the CASE tool will warn
the designer.

3.6. Sequence and Collaboration Diagrams

UML provides sequence diagram and collaboration di-
agram to show graphically information from scenarios.
Figure 5 shows a typical sequence diagram.

Objects are shown as horizontal rectangle icons on
top of vertical time lines. Time flows down the line. An
object or actor may send messages (shown as a horizon-
tal line with an arrow) asking some services from an-
other object (e.g. ‘user’ asks the ‘toast_slider’ object to
‘move_toast_inside’ the toaster). Activities shown on the
sequence diagram may be annotated with text. Timing
marks can be added to show exact time constraints.

The collaboration diagram (Fig. 6) shows a structural
view of scenarios, but it provides essentially the same in-
formation as the sequence diagram. In the absence of time
lines, the sequence of messages is given by numbers.

3.7. Statechart and Activity Diagram

An important subset of all classes can be modelled using
finite-state machines. Such classes are called reactive be-
cause they react in a specific way to incoming events. A
control engineer will find it helpful to describe the reactive
behaviour of system states and to map the system logic to
a physical architecture, e.g. to an FPGA chip.

A statechart diagram models the behaviour of re-
active entities by specifying their response to receipt of

events. It is used to describe the behaviour of class in-
stances, but the statechart may also describe the behaviour
of a use case, an actor, a subsystem, etc. (Boochet al.,
1999; OMG, 2003). When compared with the sequence
diagram (it shows the chosen scenario in a time-based se-
quence), the statechart diagram shows all states the object
may go through.

Each state represents a named condition during the
life of an object. It remains in the given state as long as it
satisfies some condition or until it is fired by some event to
another state. A black ball shows a start state. An end state
(if it exists) is shown as a black disc in a circle. Transitions
(lines with arrows, Fig. 7) connect various states on the di-
agram. The toaster has only two stable states and its stat-
echart diagram is very simple. If the toast is put inside the
toaster, it switches the power on and remains in the heat-
ing state unless conditions to transit to idle are fulfilled.
If the heating time has elapsed (‘time_to_release<=0’) or
if the eject button is pressed, the toast is ejected and the
heating power is switched off. The toaster is idle and a
new piece of toast can be started.

Statechart diagrams are very useful in verifying the
functionality of more complicated products as arc weld-
ing system. If the welding gun is in the ‘follow welding
path’ state (Fig. 8), it feeds welding wire (do: feed_wire)
and moves along welding path (do: move_gun). It finishes
if the end of the trajectory is reached. All exit conditions
(here: ‘exit:move_gun(0)’ and ‘exit:feed_wire(0)’) should
be fulfilled before leaving a given state. If the welding arc
dies or if the welding wire is pinched, the state transits
to the ‘strike_welding_arc’ state or to the ‘tear_of_wire’
state, respectively. This statechart diagram was prepared
with the Stateflow (MATLAB, 2003; Mrozek and Mrozek,
2001; Mrozek, 2002a) software in the Matlab environ-
ment.

The activity diagram (Fig. 9) is used to visualise par-
allel activities and to show the sequence of internal states.
It is well suited to describe the set of sequential and par-
allel actions when preparing the welding gun to work in
the MIG/MAG welding mode. Short horizontal or verti-
cal thick lines are used for the synchronisation of actions.
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Fig. 9. Activity diagram for the preparation of the welding

gun to work in the MIG/MAG mode.
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3.8. Implementation Diagrams

Original UML implementation diagrams (component and
deployment diagrams) are dedicated to information sys-
tems and they are not very useful in mechatronic design.
Using a system architecture diagram instead is strongly
advised.

Once the system boundary of a mechatronic system
has been determined with a use case diagram, physical
interfaces to all actors should be identified as part of the
requirements for the system. The result can be presented
on a system architecture diagram. This is an extension of
the UML included in the RtS package (Real-time Studio,
2003). Figure 10 shows all main subsystems of the arc
welding system. They are connected with the CAN-bus
communication network. This includes the operator con-
sole with I/O devices (keyboard, joystick, LCD display),
work piece positioners, a power source for the arc weld-
ing gun, a robot controller, wire and gas feeding systems.
Later, more details can be assigned to each element of this
diagram.

3.9. Remarks on Using UML

Generally accepted tools for the modelling, simulation
and design of multidisciplinary product are not known.
Good candidate tools described in this paper are: a UML
language for design on a high level of abstraction and
Modelica for the modelling and simulation of interdis-
ciplinary products on a medium level of abstraction. If
CASE tools (e.g. RtS (Real-time Studio, 2003)) are used,
double click on any item of UML diagram opens its prop-
ert window. One can memorize its parameters and other
information using this window. As the project is further
investigated, COTS (commercial off the shelf) boards and
subsystems (mechanical, electrical, etc.) are chosen and
their parameters are added into the fields of properties
window. When the requirements for any custom subsys-
tems are defined, its data should also be memorised in
properties window fields of a respective subsystem.

Brainstorming may be used to identify possible prob-
lem solutions and to find potential opportunities for im-
provements. This technique can be used to find all use
cases and to prepare scenarios. Brainstorming is also use-
ful to identify states and transitions for the statechart dia-
gram (Mrozeket al., 2002).

4. Physical Modelling, Simulation and
Prototyping with Modelica

Modelica (Elmqvistet al., 1998; Elmqvistet al., 2001;
Modelica, 2003) is a freely available language for hier-
archical object oriented physical modelling, which is de-
veloped through an international effort. The work started

in 1996 under the ESPIRIT projectSimulation in Europe,
Basic Research Working Group(SiE WG). The author of
the present paper was involved in preliminary work of this
group during his temporary stay at the Ghent University.
The Modelica language unifies and generalizes previous
object-oriented modelling languages and is intended to
become ade-factostandard. It complements design with
the UML on a high level of abstraction.

4.1. Integration of Models of Different Natures

In a modelling and simulation environment, it is desir-
able to integrate models specified in different modelling
formalisms (ODEs, DAEs, PDEs, statechart diagrams,
reusable library models, etc.) and to support multi-domain
modelling (Astromet al., 1998). Modelica was designed
with the objective of facilitating the exchange of models,
model libraries, and simulation specifications. It allows
us to define modularly the hierarchy of simulation mod-
els. The multi-domain capability of Modelica combines
electrical circuits, multi-body mechanical systems, drive
trains, hydraulic, thermodynamic and other domain model
components. Interactions between components of differ-
ent nature may be studied with Modelica. The capabilities
of Modelica have been demonstrated by modelling and
simulating mechanical systems (Bunuset al., 2002; Clauß
and Beater, 2002; Sinhaet al., 2000; Schlegelet al., 2002),
thermodynamic systems (Felgneret al., 2002; Sinhaet al.,
2000), automotive systems (Bowleset al., 2001; Schlegel
et al., 2002), electrical (Torrey and Selamogullari, 2002)
or hydraulic systems (Ferreiraet al., 1999; Schlegelet al.,
2002). The advantage of modelling is that the user can
concentrate on the logic of the problem, rather than on
detailed implementation of the simulation model.

Modelica supports modelling on a medium level of
abstraction by composing library components into block
diagrams. Missing library components may be designed
by connecting library components into subsystems or by
designing them from scratch using their description by
ODEs and DAEs.

4.2. Physical and Acasual Modelling

Physical modelling is based on the relations between
physical quantities. It may be achieved by cutting the
system into subsystems and defining equations for bi-
directional connections between those subsystems. Con-
nections specify interactions between subsystems and
they are shown as lines connecting subsystems on the
block diagram. A connector describes all physical quanti-
ties involved in the cooperation of subsystems. The con-
nector classInterfaces.Flange_a of a mechani-
cal gear (Fig. 13) is defined withModelica code given
in Figure 14 (comments are given between the ‘quotation
marks’).
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Fig. 10. System architecture diagram for a robotised arc welding system.

 

Fig. 11. Sublibraries of Modelica standard and additions libraries of models

 

Fig. 12. Rotational sublibrary, one of the subsets of the Modelica standard library of models.

 

Fig. 13. Gear model from the rotational sublibrary.

connector Modelica.Mechanics.Rotational.Interfaces.Flange_a

"1D rotational flange (filled square icon)"

SIunits.Angle phi "Absolute rotation angle of flange";

flow SIunits.Torque tau "Cut torque in the flange";

end Flange_a;

Fig. 14. Description of the connector classInterfaces.Flange_a .
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Here each connection is used to generate equations
for across (equal) variables

a1 = a2 = · · · = an;

and the flow type (through, zero-sum) variables

z1 + z2 + · · · + zn = 0.

Physical modelling offers a great improvement when
compared with the traditional approach based on block di-
agrams, where artificial unidirectional signals at the inputs
and outputs of block diagram elements are considered.
Connector variables are physical quantities which have to
satisfy respective physical phenomena. This idea is used
also in Bond Graphs, where effort variables (e.g. voltages
or rotation angles) are equal each other, and the sum of
flow variables (e.g. currents or torques) equals zero. A
similar approach is known in electrical engineering as Kir-
choff’s current and voltage law.

There are two variables from theSIunitslibrary de-
scribing theFlange_aconnector (Fig. 13, 14). Thetau
variable (torque in the flange, class name:SIunits.Torque)
is of the flow type. This means that the sum of torque
values on the connector is equal to zero. On the other
hand, thephi variable (the rotation angle, class name:SIu-
nits.Angle) is not of the flow type and the rotation angle
values are equal on both sides of the flange connector. In
an acausal modelling language (such as Modelica), the di-
rection of the energy flow is not predefined and a con-
nector may be bi-directional. If a connector definition is
properly introduced, its power balance is satisfied.

The domain specific modelling tools are only strong
in their own discipline and do not support components
from other domains. Extra components may be often de-
rived as a set of ordinary differential equations (ODEs)
or differential algebraic equations (DAEs), preferably in a
canonical form:

dx/dt = f(x, u), y = g(x, u), (1)

where t is time, x and y are vectors of unknown vari-
ables (state and output, respectively).

Modelica accepts more general declarative equa-
tions:

f(dx/dt, x, y, u) = 0, (2)

rather than assignments. An efficient code for equations
will be generated automatically by a simulation package,
e.g. Dymola (2003). No particular variable needs to be
determined manually. The modelling effort is reduced
considerably, and tedious and error-prone manual manip-
ulations are avoided. The elements ofx are dynamic
variables since their time derivativesdx/dt appear in the
equations. The elements ofy are algebraic variables since

none of its derivatives appears in the equations. Modelica
is acausal and any variable may act as input, output or
control. This means that the same model can be used re-
gardless of which terminal of the model is chosen to act
as an input or an output.

Solving a DAE problem involves more than integrat-
ing to obtainx. The solution procedure involves also dif-
ferentiation if the Jacobian with respect todx/dt and y
is structurally singular. In order to be able to find a solu-
tion for y and dx/dt, it is then necessary to differentiate
between some equations.

4.3. Standard and Additions Libraries
of Modelica Models

The Modelica syntax is normally hidden from the user.
The models of standard components are typically avail-
able from the libraries received with the Modelica pack-
age or obtained elsewhere. There are two free libraries
distributed with Modelica: the standard library and the
additions library. Both of them have a hierarchical set of
models (Fig. 11). HyLib (Hydraulics library) and Power-
train library are options offered with the Dymola package
(Dymola, 2003). Other Modelica libraries (e.g. System-
Dynamics ThermoFluid, ExtendedPetriNet, FuzzyControl
and many more) are available on the Internet and may be
downloaded free from http://www.modelica.org/. Below
are some examples from the hierarchical set of standard
and additions library.

The rotational sublibrary (Fig. 12) belongs to the Me-
chanics subset of the standard Modelica library of models.

Each library model has fields where all parameters
needed for simulation are kept. The user can assign a
proper value to each field or default values will be used.

For example, the model of the gear (Fig. 13) from the
rotational sublibrary (Fig. 12) has the following fields:

• transmission ratio defined asgearRatio =
(flange_a.phi/flange_b.phi), default value being 1,

• eta—the gear efficiency due to friction between the
teeth,

• friction_pos(w,tau)—a positive sliding friction char-
acteristic at the velocityw ≥ 0,

• peak—the maximum friction torque at the zero ve-
locity,

• d—the (relative) gear damping [N·m·s/rad],

• gear elasticity(spring constant) [N·m/rad]

• totalbackslash[rad].
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Input/output variables are defined on both sides
of the gear. They are the flange angle (flange_a.phi;
flange_b.phi) and the flange torque (flange_a.tau;
flange_b.tau). The description of the connectorflange_a
was given above in Section 4.2 (Fig. 14).

4.4. Dymola

Dymola (dynamic modelling laboratory) (Dymola, 2003;
Mrozek, 2002a) is suitable for modelling various kinds
of physical objects. The new modelling methodology
is based on Modelica as a standard modelling tool. It
supports hierarchical model composition and composite
acausal connections. The usual need for manual conver-
sion of equations to a block diagram is removed by the
use of automatic formula manipulation. Dymola handles
large (e.g. 100,000 equations), complex multi-domain
models and runs on Windows, Linux and Unix. Dymola
supports:

• modelling by graphical model composition,

• simulation with symbolic pre-processing,

• user-defined model components,

• an interface to other programs including MATLAB,
SIMULINK, Real Time Workshop and dSPACE,

• 3D Animation,

• real-time and HiL simulation.

Dymola may read and generate models and data in
the MATLAB format. Simulation models can be exported
to SIMULINK and compiled by the Real Time Work-
shop for on-line simulation using the dSPACE equipment.
Models from Dymola and SIMULINK can be merged to
exploit advantages of both the environments if large and
complicated systems are designed.

5. Management of Interdisciplinary
Design Projects

The mechatronic design process can be split into the fol-
lowing general phases:

• requirement specification,

• analysis, conceptual and architecture design on a
high level of abstraction,

• detail level of design, prototyping and testing,

• implementation.

5.1. Requirement Specification, Analysis, Conceptual
and Architecture Level Designs

UML diagrams and scenarios are very well suited to sup-
port requirements analysis as well as conceptual and ar-
chitecture level design. Diagrams are used then to prepare
a detail level of design with other tools and to test and
verify prototypes and the final product. The requirement
elicitation phase may decide against a success or a fail-
ure of the project. Inconsistency and incompleteness of
the requirement specification should be found at an early
stage of the design, when project modification is relatively
cheap.

The analysis phase includes decomposition and the
architecture level design of the future system. Large-scale
strategic decisions about system implementation affect all
later steps of the design. The number and responsibility of
subsystems is decided, how they are interconnected, the
concurrency model used, etc.

5.2. Detail Level of Design, Prototyping and Testing

A virtual model of the future system is designed during
prototyping and the testing phase. Some UML diagrams
can be adopted for the automatic generation of a vir-
tual model of the future mechatronic system. The virtual
model is then prototyped in real time, in an environment
representing future working conditions of the final prod-
uct (Felgneret al., 2002; Ferreiraet al., 1999; Gawrysiak,
2002). AutoCAD, Mechanical Desktop, ADAMS and
other CAD/CAM software is used to design mechanical
systems (Bunuset al., 2002; Sinhaet al., 2000). Special-
ized tools are used to design electrical, hydraulical and
other subsystems. MATLAB, SIMULINK and STATE-
FLOW are used for modelling, simulation and prototyp-
ing (Uhl, 2002; Uhlet al., 2000; Uhlet al., 1999; Uhlet
al., 2000; Uhlet al., 1999; Uhlet al., 1998; Uhl and́Sliwa,
1996). New possibilities of physical modelling are given
by Modelica and Dymola, as described in this paper.

5.3. Integration Example

An interesting example of integrating the CAD/CAM soft-
ware (AutoCAD, Mechanical Desktop, ADAMS) with
modelling and simulation environments based on Mod-
elica is described in (Sinhaet al., 2000). A mechanical
model designed using the Mechanical Desktop is saved in
the DWG format. It contains all the information related
to the geometrical properties of the parts and their me-
chanical assembly. The translator described in (Bruegge
and Dutoit, 1999) uses the information to generate Mod-
elica block diagrams. This model is edited in the Dymola
or MathModelica environments and simulated. Any extra
blocks from Modelica or the SIMULINK library, as well
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as custom blocks prepared by the user, may by added to
the system.

This approach solves the problem of multi-domain
design and simulation as models from other disciplines
(DC motors, hydraulic elements, control) can be easily
added when the simulation model is edited. If simulation
results do not satisfy the requirements, part of the system
is redesigned using respective tools and a new model is
simulated again. This procedure is repeated until all re-
quirements are satisfied. Simulation with a virtual model
(as above) does not guarantee that the final product will
satisfy the requirements. This is mainly due to limited ac-
curacy of the models. The next step is on-line HiL (hard-
ware in the loop) simulation, using physical prototypes of
the chosen subsystems connected to special hardware (e.g.
in the dSPACE environment) and the virtual model of the
rest of the system in a computer memory. This important
step of the design is described in (Petko, 2002; Schlegelet
al., 2002; Uhl, 2002; Uhlet al., 2000; Uhlet al., 1999; Uhl
et al., 2000; Uhlet al., 1999; Uhlet al., 1998). This exam-
ple can be extended by using the UML language in early
steps of the design.

5.4. Implementation

During the implementation phase, prototyping equipment
should be replaced by a target system, which is normally
cheaper, smaller, easier to operate and more reliable in
industrial environments. Domain specialised CAD/CAM
and CAE tools are very useful during both the detail de-
sign and the implementation phase. For example, digi-
tal electronic and computer electronic parts of the mecha-
tronic system can be almost automatically designed in sil-
icon as the ASIC (application specific integrated circuit)
hardware using the FPGA (field programmable gate ar-
rays) chips and software from Xilinx or Altera (Petko,
2002).

6. Conclusions

Generally accepted tools for the modelling, simulation
and design of multidisciplinary products are not known.
Good candidate tools described in this paper are the UML
language for the design on a high level of abstraction and
Modelica for the modelling, simulation and prototyping of
interdisciplinary products on a medium level of abstrac-
tion. This permits concurrent designing of all subsystems
of future mechatronic products. It is important in mecha-
tronic design that all elements forming the final product be
treated as equally important during the entire design pro-
cess, irrespectively of their physical nature. This helps to
achieve synergy when several parts of different nature are
integrated in one product (Mrozek, 2002a; Uhl, 2002; Uhl
et al., 2000).

The UML provides means to capture system require-
ments and to perform designing on a high abstraction
level of visual modelling. The unification and precision
of notation is important for large and interdisciplinary
projects. The UML has facilities to help capture the struc-
ture and relationships and a rigorous definition of objects’
behaviour. The UML reveals gaps and inconsistencies in
the requirement specification and the description of the
dynamic behaviour of the future system at earlier stages
of software design (when it is cheaper and less time-
consuming to correct the design). Using the commercially
available CASE packages, the UML may greatly improve
the productivity of a design team by cutting down the de-
velopment time and improving the final product quality
(in accordance with the ISO 9000 standards).

Modelica and Dymola (it uses models from Model-
ica) are advanced modelling languages for complex physi-
cal systems. They offer several advantages over other lan-
guages:

• acausal modelling based on ordinary differential
equations (ODEs) and differential algebraic equa-
tions (DAEs),

• multi-domain modelling capability, which provides
the user with the possibility of combining electri-
cal, mechanical, thermodynamic, hydraulic and other
model components,

• object orientation and multiple inheritance facili-
tates the reuse of components and the evolution of
models,

• virtual component models are designed by creat-
ing and connecting a library and their own compo-
nents,

The UML is used on high abstraction level of design
and Modelica (probably integrated with SIMULINK and
the dSPACE environment) for modelling and prototyping
on a medium abstraction level of design. Concurrent de-
sign permits the integration of all subsystems of a mecha-
tronic product.
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Uhl T. andŚliwa Z. (1996):Selected topics in CAD/CAM sys-
tems and their applications. — Cracow Centre for Ad-
vanced Training in Information Technology, CCATIE, Cra-
cow.

UML for Real Time System Design, ISG 1998, available at:
http://www.isg.de/people/marc/UmlDocCollection/
UMLFrReal-TimeSystemsDesign/umlrt.html/

Received: 4 September 2002
Revised: 16 January 2003


