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The aim of this paper is to study regional gradient observability for a diffusion system and the reconstruction of the state
gradient without the knowledge of the state. First, we give definitions and characterizations of these new concepts and
establish necessary conditions for the sensor structure in order to obtain regional gradient observability. We also explore an
approach which allows for a regional gradient reconstruction. The developed method is original and leads to a numerical
algorithm illustrated by simulations.
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1. Introduction

The analysis of distributed systems leads to a set of con-
cepts, such as controllability, observability, stability, sta-
bilisability, detectability, (Lions, 1988; Curtain and Zwart,
1995), which allow to understand them better and conse-
quently enable us to steer them in a better way. This anal-
ysis can be made by means of the output and input pa-
rameter structures (El Jai and Pritchard, 1988). Recently,
the concept of regional analysis was introduced in (Zerrik,
1993; El Jaiet al., 1994), which offers important tools for
solving many real problems, particularly the concept of
regional observability, which refers to problems in which
the observed state of interest is not fully specified as a
state, but concerns only a regionω, a portion of the spa-
tial domain Ω on which the system is considered. It was
extended by Zerriket al. (1999) to the case where the
subregionω is a part of the boundary∂Ω of Ω.

In this paper we introduce a new concept, i.e., re-
gional gradient observability, where one is interested in
the knowledge of the state gradient only in a critical sub-
region of the system domain without the knowledge of
the state itself. The introduction of this concept is moti-
vated by real situations. For example, this is the case of
the determination of laminar boundary flux conditions de-
veloped in a steady state by a heated vertical plate. This
problem consists in studying the thermal transfer by nat-
ural convection which is generated by a uniformly heated
plate located in a small enclosure. Inside that enclosure,
differences in wall surface temperatures produce natural
convection movements.

The experimental device consists of an enclosure of
2 m× 1.5 m× 1 m with a specific wall and a temperature

measurement system. The active wall with natural con-
vection is successively composed (from the front to the
back side) of a resin material (4 mm thick), a copper plate
(5 mm thick) and a heat exchanger.

 

Fig. 1. Profile of the active plate.

In Fig. 1, we show the heat exchanger, which main-
tains a prescribed temperature on the back surface of the
plate by means of hot water circulation. All the sides
of this active wall are insulated (adiabatic conditions) ex-
cept for the front surface. The objective is to find the un-
known boundary convective condition on a partΓ of the
front surface of the active plate using measurements given
by internal thermocouples, cf. (Sparrow, 1963; Cuniasse-
Langhans, 1998).

Considering directly this boundary problem seems to
be difficult, but it can be solved by reconstructing the gra-
dient in an internal subregionω of the plate such thatΓ
is a part of the boundary ofω. More precisely, let (S) be
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a linear system evolving onΩ, with a suitable state space,
and suppose that the initial statey0 and its gradient∇y0
are unknowns. Assume that the measurements are given
by means of an output function (depending on the number
and the structure of the sensors). The problem concerns
the reconstruction of the initial gradient∇y0 in a subre-
gion ω located in the interior of the system domainΩ.

The paper is organized as follows: Section 2 is de-
voted to the presentation of the system considered, as well
as to definitions and characterizations of this new con-
cept. In the third section we establish the relation between
regional gradient observability and sensors. Section 4 is
focused on the regional reconstruction of the initial state
gradient, and various types of sensors are discussed. In
the last section we develop a numerical approach, which
is illustrated by simulations that lead to some conjectures.

2. Regional Gradient Observability

2.1. Problem Statement

Let Ω be an open bounded subset ofRn(n = 1, 2, 3)
with a smooth boundary∂Ω and a subregionω of Ω.
For T > 0, we write Q = Ω×]0, T [,Σ = ∂Ω×]0, T [.
Consider a parabolic system defined by

∂y

∂t
(x, t) = Ay(x, t) in Q,

y(ξ, t) = 0 in Σ,

y(x, 0) = y0(x) in Ω,

(1)

with the measurements given by the output function:

z(t) = Cy(t). (2)

We have

A =
n∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
with aij ∈ D(Q̄). Suppose that−A is elliptic, i.e., there
existsα > 0 such that

n∑
i,j=1

aijξiξj ≥ α
n∑

j=1

|ξj |2 a.e. onQ

∀ ξ = (ξ1, . . . , ξn) ∈ Rn.

This operator is a second-order differential linear oper-
ator which generates a strongly continuous semigroup
(S(t))t≥0 on the Hilbert spaceL2(Ω) endowed with the
inner product

〈u, v〉L2(Ω) =
∫

Ω

u(x)v(y) dxdy

and the norm

‖u‖2L2(Ω) =
∫

Ω

∣∣u(x)∣∣2 dx.

The adjointA∗ is defined by

A∗ =
n∑

i,j=1

∂

∂xi

(
aji

∂

∂xj

)

andC: H1
0 (Ω) −→ Rq is linear and depends on the con-

sidered sensor structure. For the case of an unbounded
C, care must be taken sinceD(C) ⊂ H1

0 (Ω) and
S(t)(D(C)) ⊂ D(C), ∀ t ≥ 0 (see El Jai and Pritchard,
1988, p. 43, Sect. 3.2).

We assume here thaty0 ∈ H1
0 (Ω). The system (1) is

autonomous and can be interpreted in the mild sense with
the solution y(t) = S(t)y0, cf. (Curtain and Pritchard,
1978, p. 31, Def. 2.23; Curtain and Zwart, 1995, p. 104,
Def. 3.1.4). The initial statey0 and its gradient are sup-
posed to be unknown.

For a regionω ⊂ Ω assumed to be open, regu-
lar and of a positive Lebesgue measure, the problem of
regional gradient observability consists in directly recon-
structing the initial gradient∇y0 in the subregionω with
the knowledge of (1) and (2).

We first recall that a sensor is defined by the couple
(D, f), whereD is its spatial support represented by a
nonempty part ofΩ̄ and f represents the distribution of
the sensing measurements onD. Depending on the nature
of D and f , we could have various types of sensors. A
sensor may be pointwise ifD = {b} with b ∈ Ω and
f = δ(· − b), where δ is the Dirac mass concentrated at
b. In this case the operatorC is unbounded and the output
function (2) can be written in the form

z(t) = y(b, t). (3)

It may be zonal whenD ⊂ Ω and f ∈ L2(D). The
output function (2) can be written in the form

z(t) =
∫

D

y(x, t)f(x) dx. (4)

For the definitions and properties of strategic and re-
gional strategic sensors, we refer the reader to (El Jai and
Pritchard, 1988; El Jaiet al., 1993; Zerrik, 1993; Zerriket
al., 1999). The observation space isO = L2(0, T ; Rq).
The system (1) is autonomous and (2) allows us to write
z(t) = CS(t)y0(x). We define by

K :

 X −→ O,

h −→ CS(·)h



Gradient observability for diffusion systems 141

the operator onX = H1
0 (Ω), which is linear and bounded

in the zonal case, with the adjoint defined by

K∗ :


O −→ X,

z∗ −→
∫ T

0

S∗(τ)C∗z∗(τ) dτ.

Consider the operator

∇ :


H1

0 (Ω) −→
(
L2(Ω)

)n
,

y −→ ∇y =
(
∂y

∂x1
, . . . ,

∂y

∂xn

)
.

Its adjoint∇∗ is given by

∇∗ :


(
L2(Ω)

)n −→ H1
0 (Ω),

y −→ ∇∗y = v,

wherev is a solution of the Dirichlet problem ∆v = −div(y) in Ω,

v = 0 on ∂Ω.

For a nonempty subsetω of Ω, we consider the op-
erators

χω :


(
L2(Ω)

)n −→ (
L2(ω)

)n
,

y −→ y|ω

and

χ̃ω :

 L2(Ω) −→ L2(ω),

y −→ y|ω .

Their adjoints are respectively denoted byχ∗ω and χ̃∗ω,
and are defined by

χ∗ω :


(
L2(ω)

)n −→ (
L2(Ω)

)n
,

y −→ χ∗ωy =

 y|ω in ω,

0 in Ω \ ω,

and

χ̃∗ω :


L2(ω) −→ L2(Ω),

y −→ χ̃∗ωy =

 y|ω in ω,

0 in Ω \ ω.

We recall that the system (1) is said to be exactly (resp.
approximately) regionally observable ifIm (χ̄ωK

∗) =
H1(ω) (resp. Im (χ̄ωK∗) = H1(ω)), where χ̄ω:

H1(Ω) −→ H1(ω) is the restriction toω. For more de-
tails, we refer the reader to (El Jaiet al., 1993; Zerrik,
1993).

The idea is based on the existence of an operator
H: O −→ (L2(ω))n such thatHz = ∇y0. This is a
natural extension of the observability concept (El Jai and
Pritchard, 1988, p. 45). Then we introduce the operator
H = χω∇K∗ from O into (L2(ω))n.

Definition 1. The system (1) together with the out-
put (2) is said to beapproximately regionally gradient
observablein ω or approximatelyG-observablein ω if
KerH∗ = {0}.

We see that if a system is approximatelyG-
observable, then there is a one-to-one relationship be-
tween the output and the initial gradient, viz. ifz is given
and y0 satisfiesz = CS(·)y0, then ∇y0 is unique. In
many physical problems this concept is not strong enough
since if the outputz is slightly perturbed, then the cor-
responding gradient of the initial state may considerably
vary. We therefore introduce the following continuity hy-
pothesis.

Definition 2. The system (1) together with the output (2)
is said to beexactly regionally gradient observablein ω
or exactlyG-observablein ω if Im (H) = (L2(ω))n.

This problem is often encountred in many physical
applications. This is the case of heat transfer (the Fourier
law), the exchange concentration problem (the Fick law)
and other problems, such as material deformation (or dis-
tortion), where one would like to know the gradient evo-
lution in a subregion of the evolution domain.

It is clear that

• ApproximateG-observability inω amounts to the
condition [H∗z∗ = 0 ⇒ z∗ = 0], which is equiva-
lent to the dual conditionImH = (L2(ω))n.

• If a system is exactly (resp. approximately) region-
ally observable inω (El Jaiet al., 1994), then it is ex-
actly (resp. approximately) regionallyG-observable
in ω. Indeed, if the system (1) is observable inω,
then we can reconstruct the initial statey0 using one
of the approaches given in (Zerriket al., 1999) and
then deduce its gradient∇y0 in ω.

• If a system is exactly (resp. approximately)G-
observable inω, it is exactly (resp. approximately)
G-observable inω1 for all ω1 ⊂ ω, but the
following example outlines a system which may
be regionally approximatelyG-observable in ω
but not approximatelyG-observable in the whole
domainΩ.
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2.2. Counter-example

Let Ω =]0, 1[×]0, 1[. Consider the following two-
dimensional system:

∂y

∂t
(x1, x2, t) =

∂2y

∂x2
1

(x1, x2, t)

+
∂2y

∂x2
2

(x1, x2, t) in Q,

y(ζ, η, t) = 0 on Σ,

y(x1, x2, 0) = y0(x1, x2) in Ω.

(5)

The measurements are given by the output

z(t) =
∫

D

y(x1, x2, t)f(x1, x2) dx1 dx2,

where D = {1/2}×]0, 1[ is the sensor support and
f(x1, x2) = sinπx2 is the function measure.

Let ω =]0, 1[×]1/6, 2/6[ and g(x1, x2) =
(cosπx1 sin 2πx2, sinπx1 cos 2πx2) ∈ (L2(Ω))2 be the
gradient to be observed. The operator

A =
∂2

∂x2
1

+
∂2

∂x2
2

generates a semigroup(S(t))t≥0 on L2(Ω), given by

S(t)y =
∞∑

i,j=1

eλijt〈y, ϕij〉L2(Ω)ϕij ,

where ϕij(x1, x2) = 2 sin(iπx1) sin(jπx2) and λij =
−(i2 + j2)π2.

Proposition 1.
The gradient g is not approximatelyG-observable in
the whole domainΩ. However, it is approximatelyG-
observable in the subregionω.

Proof. To prove thatg is not approximatelyG-observable
in Ω, we must show thatg ∈ KerK∇∗. We have

K∇∗(g) =
∞∑

i,j=1

eλijt〈∇∗g, ϕij〉L2(Ω)〈ϕij , f〉L2(D)

=
∞∑

i,j=1

eλijt 6π
λij

∫ 1

0

sin(iπx1) sin(πx1) dx1

×
∫ 1

0

sin(jπx2) sin(2πx2) dx2

× sin
(
iπ

2

)∫ 1

0

sin(jπx2) sin(πx2) dx2 = 0.

Now, we show that the restriction ofg to the subregion
ω is approximatelyG-observable inω. We get

K∇∗χ∗ωχω(g)

=
∞∑

i,j=1

eλijt〈∇∗χ∗ωχω(g), ϕij〉L2(Ω)〈ϕij , f〉L2(D)

=
∞∑

i,j=1

eλijt 12π
λij

∫ 1

0

sin(iπx1) sin(πx1) dx1

×
∫ 2

6

1
6

sin(jπx2) sin(2πx2) dx2

× sin
(
iπ

2

)∫ 1

0

sin(jπx2) sin(πx2) dx2

=
(2− 3

√
3)

4π2
e−2π2t 6= 0

2.3. Characterizations

We can characterizeG-observability inω by the follow-
ing results.

Proposition 2. 1. The system (1) with the output (2) is
exactlyG-observable inω if and only if, there exists
c > 0 such that, for allz∗ ∈ (L2(ω))n,

‖z∗‖(L2(ω))n ≤ c‖K∇∗χ∗
ω
z∗‖O.

2. The system (1) together with the output (2) is approx-
imatelyG-observable inω if and only if the opera-
tor Nω = HH∗ is positive definite.

Proof. We use standard functional analysis tools:

1. Let h = Id(L2(ω))n and g = χ
ω
∇K∗. Since

the system is exactlyG-observable inω, we have
Imh ⊂ Im g, which is equivalent to the fact that
there existsc > 0 such that

‖h∗z∗‖(L2(ω))n ≤ c‖g∗z∗‖L2(0,T ;Rq),

∀ z∗ ∈
(
L2(ω)

)n
.

2. Let z∗ ∈ (L2(ω))n such that〈Nωz
∗, z∗〉(L2(ω))n =

0. Then ‖H∗z∗‖O = 0 and thereforez∗ ∈ kerH∗.
Consequently,z∗ = 0, i.e., Nω is positive definite.

Conversely, let z∗ ∈ (L2(ω))n such that
H∗z∗ = 0. Then 〈H∗z∗,H∗z∗〉O = 0 and thus
〈Nωz

∗, z∗〉(L2(ω))n = 0. Hencez∗ = 0, i.e., the system
is approximatelyG-observable.
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Now, assume that the system (1) is notG-observable
in Ω and let (ϕ̄i)i∈Nn be a basis in(L2(Ω))n. Let I ⊂
Nn be such thatkerK∇∗ = span{(ϕ̄i)i∈I} and J =
Nn\I.

Proposition 3. The following properties are equivalent:

1. The system (1) is approximatelyG-observable inω.

2. span{(χωϕ̄i)i∈J} = (L2(ω))n.

3. If y ∈ (L2(ω))n is such that〈y, χωϕ̄i〉(L2(ω))n = 0
for all i ∈ J , then y = 0.

4. If
∑
i∈I

aiϕ̄i = 0 in Ω\ω, then ai = 0 for all i ∈ I.

Proof.

1⇒2 Let y ∈ (L2(ω))n. Then for
ε > 0 there exists z ∈ O such that
‖y − χω∇K∗z‖(L2(ω))n ≤ ε. But ∇K∗z =∑

i∈Nn〈∇K∗z, ϕ̄i〉(L2(Ω))n ϕ̄i =
∑

i∈J〈z,K∇∗ϕ̄i〉Oϕ̄i

and thusχω∇K∗z =
∑

i∈J〈z,K∇∗ϕ̄i〉Oχωϕ̄i. Then
‖y −

∑
i∈J〈z,K∇∗ϕ̄i〉Oχωϕ̄i‖(L2(ω))n ≤ ε and hence

y ∈ {χωϕ̄i}i∈J .

2⇒3 Let y ∈ (L2(ω))n. For anyε > 0, there exists
αj(j ∈ J) such that‖y −

∑
j∈J αjχωϕ̄j‖2(L2(ω))n < ε

with 〈y, χωϕ̄j〉(L2(ω))n = 0, ∀ j ∈ J . We deduce that
‖y‖2(L2(ω))n < ε for all ε > 0. Thus y = 0.

3⇒4 Let
∑

i∈I aiϕ̄i = 0 in Ω\ω. Considery =
χω(

∑
i∈I aiϕ̄i). For j ∈ J , we have〈y, χωϕ̄j〉(L2(ω))n

=
∑

i∈I ai〈ϕ̄i, ϕ̄j〉(L2(Ω))n = 0. Since y = 0, we get∑
i∈I aiϕ̄i = 0 in Ω and ai = 0, ∀ i ∈ I.

4⇒1 Considery ∈ (L2(ω))n such thatK∇∗χ∗ωy
= 0. We haveχ∗ωy ∈ (L2(Ω))n and thenK∇∗χ∗ωy
= K∇∗(

∑
i∈Nn〈y, χωϕ̄i〉(L2(ω))n ϕ̄i) = K∇∗(

∑
i∈J

〈y, χωϕ̄i〉(L2(ω))n ϕ̄i) = 0. Therefore
∑

j∈J

〈y, χωϕ̄j〉(L2(ω))n ϕ̄j ∈ span{(ϕ̄i)i∈I} and thus
〈y, χωϕ̄j〉(L2(ω))n = 0, ∀ j ∈ J . Then χ∗ωy =∑

i∈I〈y, χωϕ̄i〉(L2(ω))n ϕ̄i = 0 in Ω\ω. From the
assumption we have〈y, χωϕ̄i〉(L2(ω))n = 0, ∀ i ∈ I.
Hencey = 0.

Based on Property 4 of Proposition 2, it is easy to
show the following result:

Corollary 1. Under the hypotheses of Proposition 2, the
system (1) is approximatelyG-observable in allω ⊂ Ω
such that〈ϕ̄i, ϕ̄j〉(L2(ω))n = 0, ∀ i, j ∈ I, i 6= j.

Proof. To deduce the result from Proposition 3, take∑
i∈I aiϕ̄i = 0 in Ω\ω. Then we only need to show

that ai = 0 for all i ∈ I. Let y =
∑

i∈I aiϕ̄i in Ω and
i0 ∈ I. Then

〈y, ϕ̄i0〉(L2(Ω))n =
∑
i∈I

ai〈ϕ̄i, ϕ̄i0〉(L2(Ω))n = ai0 . (6)

Since y = 0 in Ω\ω, under the assumptions of Corol-
lary 1 we have

〈y, ϕ̄i0〉(L2(Ω))n =
∑
i∈I

ai〈ϕ̄i, ϕ̄i0〉(L2(ω))n

= ai0‖ϕ̄i0‖2(L2(ω))n . (7)

Combining (6) and (7), we obtainai = 0 for all
i ∈ I.

3. Gradient Strategic Sensors

The aim of this section is to link the regional gradient ob-
servability with the sensors structure. Consider the system
(1) observed byq sensors(Di, fi)1≤i≤q, which may be
pointwise or zonal.

Definition 3. A sensor(D, f) (or a sequence of sensors)
is said to begradient strategicin ω if the observed system
is approximatelyG-observable inω. Such a sensor will
be calledG-strategic inω.

We assume that the operatorA has a complete set
of eigenfunctions inH1

0 (Ω), denoted by(ϕi), which is
orthonormal inL2(ω) and the associated eigenvaluesλi

are of multiplicitiesri. Assume also thatr = supi∈I ri
is finite andA has constant coefficients.

Proposition 4. If a sequence of sensors(Dk, fk)1≤k≤q

is G-strategic in ω, then q ≥ r and rankMm = rm,
where

(Mm)i,j =



n∑
k=1

∂ϕmj

∂xk
(bi) in the pointwise case,

n∑
k=1

〈
∂ϕmj

∂xk
, fi

〉
L2(Di)

in the zonal case

for 1 ≤ i ≤ q and 1 ≤ j ≤ rm.

The proof is given in Appendix.

Remark 1. 1. Proposition 4 implies that the required
number of sensors is greater than or equal to the
largest multiplicity of the eigenvalues.

2. By infinitesimally deforming the domain, the multi-
plicity of the eigenvalues can be reduced to one (El
Jai and El Yacoubi, 1993, p. 95, Sec. 3). Conse-
quently,G-observability inω can be achieved using
only one sensor.
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3. In the observability and regional observability cases,
the above conditions are also sufficient, c.f. (Curtain
and Zwart, 1995, p. 162, Thm. 4.2.1; El Jaiet al.,
1993), but here we have only necessary conditions.

4. The above result can easily be extended to the case
of pointwise sensors.

From Formula (A3) in Appendix, we deduce the result
below.

Corollary 2. In the one-dimensional case, the system
(1) together with the output (2) is approximatelyG-
observable if and only ifq ≥ r and rankMm = rm
whereMm is given in Proposition 4.

Example 1. Consider the system described by the
parabolic equation
∂y

∂t
(x, t)− ∂2y

∂x2
(x, t) = 0 in ]0, 1[×]0, T [,

y(0, t) = y(1, t) = 0 on ]0, T [,

y(x, 0) = y0(x) in ]0, 1[,

(8)

with the outputz(t) = y(b, t), b ∈]0, 1[ and t ∈]0, T [.
The system is observable on]0, 1[ (El Jai and Pritchard,
1988, p. 108, Prop. 2.26) if and only if

b 6∈ S =
∞⋃

m=1

{
k

m
| 1 ≤ k < m

}
.

It is G-observable in]0, 1[ if and only if

b 6∈ SG =
∞⋃

m=1

{
2k + 1

2m
| k ∈ [0,m− 1] ∩ N

}
.

We haveSG ⊂ S, which shows that there exist sensors
which areG-strategic without being strategic. �

4. Regional Gradient Reconstruction

In this section we give an approach which allows us the
reconstruction of the initial state gradient of the system (1)
in ω. This approach is an extension of the H.U.M. method
developed by Lions (Lions, 1988) and does not take into
account what must be the residual initial gradient in the
subregionΩ\ω. Consider the set

F =
{
h ∈

(
L2(Ω)

)n | h = 0 in Ω \ ω
}

∩
{
∇f | f ∈ H1

0 (Ω)
}
.

For φ0 ∈ H1
0 (Ω), consider the system
∂φ

∂t
(x, t) = Aφ(x, t) in Q,

φ(ξ, t) = 0 on Σ,

φ(x, 0) = φ0(x) in Ω,

(9)

which admits a unique solutionφ ∈ L2(0, T ;H1
0 (Ω)) ∩

C(Ω×]0, T [), cf. (Lions and Magenes, 1968, Ex. 1,
pp. 263–264).

4.1. Pointwise Sensors

We consider the system (1) with the output function (3).
For φ̃0 ∈ F , there exists a uniqueφ0 ∈ H1

0 (Ω) such
that φ̃0 = ∇φ0. Then we consider the semi-norm onF
defined by

φ̃0 −→ ‖φ̃0‖F =

[∫ T

0

( n∑
k=1

∂φ

∂xk
(b, t)

)2

dt

] 1
2

, (10)

where φ is the solution to (9). The solutionψ1 of the
equation

∂ψ1

∂t
(x, t) = −A∗ψ1(x, t)

−
n∑

k=1

∂φ

∂xk
(b, t)δ(x− b) in Q,

∂ψ1

∂νA∗
(ξ, t) = 0 on Σ,

ψ1(x, T ) = 0 in Ω

(11)

is in L2(0, T ;H1
0 (Ω)), cf. (Lions and Magenes, 1968,

Ex. 2, p. 265).

When the seminorm (10) is a norm, we also denote
by F the completion ofF and consider the operator

Λ :

 F 7−→ F∗,

φ̃0 7−→ P
(
Ψ1(0)

)
,

where P = χ∗ωχω and Ψ1(0) = (ψ1(0), . . . , ψ1(0)).
Introduce the system

∂ψ

∂t
(x, t) = −A∗ψ(x, t)

−
n∑

k=1

∂y

∂xk
(b, t)δ(x− b) in Q,

∂ψ

∂νA∗
(ξ, t) = 0 on Σ,

ψ(x, T ) = 0 in Ω.

(12)

If φ̃0 is chosen such thatψ1(0) = ψ(0) in ω, then the
system (12) looks like the adjoint of the system (1), and
the regional gradient observability amounts to the condi-
tions for solving the equation

Λ
(
φ̃0) = P (Ψ(0)

)
, (13)

where Ψ(0) = (ψ(0), . . . , ψ(0)) with ψ being the solu-
tion of (12).
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Proposition 5. If the sensor(b, δb) is G-strategic inω,
then Eqn. (13) has a unique solutioñφ0, which is the ini-
tial state gradient to be observed inω.

Proof. (a) Let us show first that if the system (1) is ap-
proximately G-observable, then (10) defines a norm on
F . Consider a basis(ϕi) of the eigenfunctions ofA.
Without loss of generality, we suppose that the associated
eigenvaluesλi are of multiplicity one.

The mapping (10) defines a norm onF . Indeed,
‖φ̂0‖F = 0 gives

∞∑
i=1

eλit〈φ0, ϕi〉L2(Ω)

n∑
k=1

∂ϕi

∂xk
(b) = 0 a.e. on (0, T ).

Then

〈φ0, ϕi〉L2(Ω)

n∑
k=1

∂ϕi

∂xk
(b) = 0, ∀ i

and since the sensor(b, δb) is G-strategic in ω (cf.
Proposition (4)), we obtain

n∑
k=1

∂ϕi

∂xk
(b) 6= 0, ∀ i.

Then 〈φ0, ϕi〉L2(Ω) = 0, ∀ i. Consequently,φ0 = 0, and

thus φ̃0 = 0.

(b) Let us prove now that (13) has a unique solution.
Equation (13) has a unique solution because the opera-
tor Λ is an isomorphism. Indeed, multiplying (11) by
∂φ/∂xk and integrating the result overQ, we obtain〈

∂φ

∂xk
(x, t),

∂ψ1

∂t
(x, t)

〉
L2(Q)

=
〈
∂φ

∂xk
(x, t),−A∗ψ1(x, t)

〉
L2(Q)

−

〈
∂φ

∂xk
(x, t),

n∑
l=1

∂φ

∂xl
(b, t)δ(x− b)

〉
L2(Q)

which gives[〈
∂φ

∂xk
(x, t), ψ1(x, t)

〉
L2(Ω)

]T

0

−
〈

∂

∂xk
(
∂φ

∂t
(x, t)), ψ1(x, t)

〉
L2(Q)

=
〈
∂φ

∂xk
(x, t),−A∗ψ1(x, t)

〉
L2(Q)

−
∫ T

0

∂φ

∂xk
(b, t)

n∑
l=1

∂φ

∂xl
(b, t) dt.

With the final condition, we obtain

−
〈
∂φ

∂xk
(x, 0), ψ1(x, 0)

〉
L2(Ω)

=
〈
A
∂φ

∂xk
(x, t), ψ1(x, t)

〉
L2(Q)

−
〈
∂φ

∂xk
(x, t), A∗ψ1(x, t)

〉
L2(Q)

−
∫ T

0

∂φ

∂xk
(b, t)

n∑
l=1

∂φ

∂xl
(b, t) dt.

Using the Green formula, we obtain〈
∂φ

∂xk
(x, 0), ψ1(x, 0)

〉
L2(Ω)

=
∫ T

0

∂φ

∂xk
(b, t)

n∑
l=1

∂φ

∂xl
(b, t) dt.

Then
n∑

k=1

〈
∂φ0

∂xk
(x), ψ1(x, 0)

〉
L2(Ω)

=
n∑

k=1

∫ T

0

∂φ

∂xk
(b, t)

n∑
l=1

∂φ

∂xl
(b, t) dt.

Hence〈
φ̃0,Λ(φ̃0)

〉
=
∫ T

0

(
n∑

l=1

∂φ

∂xl
(b, t)

)2

dt,

which proves thatΛ is an isomorphism and, conse-
quently, (13) has a unique solution which corresponds
to the state gradient to be estimated in the subre-
gion ω.

4.2. Zonal Sensor

Here we consider the system (1) with the output function
(4). For φ̃0 in F the system (9) produces the solutionφ.
We consider the seminorm onF defined by

φ̃0−→‖φ̃0‖F =

∫ T

0

(
n∑

k=1

〈
∂φ

∂xk
(t), f

〉
L2(D)

)2

dt

1
2

(14)

and the system

∂ψ1

∂t
(x, t) = −A∗ψ1(x, t)−

n∑
k=1

〈
∂φ

∂xk
(t), f

〉
L2(D)

×f(x)χD in Q,

∂ψ1

∂νA∗
(ξ, t) = 0 on Σ,

ψ1(x, T ) = 0 in Ω.

(15)
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We consider the operator

Λ :

{
F 7−→ F∗,

φ̃0 7−→ P
(
Ψ1(0)

)
,

and the system

∂ψ

∂t
(x, t) = −A∗ψ(x, t)−

n∑
k=1

〈
∂y

∂xk
(t), f

〉
L2(D)

×f(x)χD in Q,

∂ψ

∂νA∗
(ξ, t) = 0 on Σ,

ψ(x, T ) = 0 in Ω.

(16)

Then regional gradient observability amounts to the solv-
ability of the equation

Λ(φ̃0) = P
(
Ψ(0)

)
, (17)

where Ψ = (ψ(0), . . . , ψ(0)) and ψ is the solution of
the system (16).

Proposition 6. If the sensor(D, f) is G-strategic inω,
then (17) has a unique solution which is the gradient of
the initial state to be observed inω.

Proof. (Sketch) With some minor technical modifications,
the proof is similar to the pointwise case. Indeed, it pro-
ceeds in two steps.

Step 1.‖φ̃0‖F = 0 gives

∞∑
i=1

eλit 〈φ0, ϕi〉L2(Ω)

×
n∑

k=1

〈
∂ϕi

∂xk
, f

〉
L2(D)

= 0 a.e. on (0, T ).

Using
n∑

k=1

〈
∂ϕi

∂xk
, f

〉
L2(D)

6= 0,

we obtainφ̃0 = 0.

Step 2.As in the pointwise case, we multiply the system
(15) by ∂φ/∂xk and integrate the result overQ and then,
using the Green formula, we obtain

〈
φ̃0,Λ(φ̃0)

〉
=
∫ T

0

(
n∑

l=1

〈
∂φ

∂xl
(t), f

〉
L2(D)

)2

dt,

which proves thatΛ is an isomorphism. Consequently,
Eqn. (17) has a unique solution which corresponds to the
state gradient to be estimated in the subregionω.

5. Numerical Approach

We consider the system (1) observed by a pointwise sen-
sor located atb ∈ Ω. In the previous section, it was shown
that the regional observability of the initial gradient inω
amounts, in all cases, to the solvability of the equation

Λ
(
φ̃0) = P (Ψ(0)

)
. (18)

The solution of this equation can be obtained very easily
when we can calculate the componentsΛij of Λ in a
suitable basis(ϕi)i∈N of (L2(Ω))n. The problem will
then be approximated by the solution of the linear system

M∑
j=1

Λij φ̃0j =
(
P (Ψ(0))

)
i
, i = 1, . . . ,M, (19)

where (P (Ψ(0)))i are the components ofP (Ψ(0)) in
the basis considered.

Let (ϕi)i∈N be a complete set of eigenfunctions
of the operatorA in H1

0 (Ω), which is orthonormal in
L2(Ω). We also consider a basis of(L2(Ω))n denoted
by (ϕi)i∈N. Then the componentsΛij are solutions of
the equation

∞∑
i,j=1

〈(
∂ϕk

∂x1
, . . . ,

∂ϕk

∂xn

)
, ϕi

〉

×
〈(

∂ϕl

∂x1
, . . . ,

∂ϕl

∂xn

)
, ϕj

〉
Λij

=
e(λk+λl)T − 1
λk + λl

n∑
m,p=1

∂ϕk

∂xm
(b)

∂ϕl

∂xp
(b),

k, l = 1, . . . ,∞.

(20)

Indeed, in Section 4 it was demonstrated that

〈
Λφ̃0, φ̃0

〉
=
∫ T

0

 n∑
j=1

∂φ

∂xj
(b, t)

2

dt.

From

φ(t) =
∞∑

m=1

eλmt 〈φ0, ϕm〉L2(Ω) ϕm

we have

n∑
j=1

∂φ

∂xj
(b, t)

=
n∑

j=1

∞∑
m=1

eλmt 〈φ0, ϕm〉L2(Ω)

∂ϕm

∂xj
(b).
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Then∫ T

0

( n∑
j=1

∂φ

∂xj
(b, t)

)2

dt

=
∞∑

p,m=1

〈φ0, ϕp〉L2(Ω) 〈φ0, ϕm〉L2(Ω)

×
n∑

j,l=1

∂ϕp

∂xl
(b)

∂ϕm

∂xj
(b)

e(λm+λp)T − 1
λm + λp

. (21)

On the other hand, since∂φ0/∂xj ∈ L2(Ω), we can ex-
pressφ̃0 in the basis (ϕi):

φ̃0 =
∞∑

i=1

〈(
∂φ0

∂x1
, . . . ,

∂φ0

∂xn

)
, ϕi

〉
(L2(Ω))n

ϕi.

Therefore

φ̃0 =
∞∑

i=1

∞∑
k=1

〈φ0, ϕk〉
〈(

∂ϕk

∂x1
, . . . ,

∂ϕk

∂xn

)
, ϕi

〉
(L2(Ω))n

ϕi

=
∞∑

k=1

〈φ0, ϕk〉
∞∑

i=1

〈(
∂ϕk

∂x1
, . . . ,

∂ϕk

∂xn

)
, ϕi

〉
(L2(Ω))n

ϕi.

Thus〈
Λφ̃0, φ̃0

〉
=

∞∑
m,p=1

〈φ0, ϕm〉L2(Ω) 〈φ0, ϕp〉L2(Ω)

×
( ∞∑

i,j=1

〈(
∂ϕm

∂x1
, . . . ,

∂ϕm

∂xn

)
, ϕi

〉
(L2(Ω))n

×
〈

(
∂ϕp

∂x1
, . . . ,

∂ϕp

∂xn

)
, ϕj

〉
(L2(Ω))n

×
〈
Λϕi, ϕj

〉
(L2(Ω))n

)
. (22)

Let Λij =
〈
Λϕi, ϕj

〉
(L2(Ω))n . From (21) and (22), we

obtain (20).

Remark 2. 1. In the case of a zonal sensor(D, f), the
same derivations give

∞∑
i,j=1

〈(
∂ϕm

∂x1
, . . . ,

∂ϕm

∂xn

)
, ϕi

〉
(L2(Ω))n

×
〈(

∂ϕp

∂x1
, . . . ,

∂ϕp

∂xn

)
, ϕj

〉
(L2(Ω))n

Λij

=
e(λm+λp)T − 1
λm + λp

n∑
k,l=1

〈
∂ϕp

∂xk
, f

〉
L2(D)

×
〈
∂ϕm

∂xl
, f

〉
L2(D)

for m, p = 1, . . . ,∞.

2. In the case of many pointwise sensors(bs, δ(· −
bs))s=1,...,q, the components ofΛ are solutions of
the equation

∞∑
i,j=1

〈(
∂ϕm

∂x1
, . . . ,

∂ϕm

∂xn

)
, ϕi

〉
(L2(Ω))n

×
〈(

∂ϕp

∂x1
, . . . ,

∂ϕp

∂xn

)
, ϕj

〉
(L2(Ω))n

Λij

=
e(λm+λp)T − 1
λm + λp

×
q∑

s=1

n∑
k,l=1

∂ϕm

∂xk
(bs)

∂ϕp

∂xl
(bs)

for m, p = 1, . . . ,∞.

Summing up, regional gradient reconstruction is ob-
tained via the following simplified steps:

1. The solution of (12) givesψ(x, 0).

2. The components of the operatorΛ constitute the so-
lution of (20).

3. With Steps 1 and 2, the system (19) givesφ̃0, which
corresponds to the initial gradient to be observed
in ω.

6. Simulations

In this section we present a numerical example that leads
to some conjectures related to the best sensor location, the
results being related to the choice of the subregion and the
gradient to be observed.

Let Ω =]0, 1[ and consider the system
∂y

∂t
(x, t)− 0.01

∂2y

∂x2
(x, t) = 0 in Q,

y(0, t) = y(1, t) = 0 on ]0, T [,

y(x, 0) = y0(x) in Ω.

(23)

The output is given by means of a pointwise sensor
z(t) = y(b, t) with b = 0.91 and T = 2.

Let ω = [0.15, 0.85] and g(x) = 2x(x−1)(2x−1)
be the initial gradient to be observed inω. Figure 2 shows
how close the estimated gradientg̃ is to the initial gra-
dient g which is estimated with the reconstruction error
‖g̃ − g‖2L2(ω) = 1.398 × 10−4. The resulting numerical
method is efficient provided that the truncation order is
small.



E.H. Zerrik and H. Bourray148

 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

-0,2

-0,1

0,0

0,1

0,2

Fig. 2. Actual initial gradientg (dashed line) and the estimated
gradient g̃ (continuous line) inω.

6.1. Relation between the Estimated Gradient Error
and the Pointwise Sensor Location

In this subsection we study numerically the evolution of
the observer gradient error with respect to the sensor loca-
tion.

 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

3890261 ,73

3890261 ,74

3890261 ,75

3890261 ,76

3890261 ,77

x[10 -10]

Fig. 3. Evolution of the estimated gradient error with respect to
the sensor location.

The following conclusions can be drawn from Figure 3:

• For a given subregion and an initial gradient, there is
an optimal sensor location (optimal in the sense that
it leads to a very good estimate of the initial gradi-
ent).

• When the sensor is located sufficiently far from the
subregionω, the gradient error is constant for any
location.

• The worse observed locations correspond to nonG-
strategic sensors onΩ =]0, 1[, where

b ∈
{

2k + 1
2m

| k ∈ [0,m− 1] ∩ N, 1 ≤ m ≤ 5
}

(the order of the approximation of the system is five).

6.2. Relation between the Subregion Area
and the Estimated Gradient Error

Here we study numerically the dependence of the gradi-
ent reconstruction error on the subregion area. Table 1
shows that both the error and the subregion area increase
or decrease. This means that the larger the region, the
greater the error. G-observability is realized by means of
one pointwise sensor located atb = 0.91. The results are
similar for other types of sensors.

Table 1. Relation between the reconstruction
gradient error and the subregion area.

Subregionω ‖g̃ − g‖2L2(ω)

]1/3, 2/3[ 6.862× 10−5

]0.32, 0.67[ 7.231× 10−5

]0.29, 0.72[ 9.290× 10−5

]0.1, 0.9[ 1.581× 10−4

]0, 1[ 3.890× 10−4

7. Conclusion

This paper concerns the study of the gradient observabil-
ity concept, which is motivated by many real applications
where the objective is to obtain information about the state
gradient in a given subregion. Moreover, we explore an
approach which allows us to reconstruct the gradient. In-
teresting results on regional gradient controllability were
developed by Zerriket al. (1999). Various open ques-
tions are still under consideration. For example, this is the
case of the problem where the subregionω is a part of the
boundary of the system domain. This case is presently be-
ing studied and the results will appear in a separate paper.
The problem of optimal sensor location in order to achieve
regional gradient observability is also of great interest.
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Appendix

The proof of Proposition 4 is presented for the case of
zonal sensors located inside the domainΩ. We recall that
G-observability inω is equivalent to[K∇∗χ∗ωz = 0 ⇒
z = 0], which allows us to say that the sequence of sensors
(Dk, fk)1≤k≤q is G-strategic inω if and only if{

z ∈
(
L2(ω)

)n | 〈Hu, z〉(L2(ω))n = 0,

∀ u ∈ O
}
⇒ z = 0.

Suppose that the sequence of sensors(Dk, fk)1≤k≤q

is G-strategic in ω but for some m ∈ N we
have rankMm 6= rm. Then there existszm =
(zm1 , . . . , zmrm

)t 6= 0 such thatMmzm = 0.

Let

z0 =
rm∑
j=1

zmj
ϕmj

, zp =
(
〈z0, ϕp1〉 , . . . ,

〈
z0, ϕprp

〉)t

and
Z0 = (z0, . . . , z0).

Then

〈Hu,Z0〉(L2(ω))n =
n∑

k=1

〈
χ̃ω

∂

∂xk
(K∗u), z0

〉
L2(ω)

=
n∑

k=1

〈
∂

∂xk
(K∗u), χ̃∗ωz0

〉
L2(Ω)

=
n∑

k=1

〈
∂

∂xk
(ỹ(T )), χ̃∗ωz0

〉
L2(Ω)

,

where ỹ is the solution of the system

∂ỹ

∂t
(x, t) = A∗ỹ(x, t)

+
q∑

i=1

fiχDi
ui(T − t) in Q,

ỹ(ξ, t) = 0 on Σ,

ỹ(x, 0) = 0 in Ω,

(A1)

which is in L2(0, T ;H2
0 (Ω)) (Lions and Magenes, 1968,

Ex. 1, p. 263–264).

Consider the system
∂ϕ

∂t
(x, t) = −Aϕ(x, t) in Q,

ϕ(ξ, t) = 0 on Σ,

ϕ(x, T ) = χ̃∗ωz0 in Ω.

(A2)

The solutionϕ is in L2(0, T ;H1
0 (Ω)) ∩ C(Ω×]0, T [)

(Lions and Magenes, 1968, Ex. 2, p. 265). Multiply-
ing (A1) by ∂ϕ/∂xk and integrating the result overQ,
we obtain∫

Q

∂ϕ

∂xk
(x, t)

∂ỹ

∂t
(x, t) dxdt

=
∫

Q

A∗ỹ(x, t)
∂ϕ

∂xk
(x, t) dxdt

+
∫

Q

q∑
i=1

fiχDi
ui(T − t)

∂ϕ

∂xk
(x, t) dxdt,

but we have∫
Q

∂ϕ

∂xk
(x, t)

∂ỹ

∂t
(x, t) dxdt

=
∫

Ω

[
∂ϕ

∂xk
(x, t)ỹ(x, t)

]T

0

dx

+
∫

Q

A

(
∂ϕ

∂xk

)
(x, t)ỹ(x, t) dxdt
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=
∫

Ω

∂ϕ

∂xk
(x, T )ỹ(x, T ) dx

+
∫

Q

A

(
∂ϕ

∂xk
(x, t)

)
ỹ(x, t) dxdt.

Then∫
Ω

∂ϕ

∂xk
(x, T )ỹ(x, T ) dx

= −
∫

Q

A

(
∂ϕ

∂xk
(x, t)

)
ỹ(x, t) dxdt

+
∫

Q

A∗ỹ(x, t)
∂ϕ

∂xk
(x, t) dxdt

+
∫

Q

(
q∑

i=1

fiχDi
ui(T − t)

)
∂ϕ

∂xk
(x, t) dxdt

= −
∫

Σ

∂ỹ

∂νA∗
(ζ, t)

∂ϕ

∂xk
(ζ, t) dζ dt

+
∫

Σ

∂

∂νA

(
∂ϕ

∂xk
(ζ, t)

)
ỹ(ζ, t) dζ dt

+
∫

Q

(
q∑

i=1

fiχDi
ui(T − t)

)
∂ϕ

∂xk
(x, t) dxdt.

Since ỹ(ζ, t) ∈ L2(0, T ;H2
0 (Ω)), we have∫

Ω

∂ϕ

∂xk
(x, T )ỹ(x, T ) dx

=
∫

Q

(
q∑

i=1

fiχDiui(T − t))
∂ϕ

∂xk
(x, t) dxdt.

Thus∫
Ω

ϕ(x, T )
∂ỹ

∂xk
(x, T ) dx

= −
q∑

i=1

∫ T

0

〈
fi,

∂ϕ

∂xk

〉
L2(Di)

ui(T − t) dt,

and we have

〈χω∇K∗u, Z0〉(L2(Ω))n

=
n∑

k=1

∫
Ω

∂ỹ

∂xk
(x, T )ϕ(x, T ) dx

= −
q∑

i=1

∫ T

0

n∑
k=1

〈
fi,

∂ϕ

∂xk

〉
L2(Di)

ui(T − t) dt.

But

ϕ(x, t) =
∞∑

p=1

e−λp(t−T )

rp∑
j=1

〈
z0, ϕpj

〉
L2(ω)

ϕpj
.

Then

n∑
k=1

〈
fi,

∂ϕ

∂xk
(t)
〉

L2(Di)

=
∞∑

p=1

eλp(T−t)

rp∑
j=1

〈
z0, ϕpj

〉
L2(ω)

×
n∑

k=1

〈
∂ϕpj

∂xk
, fi

〉
L2(Di)

=
∞∑

p=1

eλp(T−t)(Mpzp)i.

Therefore

〈χω∇K∗u, Z0〉(L2(ω))n

= −
q∑

i=1

∫ T

0

∞∑
p=1

eλp(T−t)(Mpzp)iui(T−t) dt. (A3)

Thus

〈χω∇K∗u, Z0〉(L2(ω))n

= −
q∑

i=1

∫ T

0

eλm(T−t)(Mmzm)iui(T − t) dt = 0.

This is true for all u ∈ L2(0, T ; Rq). Hence Z0 ∈
Ker(H∗), which contradicts the assumption that the se-
quence of sensors isG-strategic.
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