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GRADIENT OBSERVABILITY FOR DIFFUSION SYSTEMS
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The aim of this paper is to study regional gradient observability for a diffusion system and the reconstruction of the state
gradient without the knowledge of the state. First, we give definitions and characterizations of these new concepts and
establish necessary conditions for the sensor structure in order to obtain regional gradient observability. We also explore an
approach which allows for a regional gradient reconstruction. The developed method is original and leads to a numerical
algorithm illustrated by simulations.
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1. Introduction measurement system. The active wall with natural con-
vection is successively composed (from the front to the
The analysis of distributed systems leads to a set of con-back side) of a resin materiat (nm thick), a copper plate
cepts, such as controllability, observability, stability, sta- (5 mm thick) and a heat exchanger.
bilisability, detectability, (Lions, 1988; Curtain and Zwart,
1995), which allow to understand them better and conse- ¥
qguently enable us to steer them in a better way. This anal- i
ysis can be made by means of the output and input pa-
rameter structures (El Jai and Pritchard, 1988). Recently, Heat Exchanger f
the concept of regional analysis was introduced in (Zerrik, Resin
1993; El Jakt al,, 1994), which offers important tools for . \=i I Lopper
solving many real problems, particularly the concept of
regional observability, which refers to problems in which |
the observed state of interest is not fully specified as @  1umlation - Thenmocoples
state, but concerns only a region a portion of the spa- %
tial domain Q2 on which the system is considered. It was o of
extended by Zerrilet al. (1999) to the case where the z
subregionw is a part of the boundarg(2 of Q.

\ Part of the bouridaty

Fig. 1. Profile of the active plate.
In this paper we introduce a new concept, i.e., re-

gional gradient observability, where one is interested in
the knowledge of the state gradient only in a critical sub- In Fig. 1, we show the heat exchanger, which main-
region of the system domain without the knowledge of tains a prescribed temperature on the back surface of the
the state itself. The introduction of this concept is moti- plate by means of hot water circulation. All the sides
vated by real situations. For example, this is the case ofof this active wall are insulated (adiabatic conditions) ex-
the determination of laminar boundary flux conditions de- cept for the front surface. The objective is to find the un-
veloped in a steady state by a heated vertical plate. Thisknown boundary convective condition on a pé&rtof the
problem consists in studying the thermal transfer by nat- front surface of the active plate using measurements given
ural convection which is generated by a uniformly heated by internal thermocouples, cf. (Sparrow, 1963; Cuniasse-
plate located in a small enclosure. Inside that enclosure,Langhans, 1998).

differences in wall surface temperatures produce natural

X Considering directly this boundary problem seems to
convection movements.

be difficult, but it can be solved by reconstructing the gra-
The experimental device consists of an enclosure of dient in an internal subregiot of the plate such thal’
2m x 1.5m x 1 m with a specific wall and a temperature is a part of the boundary ab. More precisely, let (S) be
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a linear system evolving of2, with a suitable state space, and the norm

and suppose that the initial stagg and its gradientVy,

are unknowns. Assume that the measurements are given ||u||2LQ(Q) — / \u(x)|2dz.
by means of an output function (depending on the number Q

and the structure of the sensors). The problem concern

the reconstruction of the initial gradieffy, in a subre- S]'he adjointA* is defined by

gion w located in the interior of the system domdih " P
The paper is organized as follows: Section 2 is de- A = Z Oz, (ajia:r)
voted to the presentation of the system considered, as well Bj=1 """ !

as to definitions and characterizations of this new con- o

cept. In the third section we establish the relation between@nd C- H;(2) — R is linear and depends on the con-

regional gradient observability and sensors. Section 4 isSidered sensor structure. For the case of an unbounded

focused on the regional reconstruction of the initial state C» €aré must be taken sinc®(C) Hy(Q) and

gradient, and various types of sensors are discussed. I ()(D(C)) C D(C), Vi >0 (see El Jai and Pritchard,

the last section we develop a numerical approach, which1988, p. 43, Sect. 3.2).

is illustrated by simulations that lead to some conjectures. We assume here that € HE (). The system (1) is
autonomous and can be interpreted in the mild sense with
the solutiony(t) = S(t)yo, cf. (Curtain and Pritchard,

2. Regional Gradient Observability 1978, p. 31, Def. 2.23; Curtain and Zwart, 1995, p. 104,
Def. 3.1.4). The initial statey, and its gradient are sup-

2.1. Problem Statement posed to be unknown.

Let Q be an open bounded subset &f'(n = 1,2,3) For a regionw C € assumed to be open, regu-

with a smooth boundary2 and a subregion of Q. lar gnd of a posmve Lebesgue measure, the problem of

For T > 0, we write Q = Qx]0,7[,S = 9Qx]0, T[. regional gradient observability consists in directly recon-

structing the initial gradien¥y, in the subregionv with

Consider a parabolic system defined by
the knowledge of (1) and (2).

@(x t) = Ay(z,t) in Q We first recall that a sensor is defined by the couple
ot ’ ’ (D, f), where D is its spatial support represented by a
y(&t) =0 in X, (1) nonempty part of) and f represents the distribution of

) the sensing measurements bn Depending on the nature
y(@,0) = yo() in &, of D and f, we could have various types of sensors. A

sensor may be pointwise iD = {b} with b € Q and

f =4(-—0b), whered is the Dirac mass concentrated at
b. Inthis case the operata@r is unbounded and the output
function (2) can be written in the form

N LY 9 z(t) = y(b,t). 3)
=2 o \“ia, . :
ij=1 """ J It may be zonal whenD C ©Q and f € L*(D). The

_ output function (2) can be written in the form
with a,;; € D(Q). Suppose that-A is elliptic, i.e., there P @

with the measurements given by the output function:
z(t) = Cy(t). )

We have

existsa > 0 such that
) ) 0= [ w01 @
Z a;j&i&; > az &1* ae.on@
i,j=1 j=1 For the definitions and properties of strategic and re-
Ve (¢ £,) € R gional strategic sensors, we refer the reader to (El Jai and
Lyeweosn ’ Pritchard, 1988; El Jat al,, 1993; Zerrik, 1993; Zerrilet

This operator is a second-order differential linear oper- al., 1999). The observation space = L*(0,T;R?).
ator which generates a strongly continuous semigroup The system (1) is autonomous and (2) allows us to write
(S(t))¢>0 on the Hilbert spacd.?(Q2) endowed with the  2(t) = C'S(t)yo(x). We define by
inner product
X — 0,
K:

(u,v) 200y = /Qu(l')”(y) dzdy h—s CS(-)h
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the operator onX = H}(Q), which is linear and bounded
in the zonal case, with the adjoint defined by

00— X,
K*: T
z* —>/ S*(1)C*z*(7)dr.
0

Consider the operator

Hg(Q) — (L*())",

Oy 9

y — Vy = (311"“’&%"

)

Its adjoint V* is given by

v {

wherew is a solution of the Dirichlet problem

|

For a nonempty subset of 2, we consider the op-
erators

- |

Xw

(L))" — Hy(Q),

y— Viy=u,

Av = —div(y)

0

in Q,

v on 99.

(L))" — (L))",

Yy—19Y.

|

Their adjoints are respectively denoted gy, and x;,,
and are defined by

and
L*(Q) — L*(w),

Yy—"Y.-

(L))" — (£2()",

Xeo Y, N w,
Y — Xoy = ,
0 in Q\w,
and
L (w) — L*(Q),
Xo ~ Y., in w,
Yy — XY= .
0 in Q\w.

We recall that the system (1) is said to be exactly (resp.
approximately) regionally observable fim (., K*)
HY(w) (resp. Im (x,K*) H'(w)), where x,:

&

HY(Q) — H!(w) is the restriction taw. For more de-
tails, we refer the reader to (El Jat al, 1993; Zerrik,
1993).

The idea is based on the existence of an operator
H: O — (L*(w))™ such thatHz = Vy,. Thisis a
natural extension of the observability concept (El Jai and
Pritchard, 1988, p. 45). Then we introduce the operator
H = x,VK* from O into (L?(w))".

Definition 1. The system (1) together with the out-
put (2) is said to beapproximately regionally gradient
observablen w or approximatelyG-observablan w if
Ker H* = {0}.

We see that if a system is approximatel-
observable, then there is a one-to-one relationship be-
tween the output and the initial gradient, viz zifis given
and y, satisfiesz = CS(-)yo, then Vy is unique. In
many physical problems this concept is not strong enough
since if the outputz is slightly perturbed, then the cor-
responding gradient of the initial state may considerably
vary. We therefore introduce the following continuity hy-
pothesis.

Definition 2. The system (1) together with the output (2)
is said to beexactly regionally gradient observabie w
or exactly G-observablén w if Im (H) = (L?(w))™.

This problem is often encountred in many physical
applications. This is the case of heat transfer (the Fourier
law), the exchange concentration problem (the Fick law)
and other problems, such as material deformation (or dis-
tortion), where one would like to know the gradient evo-
lution in a subregion of the evolution domain.

Itis clear that

e Approximate G-observability inw amounts to the
condition [H*z* = 0 = z* = 0], which is equiva-
lent to the dual conditiodm H = (L?(w))".

If a system is exactly (resp. approximately) region-
ally observable inv (El Jaiet al, 1994), then it is ex-
actly (resp. approximately) regionallg-observable
in w. Indeed, if the system (1) is observabledn
then we can reconstruct the initial statg using one

of the approaches given in (Zerrék al,, 1999) and
then deduce its gradiefyy in w.

If a system is exactly (resp. approximatelyj-
observable inw, it is exactly (resp. approximately)
G-observable inw; for all w; C w, but the
following example outlines a system which may
be regionally approximatelyG-observable inw
but not approximatelyG-observable in the whole
domain 2.
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2.2. Counter-example

Let Q@ =]0,1[x]0,1].
dimensional system:

Consider the following two-

82

9y _ 9
ot ($17x2,t) - ax%(xlax27t)
2y ]
‘*‘573%(5617%2,1?) inQ, (5
y(Cﬂ?»t) =0 on 2,
y(x1,22,0) = yo(r1,z2) in Q.

The measurements are given by the output

Z(t):/Dy($1,$2,t)f($17$2)d331d$27

where D = {1/2}x]0,1[ is the sensor support and
f(x1,x2) = sinmas is the function measure.

Let w =]0,1[x]1/6,2/6] and g(xi,z2) =
(cos zy sin 2mxe, sin Tz cos 2mxe) € (L2(2))? be the
gradient to be observed. The operator

0? o?

A= —+—
8$%+8m§

generates a semigroyis(¢)):>o on L*(Q), given by

oo

S(t)y = Z et (y, Dii) L2(Q)Pijs

ij=1

where @;;(x1,22) = 2sin(imz)sin(jrae) and A;; =
—(i? + j*)m2.

Proposition 1.

The gradientg is not approximatelyG-observable in
the whole domainQ2. However, it is approximately:-
observable in the subregioan.

Proof. To prove thatg is not approximatelyG-observable
in 2, we must show thay € Ker KV*. We have

KV*(g) = Z NNV g, 0ij) L2 (igs [)12(D)

,j=1
oo 1
6
= Z e/\“ti/ sin(imxy) sin(7zy) day
g i Jo

1
></ sin(jmray) sin(2nxs) dze
0

. 1
X sin <Z;>/ sin(jmas) sin(mze) dag = 0.
0

Now, we show that the restriction of to the subregion
w is approximatelyG-observable inv. We get

KV*x5Xw(g)

o0
= > TUVNEX(9), 9i) L2 () (i [ L2 ()
Q=1

> 127 (!
= Z eAijt—T/sin(iwxl)sin(ﬁxl)dxl
Aij Jo

ij=1

§
></ sin(jmag) sin(27xs) das
1

6

X sin (g) /01 sin(jmxs) sin(rzy) dzg
(2-3V3)

= e T A0 m
™

2.3. Characterizations

We can characterizé/-observability inw by the follow-
ing results.

Proposition 2. 1. The system (1) with the output (2) is
exactly G-observable inw if and only if, there exists
¢ > 0 such that, for allz* € (L?(w))",

12" |2y < c|KV*XT 2" |o.

2. The system (1) together with the output (2) is approx-
imately G-observable inw if and only if the opera-
tor N, = HH* is positive definite.

Proof. We use standard functional analysis tools:

1. Let h = Id(z2@)» and g = x,VK*. Since
the system is exactlyG-observable inw, we have
Imh C Img, which is equivalent to the fact that
there existse > 0 such that

12" (22w < ellg™ 2" | L2(0,7;Ra)
Vz* e (LP(w))".

2. Let z* € (L?(w))™ suchthat(N,z*, z*) (p2(w))» =
0. Then||H*z*||o = 0 and thereforez* € ker H*.
Consequentlyz* = 0, i.e., N, is positive definite.

Conversely, let z* € (L?(w))™ such that
H*z* = 0. Then (H*z*,H*2*)o = 0 and thus
(Nwz*, 2%)(L2(w))» = 0. Hencez* = 0, i.e., the system
is approximatelyG-observable. m



Gradient observability for diffusion systems

Now, assume that the system (1) is ri@tobservable
in Q and let (p;);en- be a basis in(L?(Q2))". Let I C
N™ be such thatker KV* = spaf(g;),.;} and J =
N™\1.

icl

Proposition 3. The following properties are equivalent:
1. The system (1) is approximatety-observable inw.
L*(w))".

3. If y € (L*(w))™ issuch that(y, xw@i) (12(w))» =0
forall i € J,theny = 0.

2. span{(XwPi)icst = (

4. If Zai@ =0in Q\w, thena; =0 forall i e I.
el

Proof.

1=2 Let y € (L*w))™
e > 0 there exists z € (O such that
||y — vaK*Z”(LQ(w))n < e But VK*z
Y (VE 2, 00) (L2))n @i = Yoie (2 KV @i)opi

and thusx,VK*z = > . (2, KV*@;)oxw.@:. Then
||y - ZieJ<Z,Kv*@i>oxw<ﬁi||(L2(w))n < ¢ and hence
Y € {XuPitics

2=3 Lety € (L*(w))". Foranye > 0, there exists
a;(j € J) suchthatlly — 3=, ; aiXw@;ilI{r2 e < €
with (y, X ®;) 22wy = 0, Vj € J. We deduce that
1911712y < € forall e > 0. Thusy = 0.

Then for

3=4 Let ), ;a;p; = 0 in Q\w. Considery =
Xw(Dieraipi). Forj € J, we ha\{e<y,xw@j>@2(w))n
= D icr @@, 05) (22 ())» = 0. Sincey = 0, we get
Zielaigbi:() in Q anda; =0, Vi € 1.

4=-1 Considery € (L*(w))" such thatKV*x’y

= 0. We havex’y € (L*(Q2))" and thenKV*x’y
V*(ZieNn <y7Xw90 > 2(w))"@i) KV*(ZieJ
< Xw‘Pz> Lz(w))n@z) = 0. Therefore ZjGJ
(Y, Xw%)(m(w))w% € spaf(@i);e;; and thus
(Y, XwPj) 22wy = 0, Vj € J. Then xly
Y ier (Y XwPi) (12 (w))n Pi 0 in Q\w. From the
assumption we havéy, x.®:) 2wy~ = 0, Vi € I.
Hencey = 0. ]

Based on Property 4 of Proposition 2, it is easy to
show the following result:

Corollary 1. Under the hypotheses of Proposition 2, the
system (1) is approximatelg-observable in allw C Q
such that({g;, @j)(L2(w))n =0,Vi,jel,i#j.

Proof. To deduce the result from Proposition 3, take
Yicrai®i = 0 in Q\w. Then we only need to show

@ c

thata; =0 forall i € I. Lety = >, ; a;p; in  and
ip € I. Then

(W, o) 2@y = D @il Pir Pio) (L2(@))r = ig- (6)

icl
Sincey = 0 in Q\w, under the assumptions of Corol-
lary 1 we have

(Y, Bio) L2y = > _ @i{Pis Pio)(L2(w))"

el
= aio”@ioH(QLZ(w))n- (7)
Combining (6) and (7), we obtair; = 0 for all

i€ 1. [ |

3. Gradient Strategic Sensors

The aim of this section is to link the regional gradient ob-
servability with the sensors structure. Consider the system
(1) observed byy sensors(D;, f;)1<i<q, Which may be
pointwise or zonal.

Definition 3. A sensor(D, f) (or a sequence of sensors)
is said to beyradient strategién w if the observed system
is approximatelyG-observable inw. Such a sensor will
be calledG-strategic inw.

We assume that the operatar has a complete set
of eigenfunctions inH{ (), denoted by(y;), which is
orthonormal inL?(w) and the associated eigenvalugs
are of multiplicitiesr;. Assume also that = sup;c; 7;
is finite and A has constant coefficients.

Proposition 4. If a sequence of sensofDy, fi)1<k<q
is G-strategic inw, then ¢ > r and rank M,,
where

= Tm,

" o, o
> (;p 7(b;) in the pointwise case
iz,
k=1
(Mm)ij =19 5
Z< g)pm] fi> in the zonal case
k=1 Lk L2(D;)

for1<i<qgandl <j<ry.
The proof is given in Appendix.

Remark 1. 1. Proposition 4 implies that the required
number of sensors is greater than or equal to the
largest multiplicity of the eigenvalues.

2. By infinitesimally deforming the domain, the multi-
plicity of the eigenvalues can be reduced to one (El
Jai and El Yacoubi, 1993, p. 95, Sec. 3). Conse-
qguently, G-observability inw can be achieved using
only one sensor.
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3. In the observability and regional observability cases, which admits a unique solutiop € L?(0,7; Hi () N

the above conditions are also sufficient, c.f. (Curtain
and Zwart, 1995, p. 162, Thm. 4.2.1; El Jial,
1993), but here we have only necessary conditions.

C(2x]0,TY),
pp. 263-264).

cf. (Lions and Magenes, 1968, Ex. 1,

4. The above result can easily be extended to the case4.1. Pointwise Sensors

of pointwise sensors. =

From Formula (A3) in Appendix, we deduce the result
below.

Corollary 2. In the one-dimensional case, the system
(1) together with the output (2) is approximately-
observable if and only ify > r and rank M,,, = r,,
where M,,, is given in Proposition 4.

Example 1.
parabolic equation
Oy &%y _
a(xvt) (9.1'2( ) ) =0 n ]0,1[><}0,T[,
y(0,1) = y(1,¢) = 0 n 10,77, (8)

y(x,0) = yo(x) in ]0,1[,

with the outputz(t) = y(b,t), b €]0,1[ and ¢t €]0,T7.
The system is observable df, 1[ (El Jai and Pritchard,
1988, p. 108, Prop. 2.26) if and only if
bz S=J {k|1<k<m}.
m=1 m

Itis G-observable in0, 1] if and only if

b Su— U {2k+1

2m
m=1

ke[O,ml]ﬁN}.

We have S¢ C S, which shows that there exist sensors
which are G-strategic without being strategic. ¢

4. Regional Gradient Reconstruction

In this section we give an approach which allows us the
reconstruction of the initial state gradient of the system (1)
in w. This approach is an extension of the H.U.M. method
developed by Lions (Lions, 1988) and does not take into
account what must be the residual initial gradient in the
subregionQ\w. Consider the set

F={he(L*Q)" | h=0inQ\w}

N{VF|feH}Q}.
For ¢o € H}(2), consider the system

aa—f(x,t) = A¢(x,t) in Q,
(€, 1) = on X, 9)
d(x,0) = ¢o(x) in Q,

that ¢

We consider the system (1) with the output function (3).

For ¢y € F, there exists a uniquey, € HZ(Q) such
= V¢o. Then we consider the semi-norm ¢r
defined by

do — 9ol = V (Za‘b bt) dt]

1
2

, (10)

Consider the system described by the where ¢ is the solution to (9). The solutiony; of the

equation
%(m,t) — A%y (x,t)
2 sy in @
o b O -
T, 6D = on ¥,
wl(%T) =0 in Q

is in L2(0,T; H(Q)), cf. (Lions and Magenes, 1968,
Ex. 2, p. 265).

When the seminorm (10) is a norm, we also denote
by F the completion ofF and consider the operator

X

where P = x*x. and ¥;(0) =
Introduce the system

9y

F F*,
b0 — P(%4(0)),

(¥1(0); - - 91 (0)).

81&( ) ) = *A*Q/J(wat)
— .
ST b, 008z — b
) ,;3961@( ;0)6(x —b) in Q, 12)
m‘i (€1) =0 on %,

If o is chosen such thaty (0) = 1(0) in w, then the
system (12) looks like the adjoint of the system (1), and
the regional gradient observability amounts to the condi-
tions for solving the equation

A(¢o) = P(¥(0)),
= (¥(0),...,%(0)) with ¢ being the solu-

(13)

where ¥(0)
tion of (12).
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Proposition 5. If the sensor(b, &) is G-strategic inw, With the final condition, we obtain
then Eqgn. (13) has a unique solutiafy, which is the ini- L)
tial state gradient to be observed in. <a$k(x, 0), Y1 (, 0)>L2(Q)

Proof. (a) Let us show first that if the system (1) is ap- 96
proximately G-observable, then (10) defines a norm on = < o, (2, 1), Y1 (x, t)>

JF. Consider a basigp;) of the eigenfunctions ofA. L2(@)

Without loss of generality, we suppose that the associated 96
eigenvalues)\; are of multiplicity one. - <8Ik($, t), A% (z, t)>
R The mapping (10) defines a norm oA. Indeed, ’ o
éoll= = 0 gives - iﬁ
[e%) n a 0 8fﬂk - 8
> Mo, i) ra@) Y, 5 (b) =0 ae.on(0,T). :
] = Ory Using the Green formula, we obtain
Then <§;)(m70)a1/}1(xa0)>
8% _ , k L2(Q)
(¢0,9i) > Q)Zaxk =0, Vi
_ . = (b,t Z
and since the sensofb,d,) is G-strategic inw (cf. 0 3xk
Proposition (4)), we obtain
Then
Z #£0, Vi. <0($>7¢1 (3:,0)>
" ; O L2(%)
Then~(<z>0,<pi>L2(Q) =0, Vi. Consequentlyp, = 0, and " T pg "9
thus ¢ = 0. = Z ; %(b t) Tm(ba t)dt
(b) Let us prove now that (13) has a unique solution. =1 =1
Equation (13) has a unique solution because the operali€nce
tor A is an i_somorp_hism. Indeed, multiplying _(11) by _ ~ T (I 06 2
d¢/8z), and integrating the result ovep, we obtain <¢>0,A(¢o)> =/ Z%(b, t) | di,
=1
<8¢<x t), azﬁl( ,t)> which proves thatA is an isomorphism and, conse-
Oy, ot L2(Q) quently, (13) has a unique solution which corresponds
5 to the state gradient to be estimated in the subre-
< ¢( ,t),—A*¢1(m,t)> gion w. [ ]
a Lk L2(Q)
4.2. Zonal Sensor
6¢ b
- (97 Z o(z =) Here we consider the system (1) with the output function
L@ (4). For ¢¢ in F the system (9) produces the solutign
which gives We consider the seminorm aofi’ defined by
26 ! 20 k
(@20 01(2.0)) So—lole=| [ ( < (0.1 ) e
Kaxk 29, 0 Z Oz, L2(D)
9 0 and the system
_<a(a(f(x7t))7¢1(xat)> n
Tk £2(Q) 9 .
T (a,t) = —A"i(e,t)
813 8:5]{: L2(D
(e ant).~A"wr(o.)) . .
= a5 &, 1), — 1\Ly
83% L20) 8,(/) Xf(I)XD in Q7 (15)
1
n (&) = on X,
L (b, t Zﬁ b, 1) dt. Ova _
0 3331« —~ Ox w(:cT) 0 in Q.
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We consider the operator 5. Numerical Approach
F — F*, We consider the system (1) observed by a pointwise sen-
A $ - P(\I/ (0)) sor located ab € €. In the previous section, it was shown
0 S that the regional observability of the initial gradientdn
and the system amounts, in all cases, to the solvability of the equation
o /0 A(go) = P(¥(0)). (18)
a—zf(:v,t) = —A*Y(x,t) — Z <ka(t),f> ]
k=1 ) LD The solution of this equation can be obtained very easily
< f(@)xp n Q, (16) when we can calculate the componenis; of A in a
oY _ 0 > suitable basis(;)ien Of (L?(2))". The problem will
O s (&1) = on %, then be approximated by the solution of the linear system
Y(x,T) = in Q.
Then regional gradient observability amounts to the solv- ZAM%J‘ = (P(¥(0),, i=1....M, (19
ability of the equation
Aldo) = P(¥(0)) 17) where (P(¥(0))); are the components oP(¥(0)) in
’ the basis considered.
where ¥ = ((0),...,%(0)) and ¢ is the solution of Let (p;)ien be a complete set of eigenfunctions
the system (16). of the operator4 in HZ(), which is orthonormal in
0
L?(Q). We also consider a basis ¢f.(£2))" denoted
Proposition 6. If the sensor(D, f) is G-strategic inw, by (%;)ien. Then the componentd;; are solutions of
then (17) has a unique solution which is the gradient of the equation
the initial state to be observed in.
, : . S Ik Oor\ _
Proof. (Sketch) With some minor technical modifications, Z oz, On, » Pi
the proof is similar to the pointwise case. Indeed, it pro- hj=1
ceeds in two steps. <<5~¢l 3@1) B >
= - “\\awy 7w, ) 71 A
Step 1|¢o|| = = 0 gives T1 x (20)
eAet+A)T _ n 890k a‘Pl
Ze (bOv(p’L L2(Q) - )\k +)\l zp; axm (9{1,‘17 b)’
XZ<§§; > =0 a.e.on(0,T). kil=1,... .
k=1 L*(D)
, Indeed, in Section 4 it was demonstrated that
Using

k_1<5$k’f L2<D>7'é ’ <A“§°’$°>:/ (Z b, )
J
we obtain ¢y = 0.

Step 2.As in the pointwise case, we multiply the system From .
(15) by 9¢/ 0z, and integrate the result ové€} and then, . Aot
using the Green formula, we obtain o(t) = Z e {0, om) 1)

~ ~ 0\ ¢ 2 we have
(90:A(60)) = /O <Z<axl()f>L2(D)> dt, o
2 55,

which proves thatA is an isomorphism. Consequently,
Eqgn. (17) has a unique solution which corresponds to the Oom
state gradient to be estimated in the subregion = = Z Z At (b0, Om) L2(Q) A oz, L (b).

j=1m=1
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Then

T n 2

/ (Za(b(b,t)> dt

0 =1 (91']‘

= Z <¢Oa<Pp>L2(Q) <¢0a§0m>L2(Q)
p,m=1
" Dy B Pm AT

lez_l om Vg O —5— (@D

On the other hand, sinc@¢,/dz; € L*(Q), we can ex-
pressgy in the basis®;):

SN~/ (9% 990 -
¢0 - Z<<8x17"'7axn>a§0i>(L2(Q))n @i

i=1

Therefore
0 0
=33 e (52, 525) 7
=1 k=1 Tn (L2()"
:Z<¢O,@k> <<ﬁaaa§0k>7§05> @7,
=1 i—1 1 Tn (L2(Q)n
Thus

oo

<A<$07<go> =Y (b0, m) 20 (P0, ) 120y

m,p=1

({2
(i,j—l Oz, Oy, (L2@)n
)

x((Z£,..., L2 ), 5,

<(3x1 0 )" [ 120y

X<A¢'L7¢]>(L2(Q))n ) (22)

Let A;; = (A@i,@)(m(m)n. From (21) and (22), we
obtain (20). [ |

Remark 2. 1. Inthe case of a zonal sens@b, f), the
same derivations give

(22
2 \\ 0z Oy (L2(@)"
O, 0 _
(552 ) ) N
1 n (L2@)n
B e(A,,,ﬁ)\p)T_l z": <5<,0p f>
Am + Ap Py Oxy’ L2(D)
(32
01"/ 12(p)

for m,p=1,...,00.

@

2. In the case of many pointwise sensofs,, d(:
bs))s=1,....q: the components of\ are solutlons of

the equation
(%))
= WO 0 S ey
O Opp\ _
X<<p7...’ p>’s0j> Aij
8$1 8.23n (LZ(Q))n
e(AnL“!‘)\p)T _ 1

A+ Ap

Summing up, regional gradient reconstruction is ob-
tained via the following simplified steps:

1. The solution of (12) gives)(z, 0).

2. The components of the operatar constitute the so-
lution of (20).

3. With Steps 1 and 2, the system (19) givgs which
corresponds to the initial gradient to be observed
in w.

6. Simulations

In this section we present a numerical example that leads
to some conjectures related to the best sensor location, the
results being related to the choice of the subregion and the
gradient to be observed.

Let Q =]0, 1] and consider the system
9 0%y _ :
a( ) 001@( ,t) =0 in Q,
y(0,1) =y(1,t) =0 on )0, 7], (23)
y(z,0) = yo(z) in Q.

The output is given by means of a pointwise sensor
z(t) = y(b,t) with b=0.91 and T = 2.

Let w =[0.15,0.85] and g(x) = 2z(x—1)(2z—1)
be the initial gradient to be observeddn Figure 2 shows
how close the estimated gradiefitis to the initial gra-
dient ¢ which is estimated with the reconstruction error
llg — g||L2 = 1.398 x 10~%. The resulting numerical
method |s eff|C|ent provided that the truncation order is
small.
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6.2. Relation between the Subregion Area
and the Estimated Gradient Error

Here we study numerically the dependence of the gradi-
ent reconstruction error on the subregion area. Table 1
shows that both the error and the subregion area increase
or decrease. This means that the larger the region, the
greater the error. G-observability is realized by means of
one pointwise sensor locatedat= 0.91. The results are
similar for other types of sensors.

Fig. 2. Actual initial gradientg (dashed line) and the estimated Table 1. Relation between the reconstruction
gradientg (continuous line) inw. gradient error and the subregion area.

’ Subregionu \ 19 = 9ll7 20 ‘
11/3,2/3] | 6.862 x 107°
10.32,0.67] | 7.231 x 107°

6.1. Relation between the Estimated Gradient Error
and the Pointwise Sensor Location

In this subsection we study numerically the evolution of 10.29,0.72[ | 9.290 x 10~°
the observer gradient error with respect to the sensor loca- 10.1,0.9[ 1531 % 10-*
ton. 10,1] | 3.890 x 10~ *

x[107"

]
3890261,77
3890261,76 -
a8s0261.75 |- 7. Conclusion

3890261,74 -

This paper concerns the study of the gradient observabil-
589026175 - ity concept, which is motivated by many real applications
S S S where the objective is to obtain information about the state
R gradient in a given subregion. Moreover, we explore an
Fig. 3. Evolution of the estimated gradient error with respect to apprqach which allows _us to reco,nStrUCt the grqdlent. In-
the sensor location. teresting results on regional gradient controllability were
developed by Zerrilet al. (1999). Various open ques-
tions are still under consideration. For example, this is the
The following conclusions can be drawn from Figure 3:  case of the problem where the subregioris a part of the
boundary of the system domain. This case is presently be-
ing studied and the results will appear in a separate paper.
The problem of optimal sensor location in order to achieve
regional gradient observability is also of great interest.

e For a given subregion and an initial gradient, there is
an optimal sensor location (optimal in the sense that
it leads to a very good estimate of the initial gradi-
ent).

e When the sensor is located sufficiently far from the
subregionw, the gradient error is constant for any
location.
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Us £20) (12 (w))n = Xw Dz u), zo L
k=1 (w)
= Z <8(K U),xi‘;zO>
o\ O 12(9)
n a ~ .
=3 (G )
k=1 k L*(Q)
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9y
7 — A*7
i (7:1) = A3 )
+ ) fixpwi(T —t) in Q,
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tems — Ph.D. thesis, University ﬁldv Rabat, Morocco.
Zerrik E., Badraoui L. and El Jai A. (19995ensors and re-

gional boundary state reconstruction of parabolic systems

— Sens. Actuat. J., Vol. 75, pp. 102-117.

Zerrik E., Boutoulout A. and Kamal A. (1999Regional gra-
dient controllability for parabolic systems— Int. J. Appl.
Math. Comp. Sci., Vol. 9, No. 4, pp. 767-787.

Appendix

Consider the system

dy B .
a(xﬂf) - 7A(P(xat) in Q7

e(&,t)
(P("E, T) = )NC:;ZO

0 on %, (A2)

in €.
The solutiony is in L?(0,T; HE(2)) N C(2x]0,T])

(Lions and Magenes, 1968, Ex. 2, p. 265). Multiply-
ing (Al) by dp/0x; and integrating the result ovep,

The proof of Proposition 4 is presented for the case of we obtain

zonal sensors located inside the dom&inWe recall that
G-observability inw is equivalent tol KV*x 2z = 0 =

z = 0], which allows us to say that the sequence of sensors

(Dy, fr)1<k<q IS G-strategic inw if and only if
{Z € (’CQ(W))TL | <HU7Z>(L2(M))H = 0,
Vue O} =z=0.

Suppose that the sequence of sens@ly,, fi)i<k<q
is G-strategic in w but for some m € N we
have rankM,, # r,. Then there existsz,, =
(Zmys---»2Zm,, )t # 0 such thatM,, z,, = 0.

Let

Tm/ t
zp = szj OmyyZp = ((zo, Opr) s <z07 ‘Ppr,»p>)
=1

and

ZO = (207"'720)'

d¢ 9y

_ o dp
—/QA y(z,t)axk (z,t)dzdt

q
e
—|—/Q;f,XDiu,(T—t)az(x,t)dgcdt,

but we have
9y 9y

T

:/Q [%(x,t)g(x,t)]odx

+/QA (52) (2, 8)j(x, £) dz it
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s

Oy
= T)ij(z, T
, D1 (2, T)y(z,T)dx

+/QA (({?ZC (z, t)) g(z,t) dz dt.

Then

Oy
o Oz,

:_/A<aw@t0§@ﬁdwﬁ
Oy,
* ~ 890
+/QA y(w,t)a—%(x,t)dxdt
- B
—&-/Q (;fiXDiui(T—t)> a—fk(x,t) dz dt

:—/amja> (¢t dcat

0 dp -
+/Z EON (M(Qt)) §(¢,t)d¢de

—(z,T)y(z,T)dx

- 9
—&—/Q (;fiXDiuz‘(T—t)> afk (x,t) dz dt.

Since (¢, t) € L0, T; H3(2)), we have

/ 9% (o TYj(w, T) da

8xk
q o
= /Q(; Jixp,ui(T — t))a—xk(x, t) dz dt.

Thus

9y
/Q o(z, T)a—xk(x, T)dx

:_Z/ <fz,a$k>L2(Di)ui(T_t) dt,

and we have

<XwVK*U7 ZO>(L2(Q))n

T
t )Z Zvap] L2 QDI)J

Therefore

(X VK™ u, ZO>(L2(UJ))n

:_Z/ Ze (T~ (M, z,)sus (T —t) dt. (A3)

Thus

(Xw VK™ u, ZO>(L2(W))"
a T
=— Z/ AT (M, 2 )sus (T — t) dt = 0.
i=170

This is true for allu € L?(0,7;RY). Hence Z, €
Ker(H*), which contradicts the assumption that the se-
guence of sensors i§-strategic. [ |
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