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Iterative learning and repetitive control aim to eliminate the effect of unwanted disturbances over repeated trials or cycles.
The disturbance-free system model, if known, can be used in a model-based iterative learning or repetitive control system
to eliminate the unwanted disturbances. In the case of periodic disturbances, although the unknown disturbance frequencies
may be the same from trial to trial, the disturbance amplitudes, phases, and biases do not necessarily repeat. Furthermore,
the system may not return to the same initial state at the end of each trial before starting the next trial. In spite of these
constraints, this paper shows how to identify the system disturbance-free dynamics from disturbance-corrupted input-output
data collected over multiple trials without having to measure the disturbances directly. The system disturbance-free model
can then be used to identify the disturbances as well, for use in learning or repetitive control. This paper represents the first
extension of the interaction matrix approach to the multiple-trial environment of iterative learning control.
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1. Introduction

Iterative learning control (ILC) and repetitive control (RC)
improve the tracking error of a repetitive process by com-
pensating for unwanted disturbances that are present in
a repetitive process (Bien and Xu, 1998; Moore, 1993).
Since there are two independent variables (repetition and
time), learning control can be viewed from the perspective
of 2-D systems theory (Amannet al., 1994), and, under
appropriate conditions, repetitive control can be viewed
this way as well. At one end of the spectrum, there are
learning and repetitive controllers that guarantee conver-
gence to zero tracking error without requiring knowledge
of the plant and the disturbances. Such a general ap-
proach, although attractive in theory, has limited appli-
cations in practice because these model-independent con-
trollers may exhibit unacceptable learning behavior while
converging to zero tracking error. At the other end of
the spectrum there are performance-oriented model-based

controllers. These controllers require the knowledge of
the plant and possibly of the disturbance environment in
their design. One does not expect that such information
can be derived accurately from analytical modeling alone,
especially when the disturbances may not be predicted ac-
curately beforehand. Consequently, system identification
in one form or another is used to provide the informa-
tion needed. System identification has a unique advan-
tage that the identified model reflects the true dynamics of
the system under consideration. For example, an experi-
mentally identified model naturally incorporates actuator
or sensor dynamics that may be left out in an analytical
model. Thus, in the context of designing model-based
learning or repetitive controllers, one asks the following
question: To what extent can the system disturbance-free
dynamics be identified from input-output data that are
corrupted by unknown periodic disturbances? Knowl-
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edge of the disturbance-free dynamics allows real time
estimation of the unwanted disturbance contribution to
the system output because the disturbance contribution is
simply the difference between the measured disturbance-
corrupted output and the computed disturbance-free out-
put. A disturbance-rejection control system can make use
of this information to cancel the estimated disturbance
contribution. Alternately, one can use the disturbance-
free model to design a disturbance observer to estimate
the equivalent disturbance input at the control actuators
(Tesfayeet al., 1997) so that the necessary disturbance
cancellation control input can be generated. It is clear
that a comprehensive answer to the identification question
will significantly contribute towards making learning and
repetitive control attractive in the real world. The primary
emphasis of this paper is the identification problem. The
control aspect will be addressed in a later work.

In the following we provide practical motivation for
the identification problem being examined in this paper.
In the standard ILC problem, it is assumed that the system
always returns to the same initial condition before the start
of the next trial. There are situations where the system
goes to what one considers the same starting point, but the
disturbance sources are not at the same phase. In other
words, the disturbances have the same frequencies each
repetition, but the phase does not necessarily repeat. We
can divide the situation into two classes.

The first class can be illustrated by considering the
timing belt drive system used in repetitive control experi-
ments in (Hsinet al., 1997). This consists of an input shaft
driving a timing belt (a belt with teeth). This belt drives
a gear on one end of an idler shaft, and a larger gear on
the other end drives a second belt. The other end of the
second belt drives the output shaft. The disturbances to
the output motion are small errors due to imperfect man-
ufacture of the gears, imperfect mounting for position and
angle, disturbance dynamics as the belt teeth mesh with
the gear teeth, etc. This produces a rich set of disturbance
frequencies at the fundamental and harmonics for motion
once around of each shaft and each belt. In this situation,
when the output shaft is put in the desired starting angle,
it does not mean that all other gears and belts are back to
their same starting position. Depending on the gear ratios,
one may have to rotate the output shaft many times be-
fore one gets to a common period for the entire system;
with closely spaced periods for different parts of the sys-
tem, the common period can be very long. In this case one
has several options. One is to use the very long common
period as the learning period. This can require recording
and using long data sets, the long period means that learn-
ing will be correspondingly slow, and one may need to go
through a large adjustment in the system to get the sys-
tem to a proper starting point for the next run. Another
option makes use of the fact that there are a finite num-

ber of initial conditions for all the system disturbances,
associated with having the output shaft at the desired an-
gle. If one knows how many of these there are, one can
do a separate learning control process for each. Again,
this makes for slow learning, and the starting points cy-
cle through the possibilities. And the third alternative is to
use a method such as the one developed here that identifies
the disturbance-free dynamics in order to infer the phases
of the disturbances each time. One can have substantially
faster learning as a result.

The second class of ILC problems where the phase
does not repeat can be illustrated by a couple of situa-
tions. One of these is the belt steering problem treated in
(Hsin et al., 1998). This hardware uses a simple belt, not
a timing belt. And in practice the belt will have some drift
with respect to the angle of the roller driving it, and hence
the phase of the disturbances will drift. This would also be
the case in the timing belt drive system discussed above, if
the timing belts were replaced by simple belts, both drift-
ing somewhat over time. Another example comes from
the timing belt system when one considers periodic errors
due to imperfections in the ball or roller bearings. The dis-
turbance period is nominally a fraction of the shaft veloc-
ity. But again the relationship is not perfect due to some-
thing analogous to the belt slipping. Because the slip is not
something one can predict accurately, the method of this
paper becomes more important as a means of addressing
this class of problems.

The method developed here not only handles the
cases above, but also handles the still more general case of
non-repeating initial conditions and non-repeating distur-
bance amplitudes, provided the disturbances always have
the same set of frequencies. System identification is per-
formed off line, and it is indicated how one must do this to
get the disturbance-free system model from multiple-trial
data that is corrupted by the non-repeating disturbances.

Central to the proposed identification method is the
derivation of a relationship between the excitation or con-
trol input and the disturbance-corrupted output. Through
the so-called “interaction matrix”, terms related to the un-
known disturbance inputs and explicit state dependence
are eliminated from this input-output model. This matrix
describes how the coefficients of the identified model be-
come corrupted by the unknown disturbances, yet the sys-
tem disturbance-free dynamics can still be correctly re-
covered without having to determine the disturbance in-
puts first. The interaction matrix had its origin in the open-
loop state-space system identification problem (Juang and
Phan, 2001; Phanet al., 1997). It has substantially de-
veloped into a general framework spanning the problems
of closed-loop state-space identification (Juang and Phan,
1994; Phanet al., 1994), observer and Kalman filter iden-
tification (Juanget al., 1993; Phanet al., 1995), dis-
turbance identification and rejection by feedforward and
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feedback control (Goodzeit and Phan, 2000b; Phanet al.,
1997; Goodzeit and Phan, 2000a), predictive control (Lim
and Phan, 1997; Phanet al., 1998; Phanet al., 1999). For
each problem there is a corresponding interaction matrix.
This paper is the first extension of the interaction matrix
formulation to the multiple-trial environment of iterative
learning control.

2. Problem Statement

Consider ann-th order, r-input, q-output discrete-time
system

x(k + 1) = Ax(k) + Bu(k) + Bdd(k),
(1)

y(k) = Cx(k) + Du(k),

where d(k) is a disturbance input made up of a finite
number of unknown frequencies, amplitudes, and phases.
Available for system identification there ares sets of data,
each ` samples long, consisting typically of excitation
input u(j)(k) and disturbance-corrupted outputy(j)(k),
where j denotes the trial number,j = 1, 2, . . . , s, and k
the time index,k = 0, 1, 2, . . . , `− 1. After each trial the
system may not return exactly to the same initial state be-
fore the next trial starts. Likewise, the amplitudes, phases,
and biases of the harmonic components of the disturbance
d(j)(k) may vary from trial to trial,

d(j)(k) =
f∑

i=1

A(j) cos
(
ωik∆t + φ

(j)
i

)
+ B(j). (2)

Note that these assumptions are more general than
those normally assumed in the standard ILC theory, where
the system is assumed to return to the same initial state
before the next trial is carried out, and any disturbance,
if present, is assumed to be repeating from trial to trial.
The objective of our identification problem is to recover
the dynamics of the disturbance-free system. In discrete-
time, the system dynamics is completely characterized
by the sequence of Markov parametersY (k) = CAkB,
k = 0, 1, 2, . . . , which are the sampled unit pulse response
of the disturbance-free system. Once the Markov param-
eters are known, a state-space model of the system can be
obtained by various realization techniques (Juang, 1994).

Other than the given sets of disturbance-corrupted
data, nothing else is known about the system. Although
we do not know the exact order of the system or the ex-
act number of disturbance frequencies, upper bounds are
assumed known for the purpose of identification. Further-
more, the disturbance frequencies may coincide with any
number of system natural frequencies.

3. Input-Output Representation via
the Interaction Matrix

In the following we derive an equation that relates the ex-
citation input data to disturbance-corrupted output data
via the so-called interaction matrix. This matrix is later
used to show how the disturbance information can be em-
bedded in the model where the disturbance input is explic-
itly absent. From (1), by repeated substitution,

x(k + p) = Apx(k) + Cup(k) + Cddp(k),

yp(k) = Ox(k) + T up(k) + Tddp(k), (3)

where

up(k) =


u(k)

u(k + 1)
...

u(k + p− 1)

 ,

yp(k) =


y(k)

y(k + 1)
...

y(k + p− 1)

 , (4)

dp(k) =


d(k)

d(k + 1)
...

d(k + p− 1)

 ,

C =
[
Ap−1B, · · · , AB,B

]
,

(5)
Cd =

[
Ap−1Bd, · · · , ABd, Bd

]
,

T =


D

CB D
...

...
...

CAp−2B · · · CB D

 ,

O =


C

CA
...

CAp−1

 , (6)

Td =


0

CBd 0
...

...
...

CAp−2Bd · · · CBd 0

 .
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We will discuss the requirement placed onp later.
The interaction matrixM is introduced by adding and
subtracting the productMyp(k) from the right-hand side
of (3) to produce

x(k + p) = Apx(k) + Cup(k) + Cddp(k)

+ M
[
Ox(k) + T up(k) + Tddp(k)

]
−Myp(k)

= (Ap + MO)x(k) + (C + MT )up(k)

+ (Cd + MTd)dp(k)−Myp(k). (7)

We do not need to determine the interaction matrix
M , we are only concerned with its existence in this anal-
ysis. With M introduced, the output equation becomes

y(k + p) = (CAp + CMO)x(k) + (CC + CMT )up(k)

+ (CCd + CMTd)dp(k)

− CMyp(k) + Du(k + p). (8)

Equation (8) describes the disturbance-corrupted output at
time stepk + p in terms of the system state at time step
k, excitation input from time stepk to k + p, the system
output from time stepk to k + p− 1, and the disturbance
input from time stepk to k + p− 1 as expected.

4. State and Disturbance-Input
Independent Model

From the identification point of view, Eqn. (8) cannot be
used because it involves the system state and the distur-
bance input, both of which are unknown. We now use the
freedom introduced by the interaction matrix to eliminate
terms involved with these unknown quantities in the equa-
tion.

Specifically, we are looking to impose the conditions
for M , or the productCM , such that the explicit de-
pendence of the disturbance-corrupted outputy(k) on the
statex(k) and unknown disturbance inputd(k) is elimi-
nated not only for allk ≥ p during each trial, but also for
all available trials,j = 1, 2, . . . , s.

CAp + CMO = 0, (9)

(CCd + CMTd)d(j)
p (k) = 0. (10)

Equation (9) is disturbance-input independent, but (10) is
not. Thus, it is not clear whether such an interaction ma-
trix exists. Let us examine (10) in greater detail. It can be
re-written as

[CCd + CMTd]D = 0, (11)

D = [D(1),D(2),D(3), . . . ], (12)

where eachD(j) is a matrix of time-shifted disturbance
input time histories associated with trialj,

D(j) =
[

d
(j)
p (0) d

(j)
p (1) d

(j)
p (2) · · ·

]
. (13)

Equations (11) can be viewed as a set of constraint
equations thatM or the productCM must satisfy for us
to relate the excitation input to the disturbance-corrupted
output, without explicit dependence on the system state or
input disturbance. These constraints must be met not only
for each trial, but also for all available trials. The existence
of such an interaction matrix is now examined.

In the following we will show that the rank ofD
is limited by the total number of disturbance frequencies
present in the data as long as the disturbance inputs are
periodic. This observation effectively limits the number
of constraint equations thatCM (or M ) must satisfy.
Specifically, if the total number of distinct disturbance
frequencies over all trials isf , then the rank ofD is at
most 2f + 1, where the 1 accounts for any possible con-
stant bias in the disturbances. This is a two-part argu-
ment. First, the rank of each matrixD(j) is bounded by
the number of disturbance frequencies that are present for
that trial. To see this, consider the case where the dis-
turbance is a single frequency harmonic input. Since the
rows of D(j) are time-shifted versions of this harmonic
input, its row rank can be at most 2 (or 3 if a constant bias
is present). The same argument can be applied to multi-
ple harmonic disturbance inputs. Second, we extend the
argument to show that the rank ofD itself is limited by
the total number of disturbance frequencies present over
all available trials. This second part of the argument is
more difficult to see. Although eachD(j) is rank lim-
ited, the rank ofD will not increase beyond2f + 1 to
become full (row) rank eventually as long as the distur-
bances are periodic. To see why, consider the typical case
where all disturbance frequencies are present in each trial
data, and the amplitudes of the harmonic components of
the disturbance input do not change from one trial to the
next. Then the matrixD formed by the disturbance in-
put from multiple“short” trials is the same as the extended
D(1) (or D(2), or D(3)) with certain columns removed
if the experiment for that trial were allowed to continue
beyond the actual trial duration. The removed columns
correspond to the fact that the disturbance input at the be-
ginning of each trial is not simply a continuation of the
disturbance input at the end of the previous trial. Be-
cause the rank of the extendedD(1) (or D(2), or D(3))
is bounded by2f + 1, having certain columns removed
cannot possibly increase its rank beyond2f + 1. The
same argument can be extended to the case where the am-
plitudes of the harmonic components of the disturbance
may change from trial to trial. We thus arrive at the de-
sired conclusion that the number of constraint equations
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that the interaction matrix must satisfy is indeed bounded
from above.

We now look for a specific condition to guarantee the
existence of such an interaction matrix. LetDf denote a
matrix formed by2f + 1 linearly independent columns
of D. The equation thatCM must satisfy is therefore

CM [O, TdDf ] = −[CAp, CCdDf ]. (14)

Since (14) is a set of linear equations, the existence of
CM is guaranteed as long as the matrix[O, TdDf ] is
full rank, and the number of unknowns in the product
CM is at least equal to the number of constraint equa-
tions. Specifically, the number of scalar unknowns in the
product CM is pq2. The number of scalar equations is
q(n + 2f + 1). Thus the condition onp for the existence
of CM (or M ) is

pq ≥ n + 2f + 1. (15)

Thus from an assumed upper bound on the order
of the system and an assumed upper bound on the num-
ber of distinct disturbance frequencies,p can be chosen
such that the above condition is met. Then as long as
[O, TdDf ] is full rank, CM exists to satisfy (14). As
long as such aCM exists, (8) becomes

y(k + p) = (CC + CMT )yp(k)

− CMyp + Du(k + p). (16)

We have just argued the existence of (16), which is
a linear input-output equation that relates excitation input
data to disturbance-corrupted data in terms ofD, −CM ,
and (CC + CMT ). Notice the absence of the system
state and the disturbance input in this equation. Because
we have shown that there exists aCM that is common for
all available trials, input-output data from all available tri-
als can now be used collectively to identify these unknown
parameter combinations of the model. Essentially, the dis-
turbance information is partly embedded in the product
CM ; we refer to (16) as a disturbance-corrupted model.
In the following sections, we will show how the identifi-
cation of D, −CM , and (CC + CMT ) can be carried
out from multiple-trial data, and then how the disturbance-
free dynamics can in fact be recovered from these identi-
fied coefficients.

5. Identification of Disturbance-Corrupted
Model Coefficients

Recall thats sets of disturbance-corrupted input-output
data are available, one set from each trial,j = 1, 2, . . . , s,
and ` denotes the duration of each trial,k = 0, 1, . . . , `−
1. From (16), we can write

Y = PV, (17)

where

P =
[
D,−CM, (CC + CMT )

]
, (18)

Y =
[
Y (1), Y (2), . . . , Y (s)

]
,

(19)
V =

[
V (1), V (2), . . . , V (s)

]
.

The superscript j denotes the trial number,j =
1, 2, . . . , s,

Y (j) =
[
y(j)(p), y(j)(p + 1), . . . , y(j)(`− 1)

]
, (20)

V (j) =


u(j)(p) u(j)(p + 1) . . . u(j)(`− 1)

y
(j)
p (0) y

(j)
p (1) . . . y

(j)
p (`− 1− p)

...
...

...
...

u
(j)
p (0) u

(j)
p (1) . . . u

(j)
p (`− 1− p)

 . (21)

With sufficient data,P can be solved from

P = Y V +, (22)

where V + denotes the pseudo-inverse ofV computed
via its singular value decomposition.

6. Recovery of Disturbance-Free Dynamics

We are interested in recovering the disturbance-free model
from the disturbance-corrupted coefficients of the previ-
ous section. It is possible to do so without actually know-
ing the disturbances themselves. Let the identified param-
eter combinations−CM , CC + CMT be partitioned as

[αp, αp−1, . . . , α1] = −CM, (23)

[βp, βp−1, . . . , β1] = C(C + Mτ), β0 = D. (24)

By algebraic manipulation, the firstp Markov parameters
can be recovered as follows:

D = β0,

CB = β1 + α1D,

CAB = β2 + α2D + α1CB, (25)

...

CAp−1B = βp + αpD + αp−1CB + . . .

+ α1CAp−2B.

To recover the additional Markov parameters, we make
use of the conditionCAp + CMO = 0 by post-
multiplying it by B, then AB , etc., so that

CApB = α1CAp−1B + · · ·+ αpCB,

CAp+1B = α1CApB + · · ·+ αpCAB, (26)

...
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Any additional Markov parameters can be recovered
in the same manner. As mentioned, the Markov param-
eters completely describe the system disturbance-free dy-
namics. Once a sufficient number of Markov parameters is
obtained, the step of producing a state-space model from
the Markov parameters is straightforward. A realization of
the system state-space modelA, B, C can be found by
any standard realization procedure as described in (Juang,
1994).

The above procedure shows that although the dis-
turbance information is present in the model coeffi-
cients, it does not in principle hinder the ability to re-
cover the system disturbance-free dynamics. In the pres-
ence of noise, an over-parameterized model contains true
identifiable modes of the system, uncontrollable distur-
bance “modes”, and uncontrollable modes due to the
over-parameterization. The discrimination of identifi-
able system modes, over-parameterization modes, and
disturbance modes can be based on the fact that the
identifiable system modes are both observable and con-
trollable, disturbance modes and over-parameterization
modes are observable but uncontrollable, and unlike
over-parameterization modes, disturbance modes are un-
damped. In the presence of noise, these modes can be
distinguished by examining models with increasing over-
parameterization (by the parameterp). A detailed de-
scription of this discrimination process can be found in
(Goodzeit and Phan, 2000b; Phanet al., 1997), which in-
clude extensive experimental confirmation on a flexible
truss and a structural acoustic testbed.

7. Relationship between Interaction Matrix
Methods and Subspace Methods

Recently there has been considerable interest in the
literature regarding a new class of system identification
methods known as subspace methods (Van Overschee and
De Moor, 1996). The interaction matrix method recovers
the system Markov parameters first before finding a state-
space representation. The subspace methods, in contrast,
find the system state-space models directly from input-
output data through an oblique projection technique. In
ILC, the relationship from an input history to an output
time history during each trial is governed by the system
Markov parameters (Phan and Frueh, 1998; Elciet al.,
2002). Thus finding the Markov parameters directly (in-
stead of computing them from the system state space ma-
trices) represents a more direct approach to ILC problems.
In doing so, one avoids issues associated with finding a
state-space model representation. These include system
order determination, the choice of coordinates for the state
variables, and the nonlinear step of determining the indi-
vidual state-space matrices from input-output data. More-

over, no subspace method specifically designed to address
the specific problem of this paper has been developed,
namely system identification from multiple-trial data that
are corrupted by unknown non-repeating periodic distur-
bances for use in iterative learning control.

In spite of the above observation, it is perhaps still
useful to see how the indirect interaction matrix approach
differs from the direct subspace approach at a general
level. In the interaction matrix approach, the first step of
finding the Markov parameters is a linear problem, which
takes advantages of the benefits associated with solving a
linear problem. The second step of finding a state-space
model from the identified Markov parameters is nonlinear
but this problem can be addressed by the well-developed
realization theory. At the Markov parameters step, one
need not be concerned with issues such as the dimensions
of the state vector or which coordinate system it is in be-
cause the Markov parameters are invariant with respect to
a coordinate transformation of the state vector, and the di-
mensions of the Markov parameters are fixed by the num-
ber of inputs and outputs. The situation is actually more
complicated because the interaction matrix technique does
not solve for the system Markov parameters directly, but
rather a different set of Markov parameters from which
the system state-space model and an optimal observer or
Kalman filter gain or controller gains can be recovered in
the second step by realization (Phanet al., 1997). An-
other difference between the two approaches is that in the
interaction matrix approach, the linear first step makes it
easier to analyze which error is being minimized, and to
study the associated conditions for optimality. Depend-
ing on the specific technique used this could be the equa-
tion error, output error, or Kalman filter residual error. Er-
rors associated with the second nonlinear realization step
are associated with truncating non-zero singular values for
model order determination. The characterization of errors
introduced during this step is considerably more difficult.
The same difficulty is encountered in the direct subspace
approach.

In terms of mathematical derivation, there could be
dramatic differences in the two approaches. There have
been numerous variations within both approaches, but to
illustrate the point, we compare a typical interaction ma-
trix method to a subspace method described in (Franklinet
al., 1998), which is a generalization of the Ho-Kalman re-
alization to general input-output data. Both methods set
up input-output equations for subsequent manipulation.
The subspace method then proceeds to eliminate the ma-
trix of system Markov parameters to isolate the unknown
initial states, whereas the interaction matrix method elim-
inates the unknown initial states to isolate the (observer)
Markov parameters (then goes back to get the initial states
if needed). So fundamentally the two approaches take dif-
ferent paths from the very beginning. Efforts are now
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being made to compare and contrast the two approaches
more rigorously.

Finally, we note that the interaction matrix approach
is not limited to the problem of open-loop state-space sys-
tem identification. As mentioned, the general technique
has found its applications in the problems of closed-loop
state-space identification (Juang and Phan, 1994; Phan
et al., 1994), observer and Kalman filter identification
(Juanget al., 1993; Phanet al., 1995), disturbance iden-
tification and rejection by feedforward and feedback con-
trol (Goodzeit and Phan, 2000a; 2000b; Phanet al., 1997),
and predictive control (Lim and Phan, 1997; Phanet al.,
1998; Phanet al., 1999).

8. Numerical Illustration

We now illustrate the developed identification algorithm
by a numerical example. Consider the system

x(k + 1) = Ax(k) + B
[
u(k) + d(k)

]
,

y(k) = Cx(k) + Du(k),

where the discrete-time modelA = eAc∆t, B =
(A− I)−1AcBc describes the dynamics of an undamped
spring-mass system with the force input and the position
output using a sampling interval∆t = 0.02 sec,

Ac =

[
0 1

−k/m 0

]
, Bc =

[
0

1/m

]
,

C =
[

1 0
]
, D = 0.

The disturbance-free dynamics of the above system
is completely characterized by its Markov parametersD,
CB, CAB, CA2B, etc. which are its unit pulse response
samples. These Markov parameters are to be recovered by
the developed identification technique.

In this numerical illustration, we usem = 1 kg,
k = 100 N/m. The system natural frequency is thus
ω = 10Rad/ sec. At each trial j, suppose the unknown
disturbance inputd(k) consists of two harmonic compo-
nents and a bias,

dj(k) = A(j) cos
(
ω1k∆t + φ

(j)
1

)
(27)

+ B(j) cos
(
ω2k∆t + φ

(j)
2

)
+ C(j),

where, for illustration, the first unknown disturbance fre-
quencyω1 is chosen to coincide with the system natural
frequency,ω1 = 10 Rad/ sec, and the second unknown
disturbance frequency is taken to beω2 = 5Rad/ sec.
The amplitudesA(j), B(j), the biasC(j), and the phase
angles φ

(j)
i are also unknown, and they are allowed to

vary from trial to trial. Furthermore, the system does not

return to the same initial state after one trial before an-
other data collection trial is performed. Available for sys-
tem identification ares = 10 sets of input-output data
collected from 10 trials. At each trial, only the excitation
input u(k) and the disturbance-corrupted outputy(k) are
known. For this system the safe minimum value ofp de-
veloped above isn + 2f + 1 = 7. Any p larger than
or equal to this value can be used in the identification. In
practice, one only has a rough guess of the order of the
system and the number of disturbance frequencies. It is
considered safe practice to use a value ofp that is well
above the minimum value. In this illustration,p = 10 is
used although any value ofp ≥ 7 can be used. As shown
in the problem formulation, there is an interaction matrix
M that is common to all trials, so that input-output data
from 10 trials can be used collectively to determine the
coefficients of the disturbance-corrupted model. In this
example, they are found to be

D = 0,

−CM =
[
0.7023 − 2.9794 3.5917 1.0090− 3.5916

1.7923 4.0586 3.0724 − 7.8751 4.8043
]
,

CC + CMT =
[
− 1.4000 1.7947 3.6973 − 3.7182

− 5.8375 3.0081 7.2163 − 3.0779

− 3.6761 1.9933
]
× 10−4.

Any Markov parameters of the disturbance-free sys-
tem can be recovered correctly using (25) and (26) as
follows:

D = 0,

CB = β1 + α1D = 1.9933× 10−4,

CAB = β2 + α2D + α1CB = 5.9006× 10−4,

CA2B = β3 + α3D + α2CB + α1CAB

= 9.5725× 10−4,

...

As mentioned, from the identified Markov parameters, a
state-space model of the disturbance-free system can be
easily obtained using any standard realization techniques.

9. Conclusions

This paper presents the first extension of the interaction
matrix formulation to identify the system disturbance-free
dynamics from disturbance-corrupted data in the multiple-
trial setup of iterative learning control. We have shown
that with assumed upper bounds on the order of the
system and the number of disturbance frequencies, the
disturbance-free dynamics can be identified from such
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data. As long as the unknown disturbances have a fi-
nite number of frequencies, such identification is possi-
ble even if the disturbance frequencies coincide with the
system natural frequencies, and the disturbance ampli-
tudes, phases, biases, and the system initial conditions do
not necessarily repeat from trial to trial. The key theo-
retical development here is to show the existence of an
interaction matrix that is common not only for all time
steps during each trial, but also for all trials, so that data
from all trials can be used collectively in the identification.
Such an interaction matrix allows us to identify certain
parameter combinations from all available input-output
data sets. From the identified parameter combinations,
the disturbance-free dynamics can be recovered without
having to determine the disturbance input first. System
identification results obtained here can later be used in an
iterative learning or repetitive control system to cancel un-
wanted periodic disturbances. The scope of this paper is
limited to the identification problem. The control aspect
will be addressed in future work.
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