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REMARKS ABOUT ENERGY TRANSFER IN AN RC LADDER NETWORK
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The problem of energy transfer in anRC-ladder network is considered. Using the maximum principle, an algorithm
for constructing optimal control is proposed, where the cost function is the energy delivered to the network. In the case
considered, optimal control exists. Numerical simulations were performed using Matlab.
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1. Introduction

The problem of determining optimal controls is one of
fundamental problems in control theory and its applica-
tions (Athans and Falb, 1969; Bryson and Ho, 1972). An-
alytic solutions exist only in particular examples. Below
we will investigate such an example.
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Fig. 1. Scheme of energy transfer.

We consider an electric network shown in Fig. 1. The
resistance of the voltage sourceR1 and the output resis-
tanceRH are given. Let

J(u) =

T∫
0

u(t)i(t) dt, (1)

whereJ(u) is the energy delivered to the network andT
is the time horizon. Let the output current beiw(0) = 0
and t ∈ [0, T ]. Assume thatT and E are fixed and
consider the following problem: Finduo such that

J(u) ≥ J(uo), ∀ u (2a)

and ∫ T

0

y(t)iw(t) dt = E, (2b)

where E is the energy producing heat on the resis-
tanceRH .

Remark 1. Consider the electric network shown in Fig. 2.
We have

J(u) =
1

R1 +R+RH

∫ T

0

u(t)2 dt

E=
RH

(R1 +R+RH)2

T∫
0

u(t)2 dt. (3)
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Fig. 2. Electric resistance network.

The energyE producing heat on the resistanceRH is
given. From (3) we obtain many controlsu satisfying∫ T

0

u(t)2 dt=E(R1 +R+RH)2/RH ,

J(u) =E

(
1 +

R1 +R

RH

)
. (4)

If u(t) = ū = const, then

ū = (R1 +R+RH)
√

E

RHT
. �
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Remark 2. Consider a homogeneous long electricRC
transmission line, i.e. one where the parameters per the
unit length (resistancer and capacityc) are constant and
independent of the co-ordinatez. An infinitesimal part of
the long line is described by the equation

rc
∂x(t, z)
∂t

=
∂2x(t, z)
∂z2

, 0 ≤ t, 0 ≤ z ≤ l. (5)

�

Remark 3. Let z = ih, h = l/n, i = 0, 1, . . . , n and
x(t, (2k − 1)h/2) = xk(t), k = 1, 2, . . . , n. We have

∂2x(t, z)
∂z2

≈ 1
h

(
x(t, z + h)− x(t, z)

h

− x(t, z)− x(t, z − h)
h

)
for z = (2k− 1)h/2 and k = 1, 2, . . . , n. Then theRC
transmission line can be approximated by theRC ladder
network shown in Fig. 3, whereR = rl and C = cl
(Butkovskii, 1965, p. 314).

                             nR 2/                nR /                             nR /              nR 2/

       1R                    nC /                   nC /                             nC /                           HR

     )(tu                                         )(1 tx                  )(2 tx                            )(txn                      )(ty

                                 APPROXIMATION OF RC TRANSMISSION LINE

Fig. 3. RC ladder network.
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2. Electric RC Ladder Network

Consider the electricRC ladder network shown in Fig. 3.
Its parametersR, R1, RH and C are known. The sys-
tem shown in Fig. 3 can be described by the equation
(Mitkowski, 1994; 1997; 2000):

ẋ(t) =Ax(t) +Bu(t),

x(t) =
[
x1(t) x2(t) . . . xn(t)

]T
, (6)

y(t) =Wx(t),

whereA is the n× n real tridiagonal Jacobi matrix,

A= [aij ], aij = 0 for |i− j| > 1,

aii =
n2

RC
, i = 2, 3, . . . , n− 1,

a11 =−(1 + r(R1))
n2

RC
,

ann =−(1 + r(RH))
n2

RC
, r(γ) =

2R
2nγ +R

,

ai,i−1 =
n2

RC
, i = 2, 3, . . . , n,

ai,i+1 =
n2

RC
, i = 1, 2, 3, . . . , n− 1,

B=
n2r(R1)
RC

e1, e1 = [1 0 0 . . . 0 0]T ,

W =
nr(RH)RH

R
[0 0 . . . 0 1]. (7)

For fixedn the tridiagonal real Jacobi matrixA has
only single real eigenvaluesλi. The matrixA is diag-
onalizable. The Jordan canonical form ofA is J =
diag (λ1, . . . , λn). From Gershgorin’s criterion and the
fact that detA 6= 0, we have λi ∈ [−m, 0), where
m = maxi(|ai,i−1| + |ai,i+1|). Thus (Mitkowski, 2000,
p. 301) the system (6) is asymptotically stable.

3. Problem Formulation and Its Solution

Consider the system (6). Letx(0) = 0 and (cf. Eqn. (1))
the cost function be

J(u) =
∫ T

0

u(t)i(t) dt

=
2n

2nR1 +R

∫ T

0

u(t)[u(t)− x1(t)] dt, (8)

where J(u) is the energy delivered to the electricRC-
network, andT is the time horizon.

Optimal control problem: Let T andE be fixed. Find
a controluo ∈ Ud such that

J(u)≥ J(uo), ∀ u ∈ Ud,

Ud =

{
u :

1
RH

∫ T

0

y(t)2 dt

=
n2RH

(nRH +R/2)2

∫ T

0

xn(t)2 dt = E

}
, (9)

whereE is the energy producing heat on the resistance
RH (see Fig. 3) andUd is the set of admissible controls.

Remark 4. The setUd is non-empty. Indeed, examine,
e.g. u(t) = const such that

1
RH

∫ T

0

y(t)2 dt =
n2RH

(nRH +R/2)2

T∫
0

xn(t)2 dt = E
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(cf. (6) and (7) for x(0) = 0). Now, we consider
the spacesLp(0, T ), p ∈ [1,∞) with the norms
‖f‖p = [

∫ T

0
|f(t)|p dt]1/p. From the Hölder inequal-

ity (Musielak, 1976, p. 45; Luenberger, 1974, p. 58) we
have

∫ T

0
u(t)x1(t) dt ≤ ‖ux1‖1 ≤ ‖u‖2‖x1‖2. The sys-

tem (6) is asymptotically stable, controllable and observ-
able (cf. (7); the pair(A,B) is controllable and(W,A)
is observable). Consequently,

(R1 +R/2n)J(u) = ‖u‖2
2 −

∫ T

0

u(t)x1(t) dt

≥‖u‖2
2 − ‖u‖2‖x1‖2 ≥ −‖x1‖2

2/4

(see (8) and (9)), for everyu ∈ Ud the norm ‖x1‖2 is
finite and J(u) → ∞ as ‖u‖ → ∞. Thus there exists
the optimal controluo, cf. (8). We can notice thatJ(u) =
J(−u). �

The Maximum Principle makes it possible to con-
struct an algorithm for determining optimal control.
Defining new state variables

ẋn+1(t) =xn(t)2, xn+1(0) = 0,

ẋn+2(t) =u(t)[u(t)− x1(t)], xn+2(0) = 0, (10)

we have

xn+1(T ) =
(nRH +R/2)2

n2RH
E,

xn+2(T ) =
2nR1 +R

2n
J(u).

Let x̃(t) = [x(t)T xn+1(t) xn+2(t)]T and ψ̃(t) =
[ψ(t)T ψn+1(t) ψn+2(t)]T . Then we obtain the Hamilto-
nian in the form

H
(
ψ̃(t), x̃(t), u(t)

)
= ψ(t)T

[
Ax(t) +Bu(t)

]
+ ψn+1(t)xn(t)2

+ ψn+2(t)u(t)
[
u(t)− x1(t)

]
. (11)

In this caseψn+1(t) = −ρ = const, ψn+2(t) = −1,
ψ(T ) = 0 and (the adjoint system)

ψ̇(t) =−ATψ(t)− b,

bT =
[
u(t) 0 0 . . . 0 − 2ρxn(t)

]
, (12)

where ψ is the adjoint function. Using the Maximum
Principle (Pontriaginet al., 1983, Górecki, 1993, p. 393),
from (11) we get

u(t) =
1
2
[
BTψ(t) + x1(t)

]
=

1
2

[
2n2

(2nR1 +R)C
ψ1(t) + x1(t)

]
. (13)

The control (13) depends on the real numberρ and is
called the extremal control. The optimal controluo can
exist only among the extremal controls (13).

From (6), (12) and (13), we obtain the canonical sys-
tem in the following form:[

ẋ(t)
ψ̇(t)

]
=

[
Z1 Z2

Z3 Z4

] [
x(t)
ψ(t)

]
,

x(0)= 0, ψ(T ) = 0, (14)

where the matricesZi (depending onρ) are given by the
closed-loop system (6), (12) and (13). Let

Z =

[
Z1 Z2

Z3 Z4

]
, eZt =

[
Φ1(t) Φ2(t)
Φ3(t) Φ4(t)

]
. (15)

Then from (14) and (15) we have

x(t) = Φ2(t)ψ(0), ψ(t) = Φ4(t)ψ(0). (16)

If E 6= 0, then x(t) 6= 0, cf. (9). Thus from (16) we get
ψ(0) 6= 0. Sinceψ(T ) = 0, cf. (14), from (16) we have

detΦ4(T ) = 0. (17)

The idea of the control algorithm:

• Determine the parameterρ using Eqn. (17).

• From (9) and (16) calculateψ(0).

• From (13) and (16) determine

u(t) =
1
2
[
BTψ(t) + x1(t)

]
=

1
2
[
BT Φ4(t) + eT

1 Φ2(t)
]
ψ(0), (18)

wheree1 = [1 0 0 . . . 0 0]T ∈ Rn.

4. RC Ladder Network with n=1

A very interesting case corresponds ton = 1. This is
because closed-form formulae for the optimal trajecto-
ries can be obtained, in particular for the optimal control
uo(t), as well as a closed-form formula for the cost func-
tion J(uo).

Now we consider anRC ladder network shown in
Fig. 3 with n = 1. In this case we obtain the following
parameters (see (6)):

A=− R1 +RH +R

C(R1 +R/2)(RH +R/2)
,

B=
1

C(R1 +R/2)
, (19)

W =
RH

RH +R/2
,
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and in (15) we have

Z1 =− 2R1 +RH + 3R/2
2C(R1 +R/2)(RH +R/2)

,

Z2 =
1

2C2(R1 +R/2)2
, (20)

Z3 =2ρ− 1
2
, Z4 = −Z1.

Remark 5. (Górecki, 1993, p. 394, 584; Korytowski,
2001). The matrixZ for n = 1, cf. (15), has eigenvalues
λ1 = λ and λ2 = −λ, whereλ =

√
Z2

1 + Z2Z3. �

Assume thatrankZ > 0. If Z3 = −Z2
1/Z2, then

λ = 0 (only one eigenvector corresponds toλ = 0, be-
causerankZ > 0) andΦ4(t) = 1−tZ1. In this case (17)
cannot be exploited, becauseZ1 < 0 and t > 0.

If λ 6= 0, then closed-form formulae for the elements
Φ2(t) and Φ4(t) of the matrixeZt (see (15)) forn = 1
are given by

Φ2(t) =
Z2(eλt − e−λt)

2λ
,

Φ4(t) =
(λ− Z1)eλt + (λ+ Z1)e−λt

2λ
, (21)

λ=
√
Z2

1 + Z2Z3,

where theZi’s are given in (20).

From (17) and (21) we havee2λt = (Z1 +λ)/(Z1−
λ). If λ is real, λ > 0 and t > 0, then e2λt 6= (Z1 +
λ)/(Z1 − λ).

Now, if Z2
1 + Z2Z3 < 0, thenλ1 = λ, λ2 = −λ,

λ = jω, j2 = −1, ω =
√
|Z2

1 + Z2Z3| (22)

and consequently, from (21), we obtain

Φ2(t) =
Z2

ω
sinωt, Φ4(t) = cosωt−Z1

ω
sinωt. (23)

Thus from (23) we can notice that (17) holds for the ap-
propriate$t.

We can notice thatZ2
1 + Z2Z3 < 0 if and only if

ρ < − 2R1 +R

2RH +R

[
2R1 +R

2RH +R
+ 1

]
= ρd. (24)

From (17) we conclude thatΦ4(T ) = 0. Because in
this caseΦ4(t) is given by (23), we have the following
equation:

tan z = −Kz, K = − 1
Z1T

, z = ωT. (25)

It has many (positive) solutions:

zi ∈
(
π/2 + (i− 1)π, π + (i− 1)π

)
,

i = 1, 2, 3, . . . . (26)

For everyzi there exists

ρi = −
[
(2R1 +R)Czi

2T

]2

+ ρd, (27)

cf. (20) and (22), whereρd is given in (24).

From (9) and (16) we have∫ T

0

x1(t)2 dt=
∫ T

0

Φ2(t)2 dtψ1(0)2

=
(RH +R/2)2

RH
E. (28)

In this case (n = 1) the numberψ1(0) is dependent on
zi, cf. (26) (or ρi, cf. (27)). From (28) we have

ψ1(0)=±(RH +R/2)
zi

Z2T

√
2E(1 +K2z2

i )
RHT (1 +K +K2z2

i )
,

K =− 1
Z1T

, (29)

where theZi’s are given in (20).

It is easy to show that, using elementary operations
(cf. (8) and (16)), we have

J(u) =
1

(R1 +R/2)

∫ T

0

u(t)
[
u(t)− x1(t)

]
dt

=
ψ1(0)2

4(R1 +R/2)

×
∫ T

0

[
4

(2R1 +R)2C2
Φ4(t)2−Φ2(t)2

]
dt. (30)

Consequently, from (30), (23) and (29) we obtain

J
(
u(ρi)

)
=E

{
1 +

R1 +R

RH

+
(RH +R/2)2(R1 +R/2)C2

RHT 2
z2
i

}
. (31)

Remark 6. We can notice (cf. (31)), thatJ(u(ρ1)) <
J(u(ρi)), ∀ i, whereρi is given by (27) andzi is given
by (25) and (26). �

Remark 7. From (9) we get

‖x1‖2
2 =

(RH +R/2)2

RH
E.
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Thus from Remark 4 we have

(R1 +R/2)J(u) = ‖u‖2
2 −

∫ T

0

u(t)x1(t) dt

≥‖u‖2
2 − ‖u‖2‖x1‖2, (32)

and consequently

(R1 +R/2)J(u)≥‖u‖2
2 − ‖u‖2

√
R̃E ≥ −R̃E/4,

R̃=
(RH +R/2)2

RH
. (33)

Since the functionJ(u) is continuous and (33) holds,
there exists the optimal controluo, cf. (8). One can notice
that J(u) = J(−u). �

Using Remarks 6 and 7, we obtain optimal control
(for ρ = ρ1) in the following form, cf. (18):

uo(t) =
1
2

[
2

(2R1 +R)C

(
cosωt− Z1

ω
sinωt

)

+
Z2

ω
sinωt

]
ψ1(0), ω = z1/T, (34)

where ψ1(0) is given by (29). The optimal trajectories
are given by the following equalities:

x1(t) = ψ1(0)
Z2

ω
sinωt, i(t) =

u(t)− x1(t)
R1 +R/2

. (35)

Example 1. Let R1 = 1, R = 1, RH = 2, C = 1,
T = 0.5, E = 10. Then forn = 1 we haveK = 2.7272,
cf. (25), Z1 = −0.7333, Z2 = 0.2222, z1 = 1.7746,
ρ1 = −29.3013, ω = 3.5491, ψ1(0) = 169.3551 and
J(uo) = 610.4439. The optimal controluo(t), ‘×−’, the
optimal electric currenti(t), ‘+−’, the function ψ1(t)
‘◦−’, and the optimal trajectoryx1(t), ‘∗−’, are shown
in Fig. 4. �

5. RC Ladder Network with n=2

Consider the electricRC ladder network shown in Fig. 3
with n = 2. The parametersR, R1, RH and C are
known. Equations (6) and (7) describe the system. In
this case optimal control can be determined by numerical
calculations.

Example 2. Let R1 = 1, R = 1, RH = 2, C = 1,
T = 0.5 andE = 10. Then forn = 2 the parameters of
the system are given by (7). The functionρ 7→ detΦ4(T )
is shown in Fig. 5. In this casedet Φ4(T ) = 0 for ρ =
−43.757, ψ1(0) = 90.3034, ψ2(0) = −1.2256ψ1(0)
and J(uo) = 609.7385. The optimal controluo(t),
‘×−’, the optimal electric currenti(t), ‘+−’, the func-
tion ψ1(t), ‘◦−’, ψ2(t), ‘∗−’ and the optimal trajectories
x1(t), ‘·−’ and x2(t), ‘: −’ are shown in Fig. 6. �
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Fig. 4. Optimal trajectories forn = 1.
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Fig. 5. Functionρ 7→ detΦ4(T ).
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Fig. 6. Optimal trajectories forn = 2.
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6. Concluding Remarks

In applications, optimal control problems are of
paramount importance. Unfortunately, only in few exam-
ples we can find closed-form formulae for optimal control.
In this paper such an example was studied. The resulting
two-point boundary-value problem (14), (9) was analyti-
cally solved (forn = 1). For largen we have to solve
this problem numerically.

RC ladder networks constitute a kind of approxima-
tions toRC-long lines (see Remarks 2 and 3). Probably,
the results presented in this paper can be applied to dis-
tributed systems. A very important problem is the transfer
of an energy quantum in a given time with the simultane-
ous minimization of the energy delivered to the system.
For example, it can be used in microelectronics, biology
and engineering. Generally, the problem of energy mini-
mization is very important.

Acknowledgment

This work was supported by the KBN-AGH Contract
No. 11 11 120 230.

References

Athans M. and Falb P.L. (1969):Optimal Control. An Introduc-
tion to the Theory and Its Applications. — Warsaw: WNT,
(in Polish); English version published in 1966 by McGraw-
Hill, Inc.

Bryson, Jr., A.E. and Ho, Y.-C. (1972):Applied Optimal Con-
trol. Optimization, Estimation and Control. — Moscow:
Mir, (in Russian); English version published in 1975 by
Hemisphere.

Butkovskii A.G. (1965): Theory of Optimal Control of Dis-
tributed Parameter Systems. — Moscow: Nauka, (in Rus-
sian); English version published in 1969 by Elsevier.

Górecki H. (1993):Optimization of Dynamic Systems. — War-
saw: Polish Scientific Publishers, (in Polish).

Korytowski A. (2001): Private Communication.

Luenberger D.G. (1974):Optimization by Vector Space Meth-
ods. — Warsaw: Polish Scientific Publishers, (in Polish);
English version published in 1969 by Wiley.

Mitkowski W. (1994):Synthesis ofRC-ladder network. — Bull.
Pol. Acad. Sci., Tech. Sci., Vol. 42, No. 1, pp. 33–37.

Mitkowski W. (1997): Analysis of ladder and ringRC-
networks. — Bull. Pol. Acad. Sci., Tech. Sci., Vol. 45,
No. 3, pp. 445–450.

Mitkowski W. (2000): Remarks on stability of positive linear
systems. — Contr. Cybern., Vol. 29, No. 1, pp. 295–304.

Musielak J. (1976): Introduction to Functional Analysis. —
Warsaw: Polish Scientific Publishers, (in Polish).

Pontryagin L.S., Boltyanskii W.G., Gamkrelidze R.W. and
Mishchenko E.F. (1983):The Mathematical Theory of Op-
timal Processes. — Moscow: Nauka, (in Russian); English
version published in 1962 by Interscience.

Received: 22 December 2002
Revised: 2 April 2003


