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REMARKS ABOUT ENERGY TRANSFER IN AN RC LADDER NETWORK
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The problem of energy transfer in aRC-ladder network is considered. Using the maximum principle, an algorithm
for constructing optimal control is proposed, where the cost function is the energy delivered to the network. In the case
considered, optimal control exists. Numerical simulations were performed using Matlab.
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1. Introduction where E is the energy producing heat on the resis-

o ) ) tance Ry.
The problem of determining optimal controls is one of

fundamental problems in control theory and its applica- Remark 1. Consider the electric network shown in Fig. 2.
tions (Athans and Falb, 1969; Bryson and Ho, 1972). An- We have
alytic solutions exist only in particular examples. Below 1 T
we will investigate such an example. Ju) = —o / )2 dt
9 P (u) Ri+R+ Ry Jy u()
i(1) i, (1) T

E:Mﬁ/u(ﬂ?dt. (3)

Ry T y(t) ’

Fig. 1. Scheme of energy transfer. R,

We consider an electric network shown in Fig. 1. The u(r)
resistance of the voltage souré® and the output resis-

tance Ry are given. Let . . )
Fig. 2. Electric resistance network.

T
J(u) = /U(f)i(t) dt, (1)  The energyE producing heat on the resistandey; is
0 given. From (3) we obtain many controls satisfying

where J(u) is the energy delivered to the network afid
is the time horizon. Let the output current bg(0) = 0

and ¢ € [0,7]. Assume thatT" and E are fixed and
consider the following problem: Find, such that J(u)=E <1 + R1R+ R) ' @

J(u) > J(up), YVu (2a) "

T
/ u(t)?dt = E(Ry + R + Ry)/ Ry,
0

If u(t) = u = const, then

T
. - E
/0 y()in(t) dt = E, @) =R Ry .

and



Remark 2. Consider a homogeneous long electie n’ 2R
o . o =—(1 Ry))—, =
transmission line, i.e. one where the parameters per the “ (14r( H))RC r() 2ny+ R
unit length (resistance and capacityc) are constant and )
independent of the co-ordinate An infinitesimal part of s ; " i=273 n
. . . . i,4—1 ) ] s Iy
the long line is described by the equation RC
2
ox(t, z 0%x(t, 2 , A _
re (8t ) 822 )’ 0 < t, 0 <z< l. (5) Q541 RC, 7 1,2,3, ,n 1,
2
R
¢ B—n;%(cl)el, [100...007,
Remark 3. Let z = ih, h =1/n, i = 0,1,...,n and
z(t, (2k — Dh/2) = 2x(t), k=1,2,...,n. We have W:nr(Rg)RH 00 ...01] @
D*u(t,z) 1 [zt 2+h) -z 2)
022 " h h For fixed n the tridiagonal real Jacobi matrid has
only single real eigenvalues;. The matrix A is diag-
ot z) —at 2 - h)> onalizable. The Jordan canonical form df is J =
h diag (A1, ..., ,). From Gershgorin’s criterion and the

for z = (2k—1)h/2 andk = 1,2,...,n. ThentheRC
transmission line can be approximated by tR€' ladder
network shown in Fig. 3, wherR = rl and C = ¢l
(Butkovskii, 1965, p. 314).

Fig. 3. RC ladder network.

2. Electric RC Ladder Network

Consider the electri®C' ladder network shown in Fig. 3.

Its parametersk, Ry, Ry and C are known. The sys-

tem shown in Fig. 3 can be described by the equation

(Mitkowski, 1994; 1997; 2000):
z(t) = Ax(t) + Bu(t),

a(t) = [z1(t) x2(t) ...
y(t) =Wa(t),

za ()] (6)

where A is the n x n real tridiagonal Jacobi matrix,

A=lay], a;; =0 for i —j| >1,
2
aii_gcv 222737 ,Tl_l,
2
ai1=—(1+r(R1))

fact that det A # 0, we have \; € [-m,0), where
m = maxi(|ai,i,1| + |ai,i+1|)- Thus (MitkOWSki, 2000,
p. 301) the system (6) is asymptotically stable.

3. Problem Formulation and Its Solution

Consider the system (6). Lat(0) = 0 and (cf. Egn. (1))
the cost function be

e /0 u®)[u(t) -z, (D] dt,  (8)

where J(u) is the energy delivered to the electrieC-
network, and?" is the time horizon.

Optimal control problem: Let 7" and E be fixed. Find
a controlu, € Uy such that

J(u) = J (uo),

Up=du: —— ' (t)*dt
d= .RHOy

Vue Uy,

TL2RH

g 2
= G+ 27y th}’ ©

where E is the energy producing heat on the resistance

Ry (see Fig. 3) and/; is the set of admissible controls.

Remark 4. The setU,; is non-empty. Indeed, examine,
e.g. u(t) = const such that

T
1

T
- 2
RH/O y(t)"dt = (nRH+R/2 (nRp + RJ2)? /”“"”

0
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(cf. (6) and (7) for z(0) = 0). Now, we consider
the spacesL?(0,7), p € [l,00) with the norms
£, = Ly |f(8)|Pdt]*/P. From the Holder inequal-
ity (Musielak, 1976, p. 45; Luenberger, 1974, p. 58) we
have fOT w(t)xy () dt < |Juzi|lr < ||ull2]|z1]]2. The sys-
tem (6) is asymptotically stable, controllable and observ-
able (cf. (7); the pairn(A, B) is controllable and(W, A)

is observable). Consequently,

T
(B +R/2n)J(u)=HUI|§—/O u(t)z(t) dt

> [|ull3 — [[ull2llz1ll2 > —[l21]l5/4

(see (8) and (9)), for every, € U, the norm ||z |2 is
finite and J(u) — oo as |ju|| — oo. Thus there exists
the optimal controk,, cf. (8). We can notice thaf (u) =
J(—u). ¢

The Maximum Principle makes it possible to con-
struct an algorithm for determining optimal control.
Defining new state variables

i'nJrl(t) :xn(t)2, anrl(O) =0,

Enpo(t) =u(@)[u(t) —z1(t)],  2n12(0) =0, (10)

we have
nRy + R/2)?
In+1(T):( zgRH/ ) E7
2nR1 + R
Tpyo(T) = 72171 J(u).

Let #(t) = [0(t)7 2,41(t) wnsa(t)]” and o(t) =
V()T ni1(t) Yna2(t)]T. Then we obtain the Hamilto-
nian in the form

H(9(1), Z(1), ult))
= ()" [Ax(t) + Bu(t)] + vns1 (H)on(t)®

+ Ynaa(u(t) [ut) — 21(1)]. (11)
In this casevy,1(t) = —p = const, Ppi2(t) = —1,
¥(T) = 0 and (the adjoint system)
b(t) = —ATY(t) - b,
o' =[u(t) 00 ... 0 —2px,(t)], (12)

where 1 is the adjoint function. Using the Maximum
Principle (Pontriagiret al,, 1983, Gorecki, 1993, p. 393),
from (11) we get

u(t) =

_ 1 2n?
2 [(2nR; + R)C

[BT(t) + 21(t)]

Pi(t) +ai(t)| . (13)

&

The control (13) depends on the real numberand is
called the extremal control. The optimal contra} can
exist only among the extremal controls (13).

From (6), (12) and (13), we obtain the canonical sys-
tem in the following form:

() || Zs Za P(t) |
z(0)=0, »(T)=0, (14)

where the matrices/; (depending orp) are given by the
closed-loop system (6), (12) and (13). Let

_| %4 2 ze _ | Pu(t) Pa(f)
Z= Zs Zy |’ | Ds(t) Du(t) - (19
Then from (14) and (15) we have

z(t) = ©2(t)1(0),  (t) = Pu(t)(0). (16)

If £ =0, thenx(t) # 0, cf. (9). Thus from (16) we get
¥(0) #£ 0. Sincey(T') = 0, cf. (14), from (16) we have

det ®4(T) = 0. 17)

The idea of the control algorithm:
¢ Determine the parameter using Eqn. (17).

e From (9) and (16) calculate(0).
e From (13) and (16) determine

u(t) = % (BT (t) + 21(t)]

= S [BT00) + T 0(0]0(0),  (18)

wheree; =100 ... 00]7 € R™.

4. RC Ladder Network with n=1

A very interesting case corresponds#o= 1. This is
because closed-form formulae for the optimal trajecto-
ries can be obtained, in particular for the optimal control
u,(t), as well as a closed-form formula for the cost func-
tion J(u,).

Now we consider anRC ladder network shown in
Fig. 3 with n = 1. In this case we obtain the following
parameters (see (6)):

Ri+Rug+R

C(R1+ R/2)(Ry + R/2)’

1
C(Rl —i—ﬁ’/?)7
Ry +R/2’

A:

(19)

w
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and in (15) we have

2R+ Ry +3R/2
2C(Ry + R/2)(Ry + R/2)’

1
© 202(Ry + R/2)%’

7=

Z (20)

1
Z3=2p—§, Z4:—Z1.

Remark 5. (Goérecki, 1993, p. 394, 584; Korytowski,
2001). The matrixZ for n = 1, cf. (15), has eigenvalues

A1 =X and \y = —\,where\ = \/Z? + Z»Z;. ¢

Assume thatrank Z > 0. If Z3 = —Z2/Z,, then
A = 0 (only one eigenvector corresponds o= 0, be-
causerank Z > 0) and ®4(t) = 1—tZ;. In this case (17)
cannot be exploited, becausg < 0 and¢ > 0.

If A\ # 0, then closed-form formulae for the elements
®,(t) and ®4(t) of the matrixe?! (see (15)) forn = 1

are given by
_ ZQ(GM _ e*/\t)
L0=""
_ At —At
By(t) = A=2Z1)er + (A4 Zy)e 1)

2 ’

AN=1\/Z2+ 7373,

where theZ;’s are given in (20).

From (17) and (21) we have®* = (Z; +\)/(Z, —
A). If Xisreal, A > 0 andt > 0, thene?* # (Z; +
N/(Z1 = N).

Now, if Zl2 + ZyZ3 < 0, then Ay =\, Ay = =),

N=jw, j2=-1, w=/|Z}+2:75] (22)

and consequently, from (21), we obtain
Z. Z
Dy(t) = Zsinwt, Py(t) = coswt— L sinwt. (23)
w w

Thus from (23) we can notice that (17) holds for the ap-
propriate wt.

We can notice thatZ? + Z»Z5 < 0 if and only if

2R1 + R {2R1+R
p<

_ 1| = pq. 24
SRy + R 2R+ R ] pa- (24)

From (17) we conclude thab,(7') = 0. Because in
this case®,(¢) is given by (23), we have the following
equation:

tanz = —-Kz, K=—-———, z=uwT. (25)

It has many (positive) solutions:
zi€ (/24 (i—Dm, 7+ (i — 1)m),
i=1,2,3,.... (26)
For every z; there exists

A {(231 +R)Cz

2

cf. (20) and (22), wherey, is given in (24).
From (9) and (16) we have

T T
/xm%ﬁ/@wﬂwmf
0

0

2
_ B Y R2) (28)
Ry
In this case = 1) the numberiy,(0) is dependent on
z;, €f. (26) (or p;, cf. (27)). From (28) we have

2 2E(1+ K?22)
¥1(0) =+(Bu + R/2) 7 \/RHT(1 YK+ K222)

1
K=——0 29
7T (29)

where theZ;'s are given in (20).

It is easy to show that, using elementary operations

(cf. (8) and (16)), we have

1 T
0= 7 /0 w(t)[ult) — a1 (1)) dt

_ i(0)?
4(Ry + R/2)

X A T{W@;(tﬁ—%(tﬁ] dt. (30)

Consequently, from (30), (23) and (29) we obtain

Ri+R
H

J(u(p:)) :E{1+

| (R + R/27(B + R/2)C?
RyT?

22 } (31)

Remark 6. We can notice (cf. (31)), that/(u(p;)) <
J(u(ps)), ¥ i, where p; is given by (27) andz; is given
by (25) and (26). ¢

Remark 7. From (9) we get

(R + R/2)?

FE.
Ry

1113 =
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Thus from Remark 4 we have
T
(Ry + R/2)J (u) = |[ull3 —/ u(t)z(t)dt
0

> [ull} = lull2ll1]l2, (32)

and consequently
(R1 + R/2)J(w) > ||ull; — |lullsVRE > —RE/4,
2
B (R + R/2) .
Ry

Since the functionJ(u) is continuous and (33) holds,
there exists the optimal contral,, cf. (8). One can notice
that J(u) = J(—u). ¢

Using Remarks 6 and 7, we obtain optimal control
(for p = p1) in the following form, cf. (18):

(t) 1 2 cos wt Z1 sin wt
u(t) == | ———— wt — —sinw
2 | (2R, + R)C w

Z
+;2 sinwt} ¥1(0), w=2z/T,

(33)

(34)

where 1, (0) is given by (29). The optimal trajectories
are given by the following equalities:

u(t) — a1 (1)

21(t) = 01 (0) 2 sinwt, i(t) = i

2 (35)
w

Example 1. Let Ry =1, R=1, Rg = 2, C =1,
T =0.5, E=10. Thenforn = 1 we haveK = 2.7272,
cf. (25), Z; = —0.7333, Zy = 0.2222, z; = 1.7746,
p1 = —29.3013, w = 3.5491, v(0) = 169.3551 and
J(u,) = 610.4439. The optimal controhu,(t), ‘ x—’, the
optimal electric currenti(¢), ‘+—', the function 1);(t)
‘o—’", and the optimal trajectory:; (t), ‘x+—’', are shown
in Fig. 4. ¢

5. RC Ladder Network with n=2

Consider the electricRC' ladder network shown in Fig. 3
with n = 2. The parameter?, R,, Ry and C are
known. Equations (6) and (7) describe the system. In
this case optimal control can be determined by numerical
calculations.

Example 2. Let Ry =1, R=1, Rg = 2, C =1,
T = 0.5 and E = 10. Then forn = 2 the parameters of
the system are given by (7). The functipn— det ®,(T")

is shown in Fig. 5. In this casdet ®4(T") = 0 for p =
—43.757, 1(0) = 90.3034, 12(0) = —1.2256¢1(0)
and J(u,) = 609.7385. The optimal controlu,(t),
‘x—', the optimal electric current(¢), ‘+—', the func-
tion v (¢), ‘o', 12(¢), ‘*—"and the optimal trajectories
x1(t), =" and xo(t), ‘: — are shownin Fig. 6. ¢
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