
Int. J. Appl. Math. Comput. Sci., 2003, Vol. 13, No. 2, 199–204

INVERSION OF SQUARE MATRICES IN PROCESSORS
WITH LIMITED CALCULATION ABILLITIES

KRZYSZTOFB. JANISZOWSKI∗

∗ Institute of Automatic Control and Robotics, Warsaw University of Technology
ul. Narbutta 87, 02–525 Warsaw, Poland

e-mail:kjanisz@mchtr.pw.edu.pl

An iterative inversion algorithm for a class of square matrices is derived and tested. The inverted matrix can be defined over
both real and complex fields. This algorithm is based only on the operations of addition and multiplication. The numerics
of the algorithm can cope with a short number representation and therefore can be very useful in the case of processors with
limited possibilities, like different neuro-computers and accelerator cards. The quality of inversion can be traced and tested.
The algorithm can be used in the case of singular matrices, and then it automatically produces a result that contains the
inverse of this part of the processed matrix which can be inverted. An example of the inversion of a six-order square matrix
is presented and discussed.

Keywords: exponential matrix series, matrix inversion, neuro-processors

1. Introduction

Hardware neuro-processor and accelerator cards have usu-
ally a limited scope of mathematical operations, e.g. the
addition and multiplication of float numbers with limited
precision. This limitation reduces a variety of optimisa-
tion algorithms which can be performed on these proces-
sors. Many numerical procedures and algorithms need an
inversion of square, real (or complex) matrices, cf. all gra-
dient optimisation algorithms. The high capability of mul-
tiplication in the parallel computing of neuro-processors
(Golub et al., 1992) is now challenged by a very high
frequency of standard PC-processors. Consequently, the
rarely used and produced neuro-cards are too expensive
for applications in different problems. The presented al-
gorithm can perhaps change this situation and enlarge the
application area of neuro-computers.

The inversion of a square matrix is a very fre-
quent operation in various algorithms, which always en-
gages programmers’ attention due to problems which
can arise during the calculations, e.g. bad conditioning,
stiffness or large dimensions. There are various refined
algorithms, e.g. Singular Value Decomposition (SVD)
(Bodewig, 1965; Collar and Simpson, 1987; Kiełbasiński
and Szczepik, 1992), Birmann’s (BF) or Cholesky’s (CF)
factorisations (Bodewig, 1965; Collar and Simpson, 1987;
Higham, 1996; Kiełbasiński and Szczepik, 1992; William
et al., 1992) or the well-known Gauss reduction method
(Bodewig, 1965; Kiełbasiński and Szczepik, 1992). All of
these algorithms are complicated and need a definite pre-

cision of float number operations to guarantee acceptable
results. An estimate of the inversion error is not calcu-
lated as a standard result. There are some tests used for
the qualification of a rank defect in the procedure appli-
cation (SVD, BF, CF), but there is no direct evaluation of
the “quality of inversion”, and it is hard to check the error
in calculations, e.g. in the case of a limited number repre-
sentation. The proposed approach is based on some form
of iterative expansion and it is possible to define a mea-
sure of the error as the difference between the actual state
of calculations and an “ideal” solution. From this point
of view, the proposed approach can be interesting even in
the case of ordinary PC algorithms, e.g. in the case of ma-
trices of very high dimensions or the necessity of limiting
the calculation effort.

2. Problem Statement and Its Solution

Consider a square matrixA ∈ Rn×n, defined over the
real number field (or the complex number fieldC). In the
sequel, we will refer to the real numbers as the field of ma-
trices, but the algorithm is capable of inversing complex
matrices as well. We will look for a matrixB ∈ Rn×n

that will satisfy the equation

B A = A B = I, I ∈ Rn×n. (1)

Consider a square matrixD ∈ Rn×n that has all the
eigenvaluesσi satisfying the condition

|σi| < 1, i = 1, . . . , n. (2)

K.B. Janiszowski200

The above condition will assure the convergence

‖Dk‖ → 0 as k →∞ (3)

for any measure‖ · ‖ defined for matrixD, e.g. the trace
or the determinant. If the above condition is satisfied, we
can introduce the following definition:

(I−D)−1 , I+D+D2+· · ·+Dq+· · · as q →∞,
(4)

which can be easily verified by multiplying both the sides
of (4) by I − D, whereI is the identity matrix defined
in (1). Now, introduce a scaling coefficientα > 0, α ∈
R, which is determined for the matrixA such that

D = I − αA (5)

satisfies (2). This relation is equivalent to determining

A = α−1(I −D). (6)

The matrix B, being the inverse of the matrixA,
can be calculated as

B = A−1 =
(
α−1(I −D)

)−1 = α(I −D)−1

= α(I + D + D2 + · · ·), (7)

and it is determined by the series of the right-hand side
of (4). The series expansion in (7) has to be limited in a
way. As for the truncation error of this series for the order
p, we obtain

∆B = αDp(I + D + D2 + · · ·+ Dq + · · ·)

= αDp(I −D)−1 ∼= DpA−1. (8)

The error estimate is then dependent on the first termDp

neglected in the series (7) and the inverse matrixA−1. As
a measure of the convergence, we introduce

‖∆B‖ =
∑
i,j

|αi,j |
∑
i,j

|ρi,j |,

A−1 = {αi,j}, Dp = {ρi,j}, i, j = 1, . . . , n.

(9)

In iterative calculations, the first term of (9), i.e.∑
i,j |αi,j |, is not known, but it can be approximated by

the part of the series already included in expression (7).
The second term

∑
i,j |ρi,j | can be determined directly,

as the matrixDp is the last matrix included into the se-
ries expansion.

In the case of the properties and coefficients of the
matrix A which are not knowna priori, small values of
the scaling factorα will be used for the preservation of
the condition (2) and then the series in (7) or (8) can de-
crease very slowly. The efficiency of the algorithm will
be limited. The way of a fast calculation of the series
I + D + D2 + · · · + Dq + · · · will be investigated in
the next section.

3. Algorithm of a Fast Calculation of
the Matrix Series Expansion

This aspect of calculation will be investigated by deter-
mining the number of matrix operations, e.g. the prod-
ucts or additions of matrices. These operations are per-
formed by neuro-processors (Beernaert and Roose, 1991;
Synapse 3, 1997) very fast and in a comparable time.

The iterations of the algorithm will start with the de-
termination of the following expression forG0:

G0 = I + D + · · ·+ Dm−1, m > 2, G0 ∈ Rn×n

(10)

and a multiplierH1,m ∈ Rn×n equal to

H1,m = Dm. (11)

In the second step the following expressions are calcu-
lated:

G1 = G0 + G0H1,m = I + D + · · ·+ D2m−1,

H2,m = H1,m H1,m.
(12)

Each step corresponding to (12) introduces three ma-
trix operations: one addition and two multiplications. All
k future steps will be determined as in (12):

Gk = Gk−1 + Gk−1Hk,m = I + D + · · ·+ D2km−1,

Hk+1,m = Hk,m Hk,m,
(13)

and the result of the calculations will contain2km ele-
ments of the series (7). At each step of iterations, matrix
Gk can be used for evaluating the first term in (9) and the
matrix Hk+1,m will yield the evaluation of the second
term in the error measure (9). The rate of convergence is
very fast, e.g. in the case ofm = 4 and k = 8 steps
of the algorithm, the number of matrix operations is equal
to 29 and the series (7) contains 1024 components.

The only problem is a proper choice of the scaling
factor α that will preserve the condition (2). The evalua-
tion of the scale of matrix elements is usually performed
in the case of neuro-processors to achieve the best cal-
culation accuracy; hence some hints regarding the proper
choice are available (Synapse 3, 1997). The choice of a
small value ofα will perhaps demand more steps of iter-
ations, but one additional step of the algorithm (13) intro-
duces only 3 additional matrix operations.

There is a possibility of estimating a proper scaling
factor α if the eigenvaluesλi, i = 1, . . . , n of the in-
verted matrixA are known. The eigenvaluesσi of the
matrix D (5) are

σi = 1− αλi, i = 1, . . . , n, (14)

Inversion of square matrices in processors with limited calculation abillities 201

and the condition for the convergence of the seriesI +
D + D2 + · · · + Dq + · · · amounts to the limitation of
the absolute value ofσi to the unit circle, in spite of the
Mieses theorem (Collar and Simpson, 1987). The bound-
ary value of the scaling factor is defined by

α <
2

|λmax|
, (15)

where λmax is the maximal absolute eigenvalue of the
matrix A. This value can be estimated by the investiga-
tion of the convergence of the subsequent power expres-
sion of A (Collar and Simpson, 1987).

The condition (15) can be directly used in the case
of real, symmetric matrices and, primarily the aim of the
proposed algorithm was the inversion of the matrices that
yield a Hessian matrix, in a gradient-like approach.

4. Results of Testing

The presented algorithm was used for the inversion of
symmetric matrices. But it can also be used in the case of
non-symmetric matrices, provided that the condition (2) is
satisfied. Various aspects of the introduced scheme were
investigated: the sensitivity of the algorithm to the choice
of the scaling factorα, the convergence rate of the algo-
rithm, the possibility of error estimation and the sensitivity
to rounding in a number representation.

The derived error (9), due to the impact of the trun-
cation of the iteration number (8), was estimated in the
form

‖∆D‖ =
∑
i,j

|ρi,j |, Hk+1,m = {ρi,j}, (16)

where i, j = 1, . . . , n, which can be easily determined
after thek-th step of the iterations (12)–(13). As the ref-
erence, we used a measure of the difference between the
identity matrix I and the product of the matrixA and
the matrix Ainv(k) inverted by the algorithm, withink
steps of iterations:

‖∆inv‖ =
∑
i,j

|vi,j |, V = {vi,j},

V = I −AAinv(k).
(17)

As an example, consider a covariance matrix calcu-
lated in some estimation algorithm for 6 parameters. The
matrix A ∈ R6×6 contains values of correlations be-
tween different signals scaled to the magnitude 1 on the
main diagonal. The components of the matrixA are

listed below:

A =



1.0000 0.9170 0.8384 0.6063 0.5388 0.4799

0.9170 1.0000 0.9173 0.6787 0.6060 0.5367

0.8384 0.9173 1.0000 0.7316 0.6784 0.6061

0.6063 0.6787 0.7316 1.0000 0.9572 0.8546

0.5388 0.6060 0.6784 0.9572 1.0000 0.9572

0.4799 0.5367 0.6061 0.8546 0.9572 1.0000


.

(18)

The inversion algorithm was derived form = 4 at
the start of the iterations (12). Table 1 presents inversion
errors for different scaling factorsα determined for con-
secutive numbers of iterations. The calculations were per-
formed using a PC with a double representation of real
numbers.

An inspection of the above results yields some im-
portant conclusions. The choice of the scaling factorα
exerts strong influence on the convergence rate. An op-
timal choice (in the sense of a minimal calculation time)
α = 0.428, presented as the first column in Table 1, in-
troduced very fast convergence, but increasingα resulted
in some non-stability of iterations, since the condition (2)
was not satisfied. The safe choiceα = 0.1 deteriorated a
little the convergence rate, but one additional step of iter-
ations yielded the same accuracy.

Very conservative choices ofα = 0.01 or 0.001
resulted in an increasing number of necessary iterations
with 2 to 4 additional steps. In the case of very small
scaling valuesα, the first steps of iterations consisted
in multiplication (12) of matrices that were very close
to the identity matrix, and the rate of convergence was
poor, which is represented by increasing errors (the last
columns in Table 1). Forα = 0.001 a large number44

of elements in the series (4) was necessary to begin the re-
duction of resolution errors. The dependence of the con-
vergence rate on the scaling factorα constitutes a draw-
back of the algorithm, but a proper value of this factor
can be estimated when scaling matrices during the calcu-
lation in neuro-processors (Golubet al., 1992; Masters,
1993; Synapse 3, 1997). Another conclusion from the
inspection of Table 1 concerns a good evaluation of the
inversion error‖∆inv‖ by the value of‖∆D‖ defined
in (16). In the last steps of the algorithm this correspon-
dence was violated, as the inversion errors remained con-
stant while the rounding errors‖∆D‖ were permanently
decreasing. This was a direct effect of a limited represen-
tation of double numbers in the computer memory. In the
case of a float representation, the inversion errors‖∆inv‖
were kept constant at a level approximately equal to10−6.

The choice of the scaling factorα can be performed
by a evaluation of (15). The maximal absolute eigenvalue

K.B. Janiszowski202

Table 1. Effect of different choices of the scaling factorα.

Scale factor Iteration k

α/errors 1 2 3 4 5 6 7 8 9 10

α = 0.428

‖∆inv‖ 7.758 5.815 2.624 6.5× 10−1 6.8× 10−3 8.1× 10−11 2.0× 10−13 2.0× 10−13

‖∆D‖ 7.758 5.815 2.624 6.5× 10−1 6.8× 10−3 8.0× 10−11 1.6× 10−42 2× 10−169

α = 0.1

‖∆inv‖ 8.294 6.636 4.112 2.243 7.2× 10−1 1.0× 10−2 2.0× 10−3 4.1× 10−10 3.1× 10−13

‖∆D‖ 8.294 6.636 4.112 2.243 7.2× 10−1 1.0× 10−2 2.0× 10−3 4.0× 10−47 1× 10−129

α = 0.01

‖∆inv‖ 7.051 8.347 7.725 5.807 3.439 1.719 3.1× 10−1 3.4× 10−4 1.9× 10−12 1.9× 10−12

‖∆D‖ 7.051 8.347 7.725 5.807 3.439 1.719 3.1× 10−1 3.4× 10−4 5.0× 10−16 3× 10−122

α = 0.001

‖∆inv‖ 6.124 6.466 7.460 8.474 7.204 4.797 2.795 1.206 7.9× 10−2 1.5× 10−6

‖∆D‖ 6.124 6.466 7.460 8.474 7.204 4.797 2.795 1.206 7.9× 10−2 1.5× 10−6

Table 2. Effect of different number representations.

Mantissa
representation

double 222 216 214 212 210

‖∆inv‖ 4.1× 10−10 9.8× 10−4 1.0× 10−1 3.5× 10−1 9.9× 10−1 4.37

determined for the matrixA is λmax = 4.651.
Due to (15) the power series ofD converges if
α < 2/4.651 = 0.430, and for the value of
α = 0.428 the convergence rate of the algorithm
was tested, cf. Table 1. If the evaluation of a
proper value of the scaling factorα, based on (15),
can be performed before the procedure for matrix
inversion, then the algorithm (12)–(13) will be very fast,
consist of the smallest possible number of steps and there-
fore preserve the smallest error in calculations, cf. Table 1.

Another test was performed for the evaluation
of inversion errors at different precisions of float opera-
tions. In various neuro-processors, the precision of the
number representation is remarkably worse than in the
standard PC-processors, and the proposed algorithm may
produce some unexpected effects. The scaling factorα
was equal to 0.1. The inversion errors were determined at
the stepk = 8, when iterations yielded constant inverted
matrix coefficients, cf. Table 2.

The above results seem to be very poor, but calcula-
tions were stable and produced reasonable values, e.g. the

product of A and the calculated inversionAinv for the
14-digit mantissa was equal to

A Ainv =

0.9978 0.0039 0.0015 0.0004 −0.0017 0.0007

0.0019 0.9934 0.0033 0.0033 −0.0010 0.0027

0.0008 0.0032 0.9957 −0.0014 0.0021 −0.0015

−0.0038 −0.0040 −0.0134 0.9825 0.0217 −0.0213

0.0074 0.0096 0.0258 0.0292 0.9595 0.0426

−0.0038 −0.0052 −0.0126 −0.0137 0.0211 0.9763


.

(19)

In the case of a limited number representation, a
proper choice of the scaling factorα seems to be im-
portant. The scaling factor equal to an optimal value of
α = 0.428 results in the reduction of‖∆inv‖ to the value
of 0.12 for the 14-digit representation. Another aspect of
the limited number representation can be observed, since
the end of the calculations was achieved in five steps of
the iteration (13). It was not necessary to continue itera-
tions when the number representation introduced definite
errors.

Inversion of square matrices in processors with limited calculation abillities 203

The operation of matrix inversion is very sensitive
to various numerical defects, e.g. the singularity of the
processed matrix. This defect will lead to many prob-
lems in the case of the standard algorithms (Bodewig,
1965; Golubet al., 1992; Higham, 1996), and will gen-
erally induce high magnitudes of the elements of the re-
sulting matrix. In the presented example, in the matrixA
(18), the last column replaced the fifth one. The inver-
sion of such a matrix (for the float precision andα = 0.1)
yielded the matrixAinv, which, multiplied by A, pro-
duced

A Ainv =

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

−0.0159 −0.02943 0.02275 0.35954 0.3370 0.3370

0.0159 0.02943 −0.02275 −0.3595 0.6629 0.6629


.

(20)

This result is remarkable, i.e. the upper part of the
matrix A was inverted and the last two rows are linearly
dependent. This form is useful and does not introduce
non-stability problems at subsequent calculations, e.g. in
the case of determining a direction for an optimisation al-
gorithm based on the inverse of the Hessian.

The proposed algorithm was primarily invented for
the inversion of symmetric matrices by neuro-processors
but it can be used for the inversion of any matrix that sat-
isfies (2), e.g. for a skew matrix

Ã =

1.0000 0.9170 0.8384 0.6063 0.5388 0.4799

−0.9170 1.0000 0.9173 0.6787 0.6060 0.5367

−0.8384 −0.9173 1.0000 0.7316 0.6784 0.6061

−0.6063 −0.6787 −0.7316 1.0000 0.9572 0.8546

−0.5388 −0.6060 −0.6784 −0.9572 1.0000 0.9572

−0.4799 −0.5367 −0.6061 −0.8546 −0.9572 1.0000


(21)

the inverse was determined aftern = 4 steps of the it-
eration (12), for the scaling factorα = 0.1 and the dou-
ble representation, with the inversion error of‖∆inv‖ =
7.36×10−14. The convergence rate was remarkably better
than in the case of the original matrixA (18).

Finally, another possibility of the proposed algorithm
was checked, namely the inversion of a complex matrix.
The only limitation in the convergence of the algorithm

is in fact the condition (2), which can be satisfied by a
complex matrix. As an example, the6×6 complex matrix

A =

1.0 + i0.24 0.9170 + i0.22 0.8384 + i0.201

0.9170 + i0.22 1.0 + i0.24 0.9173 + i0.22

0.8384 + i0.201 0.9173 + i0.22 1.0 + i0.24

0.6063 + i0.145 0.6787 + i0.163 0.7316 + i0.176

0.5388 + i0.129 0.6060 + i0.145 0.6784 + i0.163

0.4799 + i0.115 0.5367 + i0.128 0.6061 + i0.145

0.6063 + i0.145 0.5388 + i0.129 0.4799 + i0.115

0.6787 + i0.163 0.6060 + i0.145 0.5367 + i0.128

0.7316 + i0.176 0.6784 + i0.163 0.6061 + i0.145

1.0 + i0.24 0.9572 + i0.230 0.8546 + i0.205

0.9572 + i0.230 1.0 + i0.24 0.9572 + i0.230

0.8546 + i0.205 0.9572 + i0.230 1.0 + i0.24


(22)

was used (imaginary parts of numbers were set to 24% of
real parts in (18)). The algorithm for the inversion out-
lined in (12) and (13) was performed exactly in the same
way. The only difference was the representation of the
matrix A. The elements were complex numbers and the
corresponding procedures of multiplication and addition
were adapted to complex numbers. After eight steps of
the algorithm with the scaling factorα = 0.1, the inverse
was determined with the error (17) equal to3.07×10−13.
Investigations of other aspects regarding complex num-
ber calculations do not introduce substantially different
results in comparison with the effects observed for real
number calculations.

5. Conclusions

The proposed algorithm was primarily invented for chips
applied in neuro-processors or net-accelerators used in
calculation for the optimisation of artificial neural nets.
Its application can increase the convergence rate of var-
ious algorithms used for the optimisation of net weights
and based on the application of gradient approaches or
back-propagation methods. The iterative way of the in-
verse calculation induces an increase in the numerical ef-
fort in the case of common PC applications. However, it
can be an alternative in the case of large matrices, where
the numerical effort increases faster than the square of a
matrix dimension. A remarkable advantage of this proce-
dure is its stable behaviour in the case of singular matrices
in which the exact place and dimension of the rank defect
are not known. Another interesting feature is the calcu-
lation error, which is produced by rounding the number
representation. The magnitude of this error seems to be

K.B. Janiszowski204

independent of the numerical conditioning of the inverted
matrix. The value of this error can be traced at thek-th
step of the algorithm and, after the level of the number
representation has been reached, the procedure can be ter-
minated.

The most visible drawback of this approach is the
scaling (5)–(6) of the inverted matrix. It can be performed
simultaneously with preparing the matrix for computa-
tions in the case of neuro-processors or in the starting
phase of calculation like in the presented example. In the
case of the possible knowledge of the eigenvalues of the
inverted matrix the relation (15) can be used for the deter-
mination of a proper value ofα. If the scaling factor is
not predefined, after scaling the components the value of
the rounding error (16) can be controlled for the detection
of rapid increments in the case of non-stable behaviour in
the scheme (12) and (13).

References

Beernaert L. and Roose D. (1991):Parallel Gaussian elimina-
tion, iPSC/2 hypercube versus a transputer network, In:
Numerical Linear Algebra (G. Golub, Ed.). — NATO ASI
Series, Vol. 70, Berlin: Springer.

Bodewig E. (1965):Matrix Calculus. — Amsterdam: North-
Holland.

Bjorck A. (1991):Error analysis of least squares algorithms, In:
Numerical Linear Algebra (G. Golub, Ed.). — NATO ASI
Series, Vol. 70, Berlin: Springer.

Collar A.R. and Simpson A. (1987):Matrices and Engineering
Dynamics. — New York: Wiley.

Golub G., Greenbaum A. and Luskin M. (1992):Recent Ad-
vances in Iterative Methods. — New York: Springer.

Higham J.H. (1996):Accuracy and Stability of Numerical Algo-
rithms. — Philadelphia: SIAM.

Kiełbasínski A. and Szczepik H. (1992):Numerical Algebra. —
Warsaw: WNT, (in Polish).

Masters T. (1993):Practical Neural Network Recipes in C++.
— London: Academic Press.

Synapse 3 (1977):PC Siemens Card- Technical Documentation.
— Dresden: Siemens.

William H., Flannery B., Teukolsky S. and Vetterling W. (1992):
Numerical Recipes in C. — New York: Cambrige Univer-
sity Press.

Received: 23 September 2002
Revised: 31 March 2003

